Package ‘GCPM’

December 30, 2016

Type Package
Title Generalized Credit Portfolio Model
Version 1.2.2
Date 2016-12-29
Author Kevin Jakob
Maintainer Kevin Jakob <Kevin.Jakob.Research@gmail.com>
Description Analyze the default risk of credit portfolios. Commonly known models, like CreditRisk+ or the CreditMetrics model are implemented in their very basic settings. The portfolio loss distribution can be achieved either by simulation or analytically in case of the classic CreditRisk+ model. Models are only implemented to respect losses caused by defaults, i.e. migration risk is not included. The package structure is kept flexible especially with respect to distributional assumptions in order to quantify the sensitivity of risk figures with respect to several assumptions. Therefore the package can be used to determine the credit risk of a given portfolio as well as to quantify model sensitivities.
License GPL-2
Imports Rcpp (>= 0.11.2), methods, RcppProgress(>= 0.1), parallel
LinkingTo Rcpp, RcppProgress
SystemRequirements Windows, Linux, OS X
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-12-30 00:34:04

R topics documented:

 GCPM-package ... 3
 alpha.max-methods ... 4
 analyze-methods .. 5
 business-methods ... 7
 CDF-methods ... 8
 country-methods ... 9
Description

The package helps to analyze the default risk of credit portfolios. Commonly known models, like CreditRisk+ or the CreditMetrics model are implemented in their very basic settings. The portfolio loss distribution can be achieved either by simulation or analytically in case of the classic CreditRisk+ model. Models are only implemented to respect losses caused by defaults, i.e. migration risk is not included. The package structure is kept flexible especially with respect to distributional assumptions in order to quantify the sensitivity of risk figures with respect to several assumptions. Therefore the package can be used to determine the credit risk of a given portfolio as well as to quantify model sensitivities.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>GCPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.2.2</td>
</tr>
<tr>
<td>Date</td>
<td>2016-12-29</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

Author(s)

Kevin Jakob

Maintainer: Kevin Jakob <Kevin.Jakob.Research@gmail.com>

References

- First Boston Financial Products, "CreditRisk+", 1997

See Also

GCPM-class, init, analyze

Examples

#create a random portfolio with NC counterparties
NC=100
assign business lines and countries randomly
business.lines=c("A","B","C")
CP.business=business.lines[ceiling(runiform(NC,0,length(business.lines)))]
countries=c("A","B","C","D","E")
CP.country=countries[ceiling(runiform(NC,0,length(countries)))]

create matrix with sector weights (CreditRisk+ setting)
according to business lines
NS=length(business.lines)
W=matrix(rep(0,nrow=NC,ncol=length(business.lines)),
dimnames=list(1:NS,business.lines))
for(i in 1:NC)(W[i,CP.business[i]]=1)

create portfolio data frame
portfolio=data.frame(Number=1:NC,Name=paste("Name ",1:NC),Business=CP.business,
Country=CP.country,EAD =runif(NC,1e3,1e6),LGD =runif(NC),
PD =runif(NC,0,0.3),Default =rep("Bernoulli",NC),W)

draw sector variances randomly
sec.var=runif(NS,0.5,1.5)
names(sec.var)=business.lines

draw N sector realizations (independent gamma distributed sectors)
N=5e4
random.numbers=matrix(NA,nrow=NS,nrow=N,dimnames=list(1:N,business.lines))
for(i in 1:NS){
random.numbers[i]=rgamma(N,shape=1/sec.var[i],scale=sec.var[i])}

create a portfolio model and analyze the portfolio
TestModel=init(model.type="simulative",link.function="CRP",N=N,
loss.unit=1e3,random.numbers=random.numbers,LHR=rep(1,N),loss thr=5e6,
max.entries=2e4)
TestModel=analyze(TestModel,portfolio)

plot of pdf of portfolio loss (in million) with indicators for EL, VaR and ES
alpha=c(0.995,0.999)
plot(TestModel,1e6,alpha=alpha)

calculate portfolio VaR and ES
VaR=VaR(TestModel,alpha)
ES=ES(TestModel,alpha)

Calculate risk contributions to VaR and ES
risk.cont=cbind(VaR.cont(TestModel,alpha = alpha),
ES.cont(TestModel,alpha = alpha))
Description
Get the maximum value of the model’s CDF. For simulative models, the value should be equal to 1. For an analytical model, the value depends on the value specified during initiation of the model (see init).

Usage
alpha.max(this)

Arguments
this Object of class GCPM

Value
numeric of length 1

See Also
init

Description
The method analyzes a given portfolio with a predefined portfolio model (i.e. a GCPM object). Portfolio key numbers such as the number of portfolio positions, sum of EAD and PL or the expected loss are calculated. Afterwards the loss distribution is estimated according to model.type.

Usage
analyze(this,portfolio,alpha,Ncores)

Arguments
this object of class GCPM
portfolio data frame containing portfolio data. The following columns have to be defined (please be aware of the correct spelling of the column names):
Number: identification number for each portfolio position (numeric)
Name: counterparty name (character)
Business: business information (character/factor)
Country: country information (character/factor)
EAD: exposure at default (numeric)
LGD: loss given default (numeric in [0,1])
PD: probability of default (numeric in [0,1])
Default: default distribution either “Bernoulli” or “Poisson” (employable for pools)
sectors: starting with the 9th column, the sector weights have to be defined.
alpha
loss levels for risk measures economic capital, value at risk and expected shortfall (optional)

ncores
number of (virtual) cores used to perform Monte Carlo simulation (requires package parallel, default=1)

Details

In case of an analytical CreditRisk+ model, a modified version of the algorithm described in Gundlach & Lehrbass (2003) is used. For a simulative model, the loss distribution is estimated based on N simulations with sector drawings specified by random.numbers (see init). The sector names (column names) should not include any white spaces. In case of a CreditMetrics type model, the values of R (not R^2) have to be provided as sector weights. In the standard CreditMetrics or CreditRisk+ framework a counterparty can be assigned to more than one sector. Within a analytical CreditRisk+ model, the sector names have to match the names of sec.var or in a simulative model the column names of random.numbers (see init).

Value

object of class GCPM.

Methods

signature(this = "GCPM", portfolio = "data.frame", alpha = "missing") If loss levels alpha are not provided, risk measures such as economic capital, value at risk and expected shortfall are not calculated by default. However, they can be calculated afterwards by calling the corresponding methods (see VaR, ES, EC).

signature(this = "GCPM", portfolio = "data.frame", alpha = "numeric") If loss levels alpha are provided, risk measures such as economic capital, value at risk and expected shortfall are calculated and printed. To extract these risk measures into a separate variable you can use the corresponding methods.

References

First Boston Financial Products, "CreditRisk+", 1997

See Also

init

Examples

create a random portfolio with NC counterparties
NC=100
assign business lines and countries randomly
business.lines=c("A","B","C")
business-methods

CP.business=business.lines[ceiling(runif(NC,0,length(business.lines)))]
countries=c("A","B","C","D","E")
CP.country=countries[ceiling(runif(NC,0,length(countries)))]

create matrix with sector weights (CreditRisk+ setting)
according to business lines
NS=length(business.lines)
W=matrix(0,nrow = NC,ncol = length(business.lines),
dimnames = list(1:NC,business.lines))
for(i in 1:NC){W[i,CP.business[i]]=1}

create portfolio data frame
portfolio=data.frame(Number=1:NC,
 Name=paste("Name ",1:NC),
 Business=CP.business,
 Country=CP.country,
 EAD=runif(NC,1e3,1e6),
 LGD=runif(NC),
 PD=runif(NC,0,0.3),Default=rep("Bernoulli",NC),W)

draw sector variances randomly
sec.var=runif(NS,0.5,1.5)
names(sec.var)=business.lines

draw N sector realizations (independent gamma distributed sectors)
N=5e4
random.numbers=matrix(NA,ncol=NS,nrow=N,dimnames=list(1:N,business.lines))
for(i in 1:NS){random.numbers[i,]=rgamma(N,shape = 1/sec.var[i],scale=sec.var[i])}

create a portfolio model and analyze the portfolio
TestModel=init(model.type = "simulative",link.function = "CRP",N = N,
 loss.unit = 1e3, random.numbers = random.numbers,LHR=rep(1,N),loss.thr=5e6,
 max.entries=2e4)
TestModel=analyze(TestModel,portfolio)

plot of pdf of portfolio loss (in million) with indicators for EL, VaR and ES
alpha=c(0.995,0.999)
plot(TestModel,1e6,alpha=alpha)

calculate portfolio VaR and ES
VaR=VaR(TestModel,alpha)
ES=ES(TestModel,alpha)

Calculate risk contributions to VaR and ES
risk.cont=cbind(VaR.cont(TestModel,alpha = alpha),
 ES.cont(TestModel,alpha = alpha))

Use parallel computing for Monte Carlo simulation
TestModel=analyze(TestModel,portfolio,Ncores=2)
CDF-methods

Description
Get the business information for each counterparty defined in the portfolio.

Usage
business(this)

Arguments
this Object of class GCPM

Value
factor of length equal to number of portfolio positions

See Also
portfolio.pois

cdfMmethods

Cumulative Distribution Function of Portfolio Loss

Description
Get the CDF of the portfolio loss, available after execution of analyze.

Usage
CDF(this)

Arguments
this Object of class GCPM

Value
numeric vector

See Also
analyze
country-methods

Country Information

Description
Get the country information of each counterparty defined in the portfolio.

Usage
```r
country(this)
```

Arguments
- `this` Object of class `gcpm`

Value
factor of length equal to number of portfolio positions

See Also
- `portfolio.pois`

default-methods

Default Distribution

Description
Get the default distribution of each portfolio position. Using “Poisson” as default distribution one can simulate the standard CR+ model or group smaller counterparties into a pool and simulate their defaults.

Usage
```r
default(this)
```

Arguments
- `this` Object of class `gcpm`

Value
character of length equal to number of portfolio positions

See Also
- `portfolio.pois`
EAD-methods

Exposure at Default

Description

Get the counterparties’ exposure at default defined in the portfolio data.

Usage

EAD(this)

Arguments

this Object of class GCPM

Value

numeric value of length equal to the number of counterparties

See Also

portfolio.pois

EC-methods

Economic Capital

Description

Get the value of economic capital for the portfolio on level(s) alpha

Usage

EC(this,alpha)

Arguments

this Object of class GCPM

alpha numeric vector of loss levels between 0 and 1

Value

numeric vector of length equal to length(alpha).
Description

Calculate contributions to the economic capital on portfolio level for each portfolio position. In case of a simulative model, the risk contributions are calculated as contributions to expected shortfall on a lower loss level \(\tau \), such that \(\text{ES}(\tau) \) is as close as possible to \(\text{EC}(\alpha) \). Furthermore, in case of a simulative model, loss scenarios above a predefined threshold (\(\text{loss.thr} \)) are analyzed in order to calculate the risk contributions. If \(\text{loss.thr} \) is too high (depending on value of \(\alpha \)) the calculation will be not possible.

Usage

\[
\text{EC.cont}(\text{this}, \alpha)
\]

Arguments

- **this**: Object of class \texttt{GCPM}
- **alpha**: numeric vector of loss levels between 0 and 1

Value

numeric matrix with number of rows equal to number of counterparties within the portfolio and number of columns equal to \texttt{length(alpha)}

See Also

- \texttt{loss.thr}

Description

Get the expected loss (EL) calculated from the portfolio loss distribution. Because of the discretization and/or simulation errors, this is not equal to the analytical EL (see \texttt{EL.analyt}). Please also note, that in case of a simulative model (with Bernoulli default distribution) of the CreditRisk+ type the simulated EL tends to be smaller than the analytical one because the conditional PD \(\overline{PD} = PD \cdot (w^T x) \) has to be truncated (if \(\overline{PD} > 1 \)).

Usage

\[
\text{EL}(\text{this})
\]
Arguments

this Object of class GCPM

Value

numeric value of length 1

See Also

EL.analyt

Expected Loss (analytical)

Description

Get the expected loss (EL) calculated from the portfolio data. Because of the discretization and/or simulation errors, this is not equal to the EL calculated from the portfolio loss distribution (see EL).

Usage

EL.analyt(this)

Arguments

this Object of class GCPM

Value

numeric value of length 1

See Also

EL
ES-methods

Expected Shortfall

Description
Get the value of the expected shortfall for the portfolio on level(s) alpha

Usage

```r
ES(this, alpha)
```

Arguments

- `this`: Object of class GCPM
- `alpha`: numeric vector of loss levels between 0 and 1

Value
numeric vector of length equal to `length(alpha)`.

ES.cont-methods

Risk Contributions to Expected Shortfall

Description
Calculate contributions to the expected shortfall on portfolio level for each portfolio position. In case of a simulative model, loss scenarios above a predefined threshold (`loss.thr`) are analyzed in order to calculate the risk contributions. If `loss.thr` is too high, calculation may be not possible (depending on value of `alpha`).

Usage

```r
ES.cont(this, alpha)
```

Arguments

- `this`: Object of class GCPM
- `alpha`: numeric vector of loss levels between 0 and 1

Value
numeric matrix with number of rows equal to number of counterparties within the portfolio and number of columns equal to `length(alpha)`

See Also

`loss.thr`
Export Main Results

Description

This method provides an easy way to export the main results of the portfolio (i.e. after running analyze). A summary file and the portfolio loss distribution (PDF and CDF) are exported to path.out. With the help of file.format one can specify the csv format ("csv1" or "csv2"). If a vector alpha of loss levels is specified, risk contributions to EC, VaR and ES are also exported according to level(s) alpha.

Usage

export(this,path.out,file.format,alpha)

Arguments

- this: Object of class GCPM
- path.out: string specifying the output path
- file.format: string specifying the file format (i.e "csv1" or "csv2")
- alpha: numeric vector with loss levels between 0 and 1

GCPM-class

Class "GCPM"

Description

The class represents a generalized credit portfolio framework. Users which are not familiar with credit portfolio models in general and the CreditRisk+ model as well as the CreditMetrics model in particular should refer to the references given below. Models can be simulative or analytical (in case of a CreditRisk+ type model). The link function can be chosen to be either of the CreditRisk+ or the CreditMetrics type. Counterparties’ default distribution can be specified to be either Bernoulli or Poisson, which is the default distribution in the basic CreditRisk+ framework.

Objects from the Class

Objects can be created via the init function (see init)
GCPM-class

Slots

model.type: Character value, specifying the model type. One can choose between “simulative” and “CRP” which corresponds to the analytical version of the CreditRisk+ model (see First Boston Financial Products, 1997)

default: Character vector specifying the counterparties’ default distribution (either “Bernoulli” or “Poisson”)

link.function: character value, specifying the type of the link function. One can choose between “CRP”, which corresponds to $PD = PD \cdot (w^T x)$ and “CM” which corresponds to $PD = \Phi \left(\frac{\Phi^{-1}PD - w^T x}{\sqrt{1 - w^T \Sigma w}} \right)$, where PD is the original PD from portfolio data, x is the vector of sector drawings, Φ is the CDF of the standard normal distribution, w is the vector of sector weights given in the portfolio data and Σ is the correlation matrix of the sector variables estimated from random numbers. “CRP” will be used automatically if model.type == "CRP".

loss.unit: numeric value used to discretize potential losses.

NS: number of sectors

NC: number of counterparties

name: counterparties’ names defined in the portfolio

NR: counterparties’ identification numbers defined in the portfolio

EAD: counterparties’ exposure at default defined in the portfolio

LGD: counterparties’ loss given default defined in the portfolio

PL: counterparties’ potential loss ($EAD \cdot LGD$)

PD: counterparties’ probability of default defined in the portfolio

business: counterparties’ business line defined in the portfolio

country: counterparties’ country defined in the portfolio

EL.analyt: Expected loss calculated from portfolio data (without discretization)

EL: Expected loss derived from loss distribution

nu: multiples of loss unit representing discretized potential losses within an analytical CreditRisk+ type model

PL.disc: counterparties’ potential loss ($EAD \cdot LGD$) after discretization

PD.disc: counterparties’ probability of default defined in the portfolio after discretization

sec.var: sector variances within an analytical CreditRisk+ type model

sector.names: sector names

S0.div: diversifiable part of portfolio risk (measured by standard deviation) in case of a CreditRisk+ type model

S0.syst: Non-diversifiable part of portfolio risk (measured by standard deviation) in case of a CreditRisk+ type model

S0.analyt: portfolio standard deviation derived from portfolio data in case of a CreditRisk+ type model

S0: portfolio standard deviation derived from loss distribution

w: counterparties’ sector weights
idiosyncr: counterparties idiosyncratic weight in case of a CreditRisk+ type model
alpha.max: maximum level of CDF of the loss distribution within an analytical CreditRisk+ type model
a: internal parameter used to calculate risk contributions in case of an analytical CreditRisk+ type model
PDF: probability density function of portfolio losses
CDF: cumulative distribution function of portfolio losses
B: internal parameter used to calculate risk contributions in case of an analytical CreditRisk+ type model
loss: portfolio losses corresponding to PDF and CDF
random.numbers: sector drawing in case of a simulative model
LHR: likelihood ratio of sector drawing in case of a simulative model
max.entries numeric value defining the maximum number of loss scenarios stored to calculate risk contributions.
N: number of simulations in case of a simulative model
scenarios: scenarios (rows) of random.numbers used within the simulation of portfolio losses
seed: parameter used to initialize the random number generator. If seed is not provided a value based on current system time will be used.
loss.thr: specifies a lower bound for portfolio losses to be stored in order to derive risk contributions on counterparty level. Using a lower value needs a lot of memory but will be necessary in order to calculate risk contributions on lower CDF levels. This parameter is used only if model.type == "simulative".
sim.losses: simulated portfolio losses in case of a simulative model
CP.sim.losses: simulated losses on counterparty level when the overall portfolio loss is greater or equal to loss.thr

Author(s)

Kevin Jakob

References

First Boston Financial Products, "CreditRisk+", 1997

See Also

GCPM-package, init, analyze
idiosyncr-methods

Idiosyncratic Risk Weights

Description

Get the idiosyncratic risk weights (i.e. risk weights which are not assigned to any sector). Currently only available if `model.type == "CRP"`.

Usage

```r
idiosyncr(this)
```

Arguments

- `this` Object of class GCPM

Value

numeric vector of length equal to number of counterparties

init

Initialize an Object of Class GCPM

Description

The function helps to create a new object of class GCPM. The arguments of the function are passed to the object after performing some plausibility checks.

Usage

```r
init(model.type = "CRP", link.function = "CRP", N, seed, loss.unit, alpha.max = 0.9999, loss.thr = Inf, sec.var, random.numbers = matrix(), LHR, max.entries=1e3)
```

Arguments

- `model.type` Character value, specifying the model type. One can choose between "simulative" and "CRP" which corresponds to the analytical version of the CreditRisk+ model (see First Boston Financial Products, 1997)
- `link.function` character value, specifying the type of the link function. One can choose between “CRP”, which corresponds to $\mathcal{PD} = PD \cdot (w^T x)$ and “CM” which corresponds to $\mathcal{PD} = \Phi \left(\Phi^{-1}PD - w^T x \sqrt{1 - w^T \Sigma w} \right)$, where PD is the original PD from portfolio data, x is the vector of sector drawings, Φ is the CDF of the standard normal distribution, w is the vector of sector weights given in the portfolio data and Σ is the correlation matrix of the sector variables estimated from random.numbers. “CRP” will be used automatically if `model.type == "CRP"`.
numeric value, defining the number of simulations if model.type == "simulative". If \(n \) is greater than the number of scenarios provided via random.numbers, scenarios are reused. This parameter is used only if model.type == "simulative".

seed numeric value used to initialize the random number generator. If seed is not provided a value based on current system time will be used. This parameter is used only if model.type == "simulative".

loss.unit numeric positive value used to discretize potential losses.

alpha.max numeric value between 0 and 1 defining the maximum CDF-level which will be computed in case of an analytical CreditRisk+ type model.

loss.thr numeric value specifying a lower bound for portfolio losses to be stored in order to derive risk contributions on counterparty level. Using a lower value needs a lot of memory but will be necessary in order to calculate risk contributions on lower CDF levels. This parameter is used only if model.type == "simulative".

sec.var named numeric vector defining the sector variances in case of a CreditRisk+ type model. The names have to correspond to the sector names given in the portfolio. This parameter is used only if model.type == "CRP".

random.numbers matrix with sector drawings. The columns represent the sectors, whereas the rows represent the scenarios (number of different simulations). The column names must correspond to the names used in the portfolio data (see analyze) and to the names of sec.var if model.type == "CRP". This parameter is used only if model.type == "simulative".

LHR numeric vector of length equal to nrow(random.numbers) defining the likelihood ratio of each scenario. If not provided, all scenarios are assumed to be equally likely. This parameter is used only if model.type == "simulative".

max.entries numeric value defining the maximum number of loss scenarios stored to calculate risk contributions.

Value

object of class GCPM

Author(s)

Kevin Jakob

References

First Boston Financial Products, "CreditRisk+", 1997

See Also

GCPM, GCPM-class, analyze
Examples

#create a random portfolio with NC counterparties
NC=100
#assign business lines and countries randomly
business.lines=c("A","B","C")
CP.business=business.lines[ceiling(runif(NC,0,length(business.lines)))]
countries=c("A","B","C","D","E")
CP.country=countries[ceiling(runif(NC,0,length(countries)))]

#create matrix with sector weights (CreditRisk+ setting)
#according to business lines
NS=length(business.lines)
W=matrix(0,nrow = NC,ncol = length(business.lines),
dimnames = list(1:NC,business.lines))
for(i in 1:NC){W[i,CP.business[i]]=1}

#create portfolio data frame
portfolio=data.frame(Number=1:NC,Name=paste("Name ",1:NC),Business=CP.business,
 Country=CP.country,EAD=runif(NC,1e3,1e6),LGD=runif(NC),
 PD=runif(NC,0,0.3),Default=rep("Bernoulli",NC),W)

#draw sector variances randomly
sec.var=runif(NS,0.5,1.5)
names(sec.var)=business.lines

#draw N sector realizations (independent gamma distributed sectors)
N=5e4
random.numbers=matrix(NA,ncol=NS,nrow=N,dimnames=list(1:N,business.lines))
for(i in 1:NS){
 random.numbers[i,]=rgamma(N,shape = 1/sec.var[i],scale=sec.var[i])
}

#create a portfolio model and analyze the portfolio
TestModel=init(model.type = "simulative",link.function = "CRP",N = N,
 loss.unit = 1e3, random.numbers = random.numbers,LHR=rep(1,1),loss.1=5e6,
 max.entries=2e4)
TestModel=analyze(TestModel,portfolio)

#plot of pdf of portfolio loss (in million) with indicators for EL, VaR and ES
alpha=c(0.995,0.999)
plot(TestModel,1e6,alpha=alpha)

#calculate portfolio VaR and ES
VaR=VaR(TestModel,alpha)
ES=ES(TestModel,alpha)

#Calculate risk contributions to VaR and ES
risk.cont=cbind(VaR.cont(TestModel,alpha = alpha),
 ES.cont(TestModel,alpha = alpha))
LHR-methods

Description
Get the values of LGD, defined within the portfolio

Usage
LGD(this)

Arguments
this Object of class GCPM

Value
numeric vector of length equal to number of counterparties

See Also
portfolio.pois

LHR-methods
Likelihood Ratio

Description
Get the likelihood ratio for each scenario defined in random.numbers (see init)

Usage
LHR(this)

Arguments
this Object of class GCPM

Value
numeric vector of length equal to nrow(random.numbers)
link.function-methods

Model Link Function

Description
Get the models link function (see `init`)

Usage
`link.function(this)`

Arguments
- `this`: Object of class `gcpm`

Value
character value of length 1

See Also
`init`

loss-methods

Loss Levels

Description
Get the loss levels of the portfolio loss distribution.

Usage
`loss(this)`

Arguments
- `this`: Object of class `gcpm`

Value
numeric vector
Description

Get the value of \texttt{loss.thr} (see \texttt{init})

Usage

\texttt{loss.thr(this)}

Arguments

\texttt{this} \hspace{1cm} \text{Object of class GCPM}

Value

numeric value of length 1

See Also

\texttt{init}

Description

Get the loss unit used for potential loss discretization of the model

Usage

\texttt{loss.unit(this)}

Arguments

\texttt{this} \hspace{1cm} \text{Object of class GCPM}

Value

numeric value of length 1

See Also

\texttt{init}
Description
Get the value of model.type (see init)

Usage
model.type(this)

Arguments
this Object of class GCPM

Value
character value of length 1

See Also
init

———

Number of Simulations

Description
Get the value of N (number of simulations, see init)

Usage
N(this)

Arguments
this Object of class GCPM

Value
numeric value of length 1

See Also
init
name-methods Counterparty Names

Description

Get the value of name, i.e. the counterparties' names, defined in the portfolio (see analyze)

Usage

name(this)

Arguments

this Object of class GCPM

Value

character value of length equal to number of counterparties

See Also

portfolio.pois

NC-methods Number of Counterparties

Description

Get the value of NC, representing the number of counterparties within the portfolio (see analyze)

Usage

NC(this)

Arguments

this Object of class GCPM

Value

numeric value of length 1

See Also

analyze
NR-methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-methods</td>
<td>Get the value of NR, the counterparties’ identification numbers within the portfolio (see analyze)</td>
</tr>
</tbody>
</table>

Usage

```r
NR(this)
```

Arguments

- `this`: Object of class GCPM

Value

numeric value of length equal to number of counterparties

See Also

- `portfolio.pois`

NS-methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-methods</td>
<td>Get the value of NS, the number of sectors within the model (see init)</td>
</tr>
</tbody>
</table>

Usage

```r
NS(this)
```

Arguments

- `this`: Object of class GCPM

Value

numeric value of length 1

See Also

- `init`
PDF-methods

Counterparty Probability of Default

Description
Get the value of PD, the counterparties default probabilities within the portfolio (see `analyze`). Please note, that these PDs are adjusted because of discretization in order to preserve the expected loss.

Usage
```r
PD(this)
```

Arguments
- `this`: Object of class `GCPM`

Value
numeric value of length equal to the number of counterparties

See Also
- `portfolio.pois`

PDF-methods

Probability Density Function

Description
Get the value of PDF, representing the pdf of the estimated portfolio loss distribution.

Usage
```r
PDF(this)
```

Arguments
- `this`: Object of class `GCPM`

Value
numeric vector
PL-methods

Counterparty Potential Loss

Description

Get the value of PL, the potential losses of counterparties (see GCPM-class). Please note, that the potential losses are discretized according to loss.unit (see init).

Usage

\[
\text{PL(this)}
\]

Arguments

- **this**: Object of class GCPM

Value

numeric value of length equal to the number of counterparties

See Also

portfolio.pois.init

plot-methods

Plot of the Portfolio Loss Distribution

Description

Plot of the estimated pdf of the portfolio loss distribution.

Usage

\[
\text{plot}(x,y,\ldots)
\]

Arguments

- **x**: Object of class GCPM
- **y**: plot unit for losses (x-axis), default value = 1
- **\ldots**: Further arguments such as:
 - **alpha**: If provided vertical lines are added, representing value at risk and expected shortfall on level(s) alpha or
 - **nbins**: number of supporting points, default value = 100
Example Portfolio Data with Poisson Default Mode

Description

The dataset contains an example portfolio in the structure needed by the `analyze` function.

Usage

```r
data("portfolio.pois")
```

Format

A data frame with 3000 counterparties and the following variables.

- **Number** Counterparty ID (numeric)
- **Name** Counterparty name (character)
- **Business** Business line (character)
- **Country** Country (character)
- **EAD** Exposure at default (numeric)
- **LGD** Loss given default (numeric)
- **PD** Probability of default (numeric)
- **Default** Default mode (‘Poisson’ or ‘Benroulli’)
- **A** sector weights for sector A
- **B** sector weights for sector B
- **C** sector weights for sector C

Pooled Portfolio

Description

In order to speed up calculations, counterparties of `portfolio.pois` with EAD*LGD < 200,000 are grouped together (pooled).

Usage

```r
data("portfolio.pool")
```
Format

A data frame with 1400 counterparties and 3 pools (each per sector) and the following variables.

- **Number** Counterparty ID (numeric)
- **Name** Counterparty name (character)
- **Business** Business line (character)
- **Country** Country (character)
- **EAD** Exposure at default (numeric); pool: average EAD per counterparty
- **LGD** Loss given default (numeric); pool: EAD-weighted average LGD per counterparty
- **PD** Probability of default (numeric); pool: expectation of number of defaults
- **Default** Default mode (‘Poisson’ for pools or ‘Benroulli’)
- **A** sector weights for sector A
- **B** sector weights for sector B
- **C** sector weights for sector C

portfolios
Example Portfolios for GCPM Package

Description

The workspace contain the example portfolio (with Poisson default mode) in the structure needed by the `analyze` function as well as a pooled version.

Usage

```r
data("portfolios")
```

Format

Two data frames containing the portfolios.

See Also

`portfolio.pois, portfolio.pool, analyze`
random.numbers-methods

Sector Drawings

Description
Get the content of random.numbers, representing the sector drawings (see init)

Usage
random.numbers(this)

Arguments
this Object of class GCPM

Value
numeric matrix

See Also
init

SD-methods

Standard Deviation (Loss Distribution)

Description
Get the value of SD, the portfolio standard deviation derived from the loss distribution.

Usage
SD(this)

Arguments
this Object of class GCPM

Value
numeric value of length 1
Standard Deviation (from Portfolio Data)

Description
Get the value of \(\text{SD.analyt} \), the portfolio standard deviation derived from the portfolio data (see [GCPM-class](#)). This value is only available in case of an analytical model.

Usage
\[
\text{SD.analyt}(\text{this})
\]

Arguments
- **this**: Object of class GCPM

Value
numeric value of length 1

Risk Contributions to Portfolio Standard Deviation

Description
Get the counterparties’ contributions to portfolio standard deviation (see [GCPM-class](#)). These values are only available in case of an analytical model.

Usage
\[
\text{SD.cont}(\text{this})
\]

Arguments
- **this**: Object of class GCPM

Value
numeric value of length equal to number of counterparties
SD.div-methods
Diversifiable Risk (Standard Deviation)

Description

Get the value of SD.div, the diversifiable part of portfolio standard deviation (see GCPM-class).

Usage

`SD.div(this)`

Arguments

- **this**: Object of class GCPM

Value

numeric value of length 1

SD.syst-methods
Systemic Risk (Standard Deviation)

Description

Get the value of SD.syst, the non-diversifiable part of portfolio standard deviation.

Usage

`SD.syst(this)`

Arguments

- **this**: Object of class GCPM

Value

numeric value of length 1
sec.var-methods

Sector Variances

Description

Get the value of sec.var, the sector variances in case of an analytical CreditRisk+ like model (see **init**).

Usage

```
sec.var(this)
```

Arguments

- `this` Object of class `gcpm`

Value

numeric value of length equal to number of sectors

See Also

- **init**

sector.names-methods

Sector Names

Description

Get the value of sector.names, the sector names (see **init**).

Usage

```
sector.names(this)
```

Arguments

- `this` Object of class `gcpm`

Value

factor of length equal to number of sectors

See Also

- **init**
seed-methods

Random Number Seed

Description

Get the value of seed (see `init`)

Usage

`seed(this)`

Arguments

- `this`: Object of class `gcpm`

Value

numeric value of length 1

See Also

`init`

show-methods

Show Parameters of Credit Portfolio Model

Description

Displays the most important parameters and portfolio statistics (if available).

summary-methods

Model summary

Description

Create a Summary List with Model Parameters.

Usage

`summary(object,...)`

Arguments

- `object`: Object of class `gcpm`
- `...`: No further arguments
VaR-methods

Portfolio Value at Risk

<table>
<thead>
<tr>
<th>Description</th>
<th>Calculate the portfolio value at risk on level(s) alpha.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td><code>VaR(this, alpha)</code></td>
</tr>
<tr>
<td>Arguments</td>
<td></td>
</tr>
<tr>
<td>this</td>
<td>Object of class GCPM</td>
</tr>
<tr>
<td>alpha</td>
<td>numeric vector with entries between 0 and 1</td>
</tr>
<tr>
<td>Value</td>
<td>numeric value of length equal to length of alpha</td>
</tr>
</tbody>
</table>

Risk Contributions to Portfolio Value at Risk

<table>
<thead>
<tr>
<th>Description</th>
<th>Get the counterparties’ contributions to portfolio value at risk (see GCPM-class). In case of a simulative model, these values are calculated from individual losses greater or equal loss.thr (see init). Contributions are not available if loss.thr is too high.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td><code>VaR.cont(this, alpha)</code></td>
</tr>
<tr>
<td>Arguments</td>
<td></td>
</tr>
<tr>
<td>this</td>
<td>Object of class GCPM</td>
</tr>
<tr>
<td>alpha</td>
<td>numeric vector with entries between 0 and 1</td>
</tr>
<tr>
<td>Value</td>
<td>numeric matrix</td>
</tr>
</tbody>
</table>

See Also

- `init`, `loss.thr`
W-methods

Sector Weights

Description
Get the value of W, the matrix of counterparties’ sector weights defined within the portfolio (see `analyze`).

Usage
$W(this)$

Arguments
- this
 - Object of class GCPM

Value
- numeric matrix

See Also
- `init`
Index

*Topic **GCPM**
 analyze-methods, 5
*Topic **classes**
 GCPM-class, 14
*Topic **datasets**
 portfolio.pois, 28
 portfolio.pool, 28
 portfolios, 29
*Topic **methods**
 alpha.max-methods, 4
 analyze-methods, 5
 business-methods, 7
 CDF-methods, 8
 country-methods, 9
 default-methods, 9
 EAD-methods, 10
 EC-methods, 10
 EC.cont-methods, 11
 EL-methods, 11
 EL.analyt-methods, 12
 ES-methods, 13
 ES.cont-methods, 13
 export-methods, 14
 idiosyncr-methods, 17
 LGD-methods, 19
 LHR-methods, 20
 link.function-methods, 21
 loss-methods, 21
 loss.thr-methods, 22
 loss.unit-methods, 22
 model.type-methods, 23
 N-methods, 23
 name-methods, 24
 NC-methods, 24
 NR-methods, 25
 NS-methods, 25
 PD-methods, 26
 PDF-methods, 26
 PL-methods, 27
 plot-methods, 27
 random.numbers-methods, 30
 SD-methods, 30
 SD.analyt-methods, 31
 SD.cont-methods, 31
 SD.div-methods, 32
 SD.syst-methods, 32
 sec.var-methods, 33
 sector.names-methods, 33
 seed-methods, 34
 summary-methods, 34
 VaR-methods, 35
 VaR.cont-methods, 35
 W-methods, 36
*Topic **package**
 GCPM-package, 3

 alpha.max (alpha.max-methods), 4
 alpha.max, GCPM (alpha.max-methods), 4
 alpha.max-methods, 4
 analyze, 3, 8, 16, 18, 24–26, 28, 29, 36
 analyze (analyze-methods), 5
 analyze, GCPM.data.frame, missing, missing-method (analyze-methods), 5
 analyze, GCPM.data.frame, missing, numeric-method (analyze-methods), 5
 analyze, GCPM.data.frame, numeric, missing-method (analyze-methods), 5
 analyze, GCPM.data.frame, numeric, numeric-method (analyze-methods), 5
 analyze, GCPM-method (analyze-methods), 5
 analyze-methods, 5
 business (business-methods), 7
 business, GCPM-method (business-methods), 7
 business-methods, 7
 CDF (CDF-methods), 8
 CDF, GCPM-method (CDF-methods), 8

37
CDF-methods, 8
country (country-methods), 9
country, GCPM-method (country-methods), 9
country-methods, 9
default (default-methods), 9
default, GCPM-method (default-methods), 9
default-methods, 9
EAD (EAD-methods), 10
EAD, GCPM-method (EAD-methods), 10
EAD-methods, 10
EC, 6
EC (EC-methods), 10
EC, GCPM, missing-method (EC-methods), 10
EC, GCPM, numeric-method (EC-methods), 10
EC-methods, 10
EC.cont (EC.cont-methods), 11
EC.cont, GCPM, numeric-method (EC.cont-methods), 11
EC.cont, GCPM-method (EC.cont-methods), 11
EC.cont-methods, 11
EL, 12
EL (EL-methods), 11
EL, GCPM-method (EL-methods), 11
EL-methods, 11
EL.analyt, 11, 12
EL.analyt (EL.analyt-methods), 12
EL.analyt, GCPM-method (EL.analyt-methods), 12
EL.analyt-methods, 12
ES, 6
ES (ES-methods), 13
ES, GCPM, missing-method (ES-methods), 13
ES, GCPM, numeric-method (ES-methods), 13
ES-methods, 13
ES.cont (ES.cont-methods), 13
ES.cont, GCPM, numeric-method (ES.cont-methods), 13
ES.cont, GCPM-method (ES.cont-methods), 13
ES.cont-methods, 13
export (export-methods), 14
export, GCPM, character, character, missing-method (export-methods), 14
export, GCPM, character, character, numeric-method (export-methods), 14
export, GCPM, missing, character, missing-method (export-methods), 14
export, GCPM, missing, character, numeric-method (export-methods), 14
export, GCPM, missing, missing, missing-method (export-methods), 14
export, GCPM, missing, missing, numeric-method (export-methods), 14
export, GCPM-method (export-methods), 14
export-methods, 14
GCPM, 18
GCPM (GCPM-package), 3
GCPM-class, 14
GCPM-package, 3
idiosyncr (idiosyncr-methods), 17
idiosyncr, GCPM-method (idiosyncr-methods), 17
idiosyncr-methods, 17
init, 3, 5, 6, 14, 16, 17, 20–23, 25, 27, 30, 33–36
LGD (LGD-methods), 19
LGD, GCPM-method (LGD-methods), 19
LGD-methods, 19
LHR (LHR-methods), 20
LHR, GCPM-method (LHR-methods), 20
LHR-methods, 20
link.function (link.function-methods), 21
link.function, GCPM-method (link.function-methods), 21
link.function-methods, 21
loss (loss-methods), 21
loss, GCPM-method (loss-methods), 21
loss-methods, 21
loss.thr, 11, 13, 35
loss.thr (loss.thr-methods), 22
loss.thr, GCPM-method (loss.thr-methods), 22
loss.unit (loss.unit-methods), 22
export, GCPM, character, character, numeric-method (loss.unit-methods), 22
export, GCPM-method (loss.unit-methods), 22
INDEX

loss.unit-methods, 22
model.type (model.type-methods), 23
model.type, GCPM-method
(model.type-methods), 23
model.type-methods, 23
N (N-methods), 23
N, GCPM-method (N-methods), 23
N-methods, 23
name (name-methods), 24
name, GCPM-method (name-methods), 24
name-methods, 24
NC (NC-methods), 24
NC, GCPM-method (NC-methods), 24
NC-methods, 24
NR (NR-methods), 25
NR, GCPM-method (NR-methods), 25
NR-methods, 25
NS (NS-methods), 25
NS, GCPM-method (NS-methods), 25
NS-methods, 25
PD (PD-methods), 26
PD, GCPM-method (PD-methods), 26
PD-methods, 26
PDF (PDF-methods), 26
PDF, GCPM-method (PDF-methods), 26
PDF-methods, 26
PL (PL-methods), 27
PL, GCPM-method (PL-methods), 27
PL-methods, 27
plot (plot-methods), 27
plot, ANY-method (plot-methods), 27
plot, GCPM-method (plot-methods), 27
plot-methods, 27
portfolio.pois, 8–10, 20, 24–28, 28, 29
portfolio.pool, 28, 29
portfolios, 29
random.numbers
(random.numbers-methods), 30
random.numbers, GCPM-method
(random.numbers-methods), 30
random.numbers-methods, 30
SD (SD-methods), 30
SD, GCPM-method (SD-methods), 30
SD-methods, 30
SD.analyt (SD.analyt-methods), 31
SD.analyt, GCPM-method
(SD.analyt-methods), 31
SD.analyt-methods, 31
SD.cont (SD.cont-methods), 31
SD.cont, GCPM-method (SD.cont-methods), 31
SD.cont-methods, 31
SD.div (SD.div-methods), 32
SD.div, GCPM-method (SD.div-methods), 32
SD.div-methods, 32
SD.syst (SD.syst-methods), 32
SD.syst, GCPM-method (SD.syst-methods), 32
SD.syst-methods, 32
sec.var (sec.var-methods), 33
sec.var, GCPM-method (sec.var-methods), 33
sec.var-methods, 33
sector.names (sector.names-methods), 33
sector.names, GCPM-method
(sector.names-methods), 33
sector.names-methods, 33
seed (seed-methods), 34
seed, GCPM-method (seed-methods), 34
seed-methods, 34
show, GCPM-method (show-methods), 34
show-methods, 34
summary (summary-methods), 34
summary, ANY-method (summary-methods), 34
summary, GCPM-method (summary-methods), 34
summary-methods, 34
VaR, 6
VaR (VaR-methods), 35
VaR.GCPM, missing-method (VaR-methods), 35
VaR.GCPM, numeric-method (VaR-methods), 35
VaR.GCPM-method (VaR-methods), 35
VaR-methods, 35
VaR.cont (VaR.cont-methods), 35
VaR.cont, GCPM-method
(VaR.cont-methods), 35
VaR.cont-methods, 35
VaR.cont, methods, 35
W (W-methods). 36
W, GCPM-method (W-methods). 36
W-methods. 36