Package ‘GDAtools’

March 7, 2017

Type Package

Title A Toolbox for the Analysis of Categorical Data in Social Sciences, and Especially Geometric Data Analysis

Version 1.4

Date 2017-03-07

Author Nicolas Robette

Maintainer Nicolas Robette <nicolas.robette@uvsq.fr>

Depends FactoMineR, nleqslv, nnet

Suggests cluster, WeightedCluster

Description Contains functions for 'specific' MCA (Multiple Correspondence Analysis), 'class specific' MCA, computing and plotting structuring factors and concentration ellipses, Multiple Factor Analysis, 'standardized' MCA, inductive tests and others tools for Geometric Data Analysis. It also provides functions for the translation of logit models coefficients into percentages, weighted contingency tables and an association measure - i.e. Percentages of Maximum Deviation from Independence (PEM).

License GPL (>= 2)

URL http://nicolas.robette.free.fr/outil_eng.html

NeedsCompilation no

Repository CRAN

Date/Publication 2017-03-07 14:46:04

R topics documented:

burt ... 2
conc.ellipse .. 3
contrib .. 4
csMCA ... 5
dichotom ... 7
dimcontrib .. 8
dimdesc.MCA ... 9
Computes a Burt table

Description

Computes a Burt table from a data frame composed of categorical variables.

Usage

```r
burt(data)
```

Arguments

- `data` data frame with n rows (individuals) and p columns (categorical variables)

Details

A Burt table is a symmetric table that is used in correspondence analysis. It shows the frequencies for all combinations of categories of pairs of variables.
Value

Returns a square matrix. Its dimension is equal to the total number of categories in the data frame.

Author(s)

Nicolas Robette

References

See Also
dichotom

Examples

```r
## Burt table of variables in columns 1 to 5
## in the 'Music' example data set
data(Music)
burt(Music[,1:5])
```

conc.ellipse Adds concentration ellipses to a correspondence analysis graph.

Description

Adds concentration ellipses to the individuals factor map of a correspondence analysis.

Usage

```r
conc.ellipse(resmca, var, sel = 1:length(levels(varb)), col = rainbow(length(sel)), axes = c(1, 2), cex = 0.2)
```

Arguments

- `resmca`: object of class 'MCA', 'speMCA', 'csMCA', 'multiMCA' or 'stMCA'
- `var`: supplementary variable to plot
- `sel`: numeric vector of indexes of the categories to plot (by default, ellipses are plotted for every categories)
- `col`: vector of colors for the ellipses of plotted categories (by default, rainbow palette is used)
- `axes`: length 2 vector specifying the components to plot (default is c(1,2))
- `cex`: numerical value giving the amount by which ellipse contour should be magnified (default is 0.2)
Details

This function has to be used after the cloud of individuals has been drawn.

Author(s)

Nicolas Robette

References

See Also

plot.speMCA, plot.csMCA, plot.multiMCA, plot.stMCA

Examples

```r
## Performs specific MCA (excluding 'NA' categories) of 'Taste' example data set,
## plots the cloud of categories
## and adds concentration ellipses for gender variable
data(Taste)
mca <- speMCA(Taste[,1:11],excl=c(3,6,9,12,15,18,21,24,27,30,33))
plot(mca,type='i')
conc.ellipse(mca,Taste$Gender)

## Draws a blue concentration ellipse for men only
plot(mca,type='i')
conc.ellipse(mca,Taste$Gender,sel=1,col='blue')
```
Details

The contribution of a point to an axis depends both on the distance from the point to the origin point along the axis and on the weight of the point. The contributions of points to axes are the main aid to interpretation (see Le Roux and Rouanet, 2004 and 2010).

Value

A list of data frames:

- `ctr`: Data frame with the contributions of categories to axes
- `var.ctr`: Data frame with the contributions of variables to axes
- `ctr.cloud`: Data frame with the contributions of categories to the overall cloud
- `vctr.cloud`: Data frame with the contributions of variables to the overall cloud

Author(s)

Nicolas Robette

References

See Also

`mca`, `speMCA`, `csMCA`, `varsup`

Examples

```r
# Performs a specific MCA on the 'Music' example data set
# and compute contributions
data(Music)
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
contrib(mca)
```

Performs a 'class specific' MCA

Description

Performs a 'class specific' Multiple Correspondence Analysis, i.e. a variant of MCA consisting in analyzing a subcloud of individuals.
Usage
csMCA(data, subcloud = rep(TRUE, times = nrow(data)), excl = NULL, ncp = 5, row.w = rep(1, times = nrow(data)))

Arguments
data
 data frame with n rows (individuals) and p columns (categorical variables)
subcloud
 a vector of logical values and length n. The subcloud of individuals analyzed with 'class specific' MCA is made of the individuals with value TRUE.
excl
 numeric vector indicating the indexes of the 'junk' categories (default is NULL). See `getindexcat` to identify these indexes.
ncp
 number of dimensions kept in the results (default is 5)
row.w
 an optional numeric vector of row weights (by default, a vector of 1 for uniform row weights)

Details
This variant of MCA is used to study a subset of individuals with reference to the whole set of individuals, i.e. to determine the specific features of the subset. It consists in proceeding to the search of the principal axes of the subcloud associated with the subset of individuals (see Le Roux and Rouanet, 2004 and 2010).

Value
Returns an object of class 'csMCA', i.e. a list including:
eig
 a list of vectors containing all the eigenvalues, the percentage of variance, the cumulative percentage of variance, the modified rates and the cumulative modified rates
call
 a list with informations about input data
ind
 a list of matrices containing the results for the individuals (coordinates, contributions)
var
 a list of matrices containing all the results for the categories and variables (weights, coordinates, square cosine, categories contributions to axes and cloud, test values (v.test), square correlation ratio (eta2), variable contributions to axes and cloud

Author(s)
Nicolas Robette

References
dichotom

See Also
getindexcat, plot.csMCA, varsup, contrib.modif.rate, dimdesc.MCA, speMCA, MCA

Examples

```r
## Performs a 'class specific' MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and focusing on the subset of women.
data(Music)
female <- Music$Gender=='Women'
mca <- csMCA(Music[,1:5],subcloud=female,excl=c(3,6,9,12,15))
plot(mca)
```

dichotom **Dichotomizes the variables in a data frame**

Description

Dichotomizes the variables in a data frame exclusively composed of categorical variables

Usage

dichotom(data, out = "numeric")

Arguments

data data frame of categorical variables
out character string defining the format for dichotomized variables in the output data frame. Format may be ’numeric’ or ’factor’ (default is ’numeric’).

Value

Returns a data frame with dichotomized variables. The number of columns is equal to the total number of categories in the input data.

Author(s)

Nicolas Robette

Examples

```r
## Dichotomizes 'Music' example data frame
data(Music)
dic <- dichotom(Music[,1:5])
str(dic)

## with output variables in factor format
dic <- dichotom(Music[,1:5], out='factor')
str(dic)
```
Describes the contributions to axes for MCA and variants of MCA

Description

Identifies the categories and individuals that contribute the most to each dimension obtained by a Multiple Correspondence Analysis. It allows to analyze variants of MCA, such as `specific` MCA or `class specific` MCA.

Usage

```r
dimcontrib(resmca, dim = c(1,2), best = TRUE)
```

Arguments

- `resmca`: object of class `MCA`, `speMCA`, or `csMCA`
- `dim`: dimensions to describe (default is c(1,2))
- `best`: if FALSE, displays all the categories; if TRUE (default), displays only categories and individuals with contributions higher than average

Details

Contributions are sorted and assigned a positive or negative sign according to the corresponding categories or individuals' coordinates, so as to facilitate interpretation.

Value

Returns a list:

- `var`: a list of categories' contributions to axes
- `ind`: a list of individuals' contributions to axes

Author(s)

Nicolas Robette

References

See Also

`dimdesc`, `dimdesc.MCA`, `dimetaR`, `condes`, `speMCA`, `csMCA`
Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then describes the contributions to axes.
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
dimcontrib(mca)
```

dimdesc.MCA
Description

Identifies the variables and the categories that are the most characteristic according to each dimension obtained by a Factor Analysis. It is inspired by `dimdesc` function in FactoMineR package (see Husson et al, 2010), but allows to analyze variants of MCA, such as 'specific' MCA or 'class specific' MCA.

Usage

```r
dimdesc.MCA(resmca, ncp = 3, proba = 0.05)
```

Arguments

- `resmca`: object of class 'MCA', 'speMCA', 'csMCA' or 'stMCA'
- `ncp`: number of dimensions to describe (default is 3)
- `proba`: the significance threshold considered to characterize the dimension (default is 0.05)

Details

The statistical indicator used for variables is square correlation ratio (R²) and the one used for categories is test-value (v.test).

Value

Returns a list of ncp lists including:

- `quali`: the description of the dimensions by the categorical variables (the variables are sorted)
- `category`: the description of the dimensions by each category of all the categorical variables (the categories are sorted)

Author(s)

Nicolas Robette
References

See Also

dimdesc, condes, speMCA, csMCA

Examples

```
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then describe the dimensions.
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
dimdesc.MCA(mca,proba=0.2)
```

dimeta2

Describes the eta2 of a list of supplementary variables for the axes of MCA and variants of MCA

Description

Computes eta2 for a list of supplementary variables. It allows to analyze variants of MCA, such as 'specific' MCA or 'class specific' MCA.

Usage

dimeta2(resmca, l, n, dim = 1:resmca$call$ncp)

Arguments

- `resmca`: object of class 'MCA', 'speMCA', 'csMCA' or 'stMCA'
- `l`: a list of supplementary variables
- `n`: a vector of names for the supplementary variables. The vector’s length must be equal to `l`’s length
- `dim`: the axes for which eta2 are computed. Default is `1:ncp`

Value

Returns a data frame with supplementary variables as rows and axes as columns.

Author(s)

Nicolas Robette
dimvtest

Describes the test-values of a list of supplementary variables for the axes of MCA and variants of MCA

Description

Computes test-values for a list of supplementary variables. It allows to analyze variants of MCA, such as ‘specific’ MCA or ‘class specific’ MCA.

Usage

```r
dimvtest(resmca, l, n, dim = 1:resmca$call$ncp)
```

Arguments

- `resmca`: object of class 'MCA', 'speMCA', 'csMCA' or 'stMCA'
- `l`: a list of supplementary variables
- `n`: a vector of names for the supplementary variables. The vector’s length must be equal to ‘1’’s length
- `dim`: the axes for which eta2 are computed. Default is 1:ncp

Details

Test-values are ordered and only those higher than 2.58 (or lower than -2.58) are kept.

References

See Also

dimdesc, dimdesc.MCA, dimcontrib, condes, speMCA, csMCA

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then describes the eta2 for Gender and Age (axes 1 and 2).

data(Music)
gindexcat(Music[,1:5])

mca <- spemca(Music[,1:5],excl=c(3,6,9,12,15))
dimeta2(mca,list(Music$Gender,Music$Age),c('Gender','Age'),dim=1:2)
```
getindexcat

Value

Returns a list of data frames giving the test-values of the supplementary categories for the different axes.

Author(s)

Nicolas Robette

References

See Also

dimdesc, dimdesc.MCA, dimeta2, dimcontrib, condes, speMCA, csMCA

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then describes the test-values for Gender and Age (axes 1 and 2).
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
dimvtest(mca,list(Music$Gender,Music$Age),c('Gender','Age'),dim=1:2)
```

getindexcat

Returns the names of the categories in a data frame

Description

Returns a vector of names corresponding the the categories in a data frame exclusively composed of categorical variables.

Usage

`getindexcat(data)`

Arguments

data
data frame of categorical variables

Details

This function may be useful prior to a 'specific' MCA, to identify the indexes of the 'junk' categories to exclude.
homog.test 13

Value

Returns a character vector with the names of the categories of the variables in the data frame

Author(s)

Nicolas Robette

See Also

spemca, csMCA

Examples

data(music)
getindexcat(music[,1:5])
mca <- spemca(music[,1:5],excl=c(3,6,9,12,15))

homog.test

Computes a homogeneity test for a categorical supplementary variable

Description

From MCA results, computes a homogeneity test for a categorical supplementary variable, i.e. characterizes the homogeneity of several subclouds.

Usage

homog.test(resmca, var)

Arguments

resmca object of class 'MCA', 'speMCA', 'csMCA', 'stMCA' or 'multiMCA'
var the categorical supplementary variable. It does not need to have been used at the MCA step.

Value

Returns a list of square matrices, one per MCA dimension. Each matrix gives the test statistic for any pair of categories.

Author(s)

Nicolas Robette
References

See Also

`speMCA`, `csMCA`, `stMCA`, `multiMCA`, `textvarsup`

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then computes a homogeneity test for age supplementary variable.
data(Music)
getindexcat(Music)
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
homog.test(mca,Music$Age)
```

indsup

Computes statistics for supplementary individuals

Description

From MCA results, computes statistics (coordinates, squared cosines) for supplementary individuals.

Usage

```r
indsup(resmca, supdata)
```

Arguments

- `resmca`: object of class 'MCA', 'speMCA' or 'csMCA'
- `supdata`: data frame with the supplementary individuals. It must have the same factors as the data frame used as input for the initial MCA.

Value

Returns a list:

- `coord`: matrix of individuals’ coordinates
- `cos2`: matrix of individuals’ square cosines

Author(s)

Nicolas Robette
References

See Also
textindsup, speMCA, csMCA, varsup

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then computes statistics for supplementary individuals.
data(Music)
getindexcat(Music)
mca <- speMCA(Music[3:nrow(Music),1:5],excl=c(3,6,9,12,15))
indsup(mca,Music[1:2,1:5])
```

medoids

Computes the medoids of clusters

Description
Computes the medoids of a cluster solution.

Usage

```r
medoids(D, cl)
```

Arguments

- `D` square distance matrix (n rows * n columns, i.e. n individuals) or `dist` object
- `cl` vector with the clustering solution (its length should be n)

Details
Medoids are representative objects of a cluster whose average dissimilarity to all the objects in the cluster is minimal. Medoids are always members of the data set (contrary to means or centroids).

Value
Returns a numeric vector with the indexes of medoids.

Author(s)
Nicolas Robette
Computes the modified rates of variance of a correspondence analysis.

Description

Computes the modified rates of variance of a correspondence analysis.

Usage

```r
modif.rate(resmca)
```

Arguments

- `resmca`: object of class 'MCA', 'speMCA' or 'csMCA'

Details

As MCA clouds often have a high dimensionality, the variance rates of the first principle axes may be quite low, which makes them hard to interpret. Benzecri (1992, p.412) proposed to use modified rates to better appreciate the relative importance of the principal axes.

Value

Returns a data frame with 2 variables:

- `mrate`: Numeric vector of modified rates
- `cum.mrate`: Numeric vector of cumulative modified rates
multiMCA

Author(s)
Nicolas Robette

References

See Also
MCA, speMCA, csMCA

Examples

```r
## Computes the modified rates of variance
## of the MCA of 'Music' example data set
data(Music)
mca <- speMCA(Music[,1:5])
modif.rate(mca)
```

_pairs

Performs Multiple Factor Analysis

Description
Performs Multiple Factor Analysis, drawing on the work of Escoffier and Pages (1994). It allows the use of MCA variants (e.g. specific MCA or class specific MCA) as inputs.

Usage
multiMCA(l_mca, ncp = 5, compute.rv = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_mca</td>
<td>a list of objects of class MCA, speMCA or csMCA</td>
</tr>
<tr>
<td>ncp</td>
<td>number of dimensions kept in the results (default is 5)</td>
</tr>
<tr>
<td>compute.rv</td>
<td>whether RV coefficients should be computed or not (default is FALSE, which makes the function execute faster)</td>
</tr>
</tbody>
</table>

Details
This function binds individual coordinates from every MCA in l_mca argument, weights them by the first eigenvalue, and the resulting data frame is used as input for Principal Component Analysis (PCA).
multiMCA

Value

Returns an object of class 'multiMCA', i.e. a list:

- **eig**: a list of numeric vector for eigenvalues, percentage of variance and cumulative percentage of variance
- **var**: a list of matrices with results for input MCAs components (coordinates, correlation between variables and axes, square cosine, contributions)
- **ind**: a list of matrices with results for individuals (coordinates, square cosine, contributions)
- **call**: a list with informations about input data
- **VAR**: a list of matrices with results for categories and variables in the input MCAs (coordinates, square cosine, test-values, variances)
- **my.mca**: lists the content of the objects in l_mca argument
- **RV**: a matrix of RV coefficients

Author(s)

Nicolas Robette

References

Escofier, B. and Pages, J. (1994) "Multiple Factor Analysis (AFMULT package)". Computational Statistics and Data Analysis, 18, 121-140.

See Also

plot.multiMCA, varsup, speMCA, csMCA, MFA, PCA

Examples

```r
## Performs a specific MCA on music variables of 'Taste' example data set,
## another one on movie variables of 'Taste' example data set,
## and then a Multiple Factor Analysis.
data(Taste)
getindexcat(Taste[,1:5])
mca1 <- speMCA(Taste[,1:5], excl=c(3,6,9,12,15))
getindexcat(Taste[,6:11])
mca2 <- speMCA(Taste[,6:11], excl=c(3,6,9,12,15,18))
mfa <- multiMCA(list(mca1,mca2))
plot.multiMCA(mfa)
```
Music (data)

Description

The data concerns tastes for music of a set of 500 individuals. It contains 5 variables of likes for music genres (french pop, rap, rock, jazz and classical), 2 about music listening and 2 additional variables (gender and age).

Usage

```r
data(Music)
```

Format

A data frame with 500 observations and the following 7 variables:

- **FrenchPop** is a factor with levels No, Yes, NA
- **Rap** is a factor with levels No, Yes, NA
- **Rock** is a factor with levels No, Yes, NA
- **Jazz** is a factor with levels No, Yes, NA
- **Classical** is a factor with levels No, Yes, NA
- **Gender** is a factor with levels Men, Women
- **Age** is a factor with levels 15-24, 25-49, 50+
- **OnlyMus** is a factor with levels Daily, Often, Rare, Never, indicating how often one only listens to music.
- **Daily** is a factor with levels No, Yes indicating if one listens to music every day.

Details

'NA' stands for 'not available'

Examples

```r
data(Music)
str(Music)
```
Computes the local and global Percentages of Maximum Deviation from Independance (PEM)

Description

Computes the local and global Percentages of Maximum Deviation from Independance (PEM) of a contingency table.

Usage

pem(x)

Arguments

x

Contingency table. Accepted formats are matrices and 'table' objects.

Details

The Percentage of Maximum Deviation from Independance (PEM) is an association measure for contingency tables (see Cibois, 1993). It is an alternative to khi2, Cramer coefficient, etc.

Value

Returns a list:

peml
Matrix with local percentages of maximum deviation from independance

pemg
Numeric value, i.e. the global percentage of maximum deviation from independance

Author(s)

Nicolas Robette

References

See Also

table, chisq.test, assocstats
Examples

```r
## Computes the PEM for the contingency table
## of jazz and age variables
## from the 'Music' example data set
data(Music)
x <- table(Music$Jazz, Music$Age)
pem(x)
```

plot.csMCA

Plots 'class specific' MCA results

Description

Plots a 'class specific' Multiple Correspondence Analysis (resulting from `csMCA` function), i.e. the clouds of individuals or categories.

Usage

```r
## S3 method for class 'csMCA'
plot(x, type = "v", axes = 1:2, points = "all", col = "dodgerblue4", app = 0, ...)
```

Arguments

- `x`: object of class `csMCA`
- `type`: character string: `"v"` to plot the categories (default), `"i"` to plot individuals’ points, `"inames"` to plot individuals’ names
- `axes`: numeric vector of length 2, specifying the components (axes) to plot (c(1,2) is default)
- `points`: character string. If 'all' all points are plotted (default); if 'besth' only those who contribute most to horizontal axis are plotted; if 'bestv' only those who contribute most to vertical axis are plotted; if 'best' only those who contribute most to horizontal or vertical axis are plotted.
- `col`: color for the points of the individuals or for the labels of the categories (default is 'dodgerblue4')
- `app`: numerical value. If 0 (default), only the labels of the categories are plotted and their size is constant; if 1, only the labels are plotted and their size is proportional to the weights of the categories; if 2, points (triangles) and labels are plotted, and points size is proportional to the weight of the categories.

Details

A category is considered to be one of the most contributing to a given axis if its contribution is higher than the average contribution, i.e. 100 divided by the total number of categories.
Author(s)
Nicolas Robette

References

See Also
csMCA, textvarsup, conc.ellipse

Examples
```r
## Performs a class specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories
## and focusing on the subset of women,
## and then draws the cloud of categories.
data(Music)
female <- Music$Gender=='Women'
getindexcat(Music[,1:5])
mca <- csmCA(Music[,1:5],subcloud=female,excl=c(3,6,9,12,15))
plot(mca)
plot(mca,axes=c(2,3),points='best',col='darkred',app=1)
```

plot.multiMCA
Plots Multiple Factor Analysis

Description
Plots Multiple Factor Analysis data, resulting from *multiMCA* function.

Usage
```r
## S3 method for class 'multiMCA'
plot(x, type = "v", axes = c(1, 2), points = "all", threshold = 2.58,
groups = 1:x$call$ngroups, col = rainbow(x$call$ngroups), app = 0, ...)
```

Arguments
- `x` object of class 'multiMCA'
- `type` character string: 'v' to plot the categories (default), 'i' to plot individuals' points, 'inames' to plot individuals' names
- `axes` numeric vector of length 2, specifying the components (axes) to plot (c(1,2) is default)
points character string. If 'all' all points are plotted (default); if 'besth' only those who are the most correlated to horizontal axis are plotted; if 'bestv' only those who are the most correlated to vertical axis are plotted; if 'best' only those who are the most correlated to horizontal or vertical axis are plotted.

threshold numeric value. V-test minimal value for the selection of plotted categories.

groups numeric vector specifying the groups of categories to plot. By default, every groups of categories will be plotted

col a color for the points of the individuals or a vector of colors for the labels of the groups of categories (by default, rainbow palette is used)

app numerical value. If 0 (default), only the labels of the categories are plotted and their size is constant; if 1, only the labels are plotted and their size is proportional to the weights of the categories; if 2, points (triangles) and labels are plotted, and points size is proportional to the weight of the categories.

Details

A category is considered to be one of the most correlated to a given axis if its test-value is higher than 2.58 (which corresponds to a 0.05 threshold).

Author(s)

Nicolas Robette

References

Escofier, B. and Pages, J. (1994) "Multiple Factor Analysis (AFMULT package)". Computational Statistics and Data Analysis, 18, 121-140.

See Also

multiMCA, textvarsup, speMCA, csMCA, MFA

Examples

Performs a specific MCA on music variables of 'Taste' example data set, ## another one on movie variables of 'Taste' example data set, ## and then a Multiple Factor Analysis and plots the results.
data(Taste)
mca1 <- speMCA(Taste[,1:5], excl=c(3,6,9,12,15))
mca2 <- speMCA(Taste[,6:11], excl=c(3,6,9,12,15,18))
mfa <- multiMCA(list(mca1,mca2))
plot.multiMCA(mfa,col=c('darkred','darkblue'))
plot.multiMCA(mfa,groups=2,app=1)
Description

Plots a 'specific' Multiple Correspondence Analysis (resulting from `speMCA` function), i.e. the clouds of individuals or categories.

Usage

```r
## S3 method for class 'speMCA'
plot(x, type = "v", axes = 1:2, points = "all", col = "dodgerblue4", app = 0, ...)
```

Arguments

- `x` object of class 'speMCA'
- `type` character string: 'v' to plot the categories (default), 'i' to plot individuals' points, 'inames' to plot individuals' names.
- `axes` numeric vector of length 2, specifying the components (axes) to plot (c(1,2) is default).
- `points` character string. If 'all' all points are plotted (default); if 'besth' only those who contribute most to horizontal axis are plotted; if 'bestv' only those who contribute most to vertical axis are plotted; if 'best' only those who contribute most to horizontal or vertical axis are plotted.
- `col` color for the points of the individuals or for the labels of the categories (default is 'dodgerblue4').
- `app` numerical value. If 0 (default), only the labels of the categories are plotted and their size is constant; if 1, only the labels are plotted and their size is proportional to the weights of the categories; if 2, points (triangles) and labels are plotted, and points size is proportional to the weight of the categories.
- `...` further arguments passed to or from other methods, such as `cex`, `cex.main`, ...

Details

A category is considered to be one of the most contributing to a given axis if its contribution is higher than the average contribution, i.e. 100 divided by the total number of categories.

Author(s)

Nicolas Robette

References

plot.stMCA

See Also

spemca, textvarsup, conc.ellipse

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then draws the cloud of categories.
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5], excl=c(3,6,9,12,15))
plot(mca)
plot(mca, axes=c(2,3), points="best", col='darkred', app=1)
```

Description

Plots a 'standardized' Multiple Correspondence Analysis (resulting from stMCA function), i.e. the clouds of individuals or categories.

Usage

```r
## S3 method for class 'stMCA'
plot(x, type = "v", axes = 1:2, points = "all", threshold = 2.58, groups=NULL,
col = "dodgerblue", app = 0, ...)
```

Arguments

- `x` object of class 'stMCA'
- `type` character string: 'v' to plot the categories (default), 'i' to plot individuals' points, 'inames' to plot individuals' names
- `axes` numeric vector of length 2, specifying the components (axes) to plot (c(1,2) is default)
- `points` character string. If 'all' all points are plotted (default); if 'besth' only those who are the most correlated to horizontal axis are plotted; if 'bestv' only those who are the most correlated to vertical axis are plotted; if 'best' only those who are the most coorelated to horizontal or vertical axis are plotted.
- `threshold` numeric value. V-test minimal value for the selection of plotted categories.
- `groups` only if x$call$input.mca = 'multiMCA', i.e. if the MCA standardized to x object was a multiMCA object. Numeric vector specifying the groups of categories to plot. By default, every groups of categories will be plotted
- `col` color for the points of the individuals or for the labels of the categories (default is 'dodgerblue4')
app numerical value. If 0 (default), only the labels of the categories are plotted and
their size is constant; if 1, only the labels are plotted and their size is proportional
to the weights of the categories; if 2, points (triangles) and labels are plotted, and
points size is proportional to the weight of the categories.

... further arguments passed to or from other methods, such as cex, cex.main, ...

Details

A category is considered to be one of the most correlated to a given axis if its test-value is higher
then 2.58 (which corresponds to a 0.05 threshold).

Author(s)

Nicolas Robette

References

Robette, Bry and Roueff, 2014, “Un dialogue de sourds dans le theatre statistique? Analyse ge-
ometrique des donnees et effets de structure”, forthcoming

See Also

stmCA, textvarsup, conc.ellipse

Examples

Performs a standardized MCA on 'Music' example data set
ignoring every 'NA' (i.e. 'not available') categories
and controlling for age,
and then draws the cloud of categories.
data(Music)
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
stmca <- stmCA(mca,control=list(Music$Age))
plot(stmca)
plot(stmca,axes=c(2,3),points='best',col='darkred',app=1)

prop.wtable Transform a (possibly weighted) contingency table into percentages

Description

Computes a contingency table from one or two vectors, with the possibility of specifying weights,
and then computes the percentages.

Usage

prop.wtable(var1, var2=NULL, w=rep.int(1, length(var1)), dir=0, digits=1, mar=TRUE, na=TRUE)
Arguments

- **var1**: an object which can be interpreted as factor
- **var2**: an optional object which can be interpreted as factor
- **w**: an optional numeric vector of weights (by default, a vector of 1 for uniform weights)
- **dir**: integer: 0 for percentages, 1 for row percentages and 2 for column percentages (default is 0)
- **digits**: integer indicating the number of decimal places (default is 1)
- **mar**: logical. If TRUE (default), margins are computed
- **na**: logical. If TRUE (default), 'NA' are treated as a category. If FALSE, they are ignored

Value

Returns a contingency table expressed in percentages in matrix format.

Author(s)

Nicolas Robette

See Also

- `wtable`, `prop.table`

Examples

```r
## Computes a contingency table
## (expressed in percentages)
## of jazz and age variables
## from the 'Music' example data set
## with or without weights
data(Music)
prop.wtable(Music$Jazz)
prop.wtable(Music$Jazz,Music$Gender)
prop.wtable(Music$Jazz,Music$Gender,dir=1)
prop.wtable(Music$Jazz,Music$Gender,dir=2)

weight <- sample(0:20,nrow(Music),TRUE)/10
prop.wtable(Music$Jazz,w=weight)
prop.wtable(Music$Jazz,Music$Age,weight)
prop.wtable(Music$Jazz,Music$Age,weight,dir=1)
prop.wtable(Music$Jazz,Music$Age,weight,dir=2)
```
Description

Performs a 'specific' Multiple Correspondence Analysis, i.e. a variant of MCA that allows to treat undesirable categories as passive categories.

Usage

\[
\text{speMCA}(\text{data, excl = NULL, ncp = 5, row.w = rep(1, times = nrow(data)))}
\]

Arguments

- **data**: data frame with n rows (individuals) and p columns (categorical variables)
- **excl**: numeric vector indicating the indexes of the "junk" categories (default is NULL). See "getindexcat" to identify these indexes.
- **ncp**: number of dimensions kept in the results (default is 5)
- **row.w**: an optional numeric vector of row weights (by default, a vector of 1 for uniform row weights)

Details

Undesirable categories may be of several kinds: infrequent categories (say, <5 percents), heterogeneous categories (e.g. 'others') or uninterpretable categories (e.g. 'not available'). In these cases, 'specific' MCA may be useful to ignore these categories for the determination of distances between individuals (see Le Roux and Rouanet, 2004 and 2010).

Value

Returns an object of class 'speMCA', i.e. a list including:

- **eig**: a list of vectors containing all the eigenvalues, the percentage of variance, the cumulative percentage of variance, the modified rates and the cumulative modified rates
- **call**: a list with informations about input data
- **ind**: a list of matrices containing the results for the individuals (coordinates, contributions)
- **var**: a list of matrices containing all the results for the categories and variables (weights, coordinates, square cosine, categories contributions to axes and cloud, test values (v.test), square correlation ratio (eta2), variable contributions to axes and cloud

Author(s)

Nicolas Robette
References

See Also

getindexcat, plot.speMCA, varsup, contrib, modif.rate, dimdesc.MCA, MCA, csMCA

Examples

Performs a specific MCA on 'Music' example data set
ignoring every 'NA' (i.e. 'not available') categories.
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
str(mca)

stMCA

Performs a 'standardized' MCA

Description

Performs a 'standardized' Multiple Correspondence Analysis, i.e it takes MCA results and forces all the dimensions to be orthogonal to a supplementary 'control' variable.

Usage

stMCA(resmca, control)

Arguments

resmca an object of class 'MCA','speMCA','csMCA' or 'multiMCA'
control a list of 'control' variables

Details

Standardized MCA unfolds in several steps. First, for each dimension of an input MCA, individual coordinates are used as dependent variable in a linear regression model and the 'control' variable is included as covariate in the same model. The residuals from every models are retained and bound together. The resulting data frame is composed of continuous variables and its number of columns is equal to the number of dimensions in the input MCA. Lastly, this data frame is used as input in a Principal Component Analysis.
Value

Returns an object of class "stMCA". This object will be similar to resmca argument, still it does not comprehend modified rates, categories contributions and variables contributions.

Author(s)

Nicolas Robette

References

See Also

plot.stMCA, MCA, speMCA, csMCA, multiMCA, PCA

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then performs a 'standardized' MCA controlling for age.
data(Music)
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
plot(mca)
textvarst(mca,Music$Age,col='red')
stmca <- stMCA(mca,control=list(Music$Age))
plot(stmca)
textvarst(stmca,Music$Age,col='red')
```

tabcontrib

Displays the categories contributing most to axes for MCA and variants of MCA

Description

Identifies the categories that contribute the most to a given dimension of a Multiple Correspondence Analysis and organizes them into a fancy table. It allows to analyze variants of MCA, such as 'specific' MCA or 'class specific' MCA.

Usage

`tabcontrib(resmca, dim = 1)`

Arguments

- `resmca`: object of class 'MCA', 'speMCA', or 'csMCA'
- `dim`: dimension to describe (default is 1st dimension)
Details

Best contributions - i.e. higher than average - are assigned a positive or negative sign according to the corresponding categories’ coordinates, so as to facilitate interpretation. Then they are sorted and organized according to the most contributing variables.

Value

Returns a data frame with the following columns:

- **var**: the names of the most contributing variables
- **moda**: the names of the most contributing categories
- **ctr1**: ‘negative’ contributions, i.e. corresponding to categories with coordinates lower than zero
- **ctr2**: ‘positive’ contributions, i.e. corresponding to categories with coordinates higher than zero
- **weight**: weight of the categories
- **ctrtot**: sum of the best contributions for a given variable
- **cumctrtot**: cumulated contributions

Author(s)

Nicolas Robette

References

See Also

dimcontrib, dimdesc, dimdesc.MCA, dimetaR, condes, speMCA, csMCA

Examples

```R
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then describes the contributions to axes.
data(Music)
getindexcat(Music[,1:5])
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
tabconcontrib(mca,1)
tabconcontrib(mca,2)
```
Description

The data concerns tastes for music and movies of a set of 500 individuals. It contains 5 variables of likes for music genres (french pop, rap, rock, jazz and classical), 6 variables of likes for movie genres (comedy, crime, animation, science fiction, love, musical) and 2 additional variables (gender and age).

Usage

data(Taste)

Format

A data frame with 500 observations and the following 13 variables:

- FrenchPop is a factor with levels No, Yes, NA
- Rap is a factor with levels No, Yes, NA
- Rock is a factor with levels No, Yes, NA
- Jazz is a factor with levels No, Yes, NA
- Classical is a factor with levels No, Yes, NA
- Comedy is a factor with levels No, Yes, NA
- Crime is a factor with levels No, Yes, NA
- Animation is a factor with levels No, Yes, NA
- SciFi is a factor with levels No, Yes, NA
- Love is a factor with levels No, Yes, NA
- Musical is a factor with levels No, Yes, NA
- Gender is a factor with levels Men, Women
- Age is a factor with levels 15-24, 25-49, 50+

Details

'NA' stands for 'not available'

Examples

data(Taste)
str(Taste)
Description

Adds supplementary individuals to a MCA graph of the cloud of the individuals.

Usage

```r
textindsup(resmca, supdata, axes = c(1, 2), col = "darkred")
```

Arguments

- `resmca` object of class 'MCA', 'speMCA', or 'csMCA'
- `supdata` data frame with the supplementary individuals. It must have the same factors as the data frame used as input for the initial MCA.
- `axes` numeric vector of length 2, specifying the dimensions (axes) to plot (default is c(1,2))
- `col` color for the labels of the categories (default is 'darkred')

Author(s)

Nicolas Robette

See Also

`indsup`, `plot.speMCA`, `plot.csMCA`

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## plots the cloud of individuals,
## and then adds supplementary individuals.
data(Music)
getindexcat(Music)
mca <- speMCA(Music[3:nrow(Music),1:5],excl=c(3,6,9,12,15))
plot(mca,type='i')
textindsup(mca,Music[1:2,1:5])
```
textvarsup

Adds a categorical supplementary variable to a MCA graph

Description

Adds a categorical supplementary variable to a MCA graph of the cloud of categories.

Usage

```r
textvarsup(resmca, var, sel = 1:nlevels(var), axes = c(1, 2),
        col = "black", app = 0, vname = NULL)
```

Arguments

- `resmca`: object of class 'MCA', 'speMCA', 'csMCA', 'stMCA' or 'multiMCA'
- `var`: the categorical supplementary variable. It does not need to have been used at the MCA step.
- `sel`: numeric vector of indexes of the categories of the supplementary variable to be added to the plot (by default, labels are plotted for every categories)
- `axes`: numeric vector of length 2, specifying the dimensions (axes) to plot (default is c(1, 2))
- `col`: color for the labels of the categories (default is black)
- `app`: numerical value. If 0 (default), only the labels are plotted and their size is constant; if 1, only the labels are plotted and their size is proportional to the weights of the categories; if 2, points (triangles) and labels are plotted, and points size is proportional to the weight of the categories.
- `vname`: a character string to be used as a prefix for the labels of the categories (null by default)

Author(s)

Nicolas Robette

See Also

`plot.speMCA`, `plot.csMCA`, `plot.stMCA`, `plot.multiMCA`, `varsup`

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## plots the cloud of categories,
## and then adds gender and age supplementary categories.
data(Music)
getindexcat(Music)
mca <- speMCA(Music[,1:5], excl=c(3,6,9,12,15))
```
translate.logit

Description
Performs a logit regression and then computes the effects of covariates expressed in percentages
(through two methods: ‘pure’ effects and 'experimental' effects; see Deauvieau, 2010)

Usage
translate.logit(formula, data, nit = 0)

Arguments
formula an object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted. Every variables have to be factors.
data a data frame containing the variables in the model
nit number of bootstrap iterations for confidence interval computation. Default is
0, i.e. no confidence interval is computed.

Details
This function works with binomial as well as multinomial regression models. If the dependant vari-
able has two factors, glm is used, if it has more than two factors multinom function (from nnet
package) is used. The function expresses the regression coefficients as percentages through three
distinct methods: raw percentages, 'pure effects' percentages and 'experimental effects' percent-
ages (see Deauvieau, 2010).

Value
The function returns a list:
reg An object of class glm or nnet (depending on the number of factors of the de-
pendent variable)
summary The results of summary function applied to reg element
percents A matrix or a list of matrices (depending on the number of factors of the depen-
dent variable) with regression coefficients expressed as percentages
boot.ci A matrix or a list of matrices (depending on the number of factors of the depen-
dent variable) with confidence intervals computed with bootstrap

Author(s)
Nicolas Robette
References

See Also

glm, multinom

Examples

```r
## An example for binomial logit regression
data(Music)
translate.logit(Daily ~ Gender + Age, Music)
translate.logit(Daily ~ Gender + Age, Music, 100)

## An example for multinomial logit regression
translate.logit(OnlyMus ~ Gender + Age, Music)
```

varsup

Computes statistics for a categorical supplementary variable

Description

From MCA results, computes statistics (weights, coordinates, contributions, test-values, variances) for a categorical supplementary variable.

Usage

```r
varsup(resmca, var)
```

Arguments

- `resmca` - object of class 'MCA', 'speMCA', 'csMCA', 'stMCA' or 'multiMCA'
- `var` - the categorical supplementary variable. It does not need to have been used at the MCA step.
Value

Returns a list:

- `weight` numeric vector of categories weights
- `coord` data frame of categories coordinates
- `cos2` data frame of categories square cosine
- `var` data frame of categories within variances, variance between and within categories and variable square correlation ratio (eta2)
- `v.test` data frame of categories test-values

Author(s)

Nicolas Robette

References

See Also

`speMCA`, `csMCA`, `multiMCA`, `textvarsup`

Examples

```r
## Performs a specific MCA on 'Music' example data set
## ignoring every 'NA' (i.e. 'not available') categories,
## and then computes statistics for age supplementary variable.
data(Music)
getindexcat(Music)
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
varsup(mca,Music$Age)
```

wtable

Computes a (possibly weighted) contingency table

Description

Computes a contingency table from one or two vectors, with the possibility of specifying weights.

Usage

```r
wtable(var1, var2=NULL, w=rep.int(1, length(var1)), digits=0, mar=TRUE, na=TRUE)
```
Arguments

- **var1**: an object which can be interpreted as factor
- **var2**: an optional object which can be interpreted as factor
- **w**: an optional numeric vector of weights (by default, a vector of 1 for uniform weights)
- **digits**: integer indicating the number of decimal places (default is 0)
- **mar**: logical. If TRUE (default), margins are computed
- **na**: logical. If TRUE (default), 'NA' are treated as a category. If FALSE, they are ignored

Value

Returns a contingency table in matrix format.

Author(s)

Nicolas Robette

See Also

table, prop.wtable

Examples

```r
## Computes a contingency table
## of jazz and age variables
## from the 'Music' example data set
## with or without weights
data(Music)
wtable(Music$Jazz)
wtable(Music$Jazz, Music$Age)

weight <- sample(0:20, nrow(Music), TRUE)/10
wtable(Music$Jazz, w=weight, digits=1)
wtable(Music$Jazz, Music$Age, weight, 1)
```
Index

* **Topic aplot**
 - conc.ellipse, 3
 - plot.csMCA, 21
 - plot.multiMCA, 22
 - plot.speMCA, 24
 - plot.stMCA, 25
 - textindsup, 33
 - textvarsup, 34

* **Topic datasets**
 - Music, 19
 - Taste, 32

* **Topic misc**
 - burt, 2
 - conc.ellipse, 3
 - contrib, 4
 - dichotom, 7
 - dimcontrib, 8
 - dimdesc.MCA, 9
 - dimeta2, 10
 - dimvtest, 11
 - getindexcat, 12
 - homog.test, 13
 - indsup, 14
 - medoids, 15
 - modif.rate, 16
 - pem, 20
 - prop.wtable, 26
 - speMCA, 28
 - stMCA, 29
 - tabcontrib, 30
 - textindsup, 33
 - textvarsup, 34
 - translate.logit, 35
 - varsup, 36
 - wtable, 37

 assocstats, 20

 burt, 2

 chisq.test, 20

 cluster, 16

 conc.ellipse, 3, 22, 25, 26

 condes, 8, 10–12, 31

 contrib, 4, 7, 29

 csMCA, 5, 5, 8, 10–15, 17, 18, 21–23, 29–31, 37

 cutree, 16

 dichotom, 3, 7

 dimcontrib, 8, 11, 12, 31

 dimdesc, 8–12, 31

 dimdesc.MCA, 7, 8, 9, 11, 12, 29, 31

 dimeta2, 8, 10, 12, 31

 dimvtest, 11
dist, 16
getindexcat, 6, 7, 12, 29
glm, 35, 36
hclust, 16
homog.test, 13
indsup, 14, 33
MCA, 5, 7, 17, 29, 30
medoids, 15
MFA, 18, 23
modif.rate, 7, 16, 29
multiMCA, 14, 17, 22, 23, 30, 37
multinom, 35, 36
Music, 19
pam, 16
PCA, 18, 30
pem, 20
plot.csMCA, 4, 7, 21, 33, 34
plot.multiMCA, 4, 18, 22, 34
plot.speMCA, 4, 24, 29, 33, 34
plot.stMCA, 4, 25, 30, 34
prop.table, 27
prop.wtable, 26, 38
speMCA, 5, 7, 8, 10–15, 17, 18, 23–25, 28, 30,
31, 37
stMCA, 14, 25, 26, 29
tabcontrib, 30
table, 20, 38
Taste, 32
textindsup, 15, 33
textvarsup, 14, 22, 23, 25, 26, 34, 37
translate.logit, 35
varsup, 5, 7, 15, 18, 29, 34, 36
wtable, 27, 37