Type Package
Title The Generalized DINA Model Framework
Version 2.7.3
Date 2019-8-19
Description A set of psychometric tools for cognitive diagnosis modeling based on the generalized deterministic inputs, noisy and gate (G-DINA) model by de la Torre (2011) <DOI:10.1007/s11336-011-9207-7> and its extensions, including the sequential G-DINA model by Ma and de la Torre (2016) <DOI:10.1111/bmsp.12070> for polytomous responses, and the polytomous G-DINA model by Chen and de la Torre <DOI:10.1177/0146621613479818> for polytomous attributes. Joint attribute distribution can be independent, saturated, higher-order, loglinear smoothed or structured. Q-matrix validation, item and model fit statistics, model comparison at test and item level and differential item functioning can also be conducted. A graphical user interface is also provided.
License GPL-3
LazyData TRUE
Depends R (>= 3.5.0)
Imports alabama, graphics, ggplot2, MASS, nloptr, numDeriv, Rcpp (>= 0.12.1), Rsolnp, stats, shiny, shinydashboard, utils
Suggests CDM, Matrix, testthat, pkgdown, poLCA, stringr, knitr, markdown
LinkingTo Rcpp, RcppArmadillo
URL https://github.com/Wenchao-Ma/GDINA,
https://wenchao-ma.github.io/GDINA
BugReports https://github.com/Wenchao-Ma/GDINA/issues
RoxygenNote 6.1.1
Collate 'CA.R' 'CR.R' 'DTM.R' 'ExportedFuncs.R' 'GDINA.R' 'GDLR'
 'GDINA-package.R' 'GMSCDM.R' 'HO.R' 'ILCA.R' 'M2.R' 'MCmodel.R'
 'Mstep.R' 'Mstep_DTM.R' 'MultipleGroup_Estimation.R'
 'RcppExports.R' 'SingleGroup_Estimation.R' 'anova.GDINA.R'
 'autoGDINA.R' 'bootSE.R' 'coef.R' 'dif.R' 'ecpe.R' 'simGDINA.R'
R topics documented:

'itemfit.R' 'modelcomp.R' 'extract.R' 'frac20.R'
'itemparm.GDINA.R' 'monocheck.R' 'personparm.GDINA.R'
'plotIRF.GDINA.R' 's3GDINA.R' 'score.R'
'sim10GDINA.R' 'sim10MCDINA.R' 'sim20seqGDINA.R'
'sim21seqDINA.R' 'sim30DINA.R' 'sim30GDINA.R' 'sim30pGDINA.R'
'startGDINA.R' 'structuralparm.R' 'summary.GDINA.R' 'utils.R'
'zzz.R'

NeedsCompilation: yes

Author: Wenchao Ma [aut, cre, cph],
 Jimmy de la Torre [aut, cph],
 Miguel Sorrel [ctb],
 Zhehan Jiang [ctb]

Maintainer: Wenchao Ma <wenchao.ma@ua.edu>

VignetteBuilder: knitr

Repository: CRAN

Date/Publication: 2019-08-19 23:10:02 UTC

R topics documented:

GDINA-package .. 3
att.structure .. 5
attributepattern ... 7
autoGDINA ... 8
bdiagMatrix .. 11
bootSE .. 12
CA ... 13
cjoint ... 14
ClassRate ... 14
designmatrix ... 15
dif ... 16
DTM ... 18
ecepe ... 20
extract .. 21
frac20 ... 23
GDINA .. 23
GMSCDM .. 44
ILCA ... 46
indlogLik ... 47
indlogPost .. 48
itemfit .. 48
itemparm .. 50
LC2LG ... 51
MCmodel .. 52
modelcomp .. 55
modelfit .. 59
monocheck ... 60
The Generalized DINA Model Framework

Description

For conducting CDM analysis within the G-DINA model framework

Details

This package provides a framework for a series of cognitively diagnostic analyses for dichotomous and polytomous responses.

Various cognitive diagnosis models (CDMs) can be calibrated using the GDINA function, including the G-DINA model (de la Torre, 2011), the deterministic inputs, noisy and gate (DINA; de la Torre, 2009; Junker & Sijtsma, 2001) model, the deterministic inputs, noisy or gate (DINO; Templin & Henson, 2006) model, the reduced reparametrized unified model (R-RUM; Hartz, 2002), the additive CDM (A-CDM; de la Torre, 2011), and the linear logistic model (LLM; Maris, 1999), the multiple-strategy DINA model (de la Torre, & Douglas, 2008) and models defined by users under the G-DINA framework using different link functions and design matrices (de la Torre, 2011). Note that the LLM is also called compensatory RUM and the RRUM is equivalent to the generalized NIDA model.

For ordinal and nominal responses, the sequential G-DINA model (Ma, & de la Torre, 2016) can be fitted and most of the aforementioned CDMs can be used as the processing functions (Ma, & de la Torre, 2016) at the category level. Different CDMs can be assigned to different items within a single assessment. Item parameters are estimated using the MMLE/EM algorithm. Details about the
estimation algorithm can be found in de la Torre (2009), de la Torre (2011), Ma, Iaconangelo, & de la Torre (2016) and Ma, & de la Torre (2016). The joint attribute distribution can be modelled using an independent model, a higher-order IRT model (de la Torre, & Douglas, 2004), a loglinear model (Xu & von Davier, 2008), a saturated model or a hierarchical structures (e.g., linear, divergent). Monotonicity constraints for item/category success probabilities can also be specified.

In addition, to handle multiple strategies, generalized multiple-strategy CDMs for dichotomous response (Ma & Guo, 2019) can be fitted using GMSCDM function and diagnostic tree model (Ma, 2018) can also be estimated using DTM function for polytomous responses. Note that these functions are experimental, and are expected to be further extended in the future.

Q-matrix validation (de la Torre, & Chiu, 2016; de la Torre & Ma, 2016; Ma & de la Torre, 2019; see Qval), model fit statistics (see modelfit and itemfit), model comparison at test and item level (de la Torre, & Lee, 2013; Ma, Iaconangelo, & de la Torre, 2016; Ma & de la Torre, 2019; see modelcomp), and differential item functioning (Hou, de la Torre, & Nandakumar, 2014; see dif) can also be conducted.

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>

Jimmy de la Torre, The University of Hong Kong

References

See Also

- **CDM** for estimating G-DINA model and a set of other CDMs; **ACTCD** and **NPCD** for nonparametric CDMs; **dina** for DINA model in Bayesian framework

att.structure

Generate hierarchical attribute structures

Description

This function can be used to generate hierarchical attributes structures, and to provide prior joint attribute distribution with hierarchical structures.

Usage

```r
att.structure(hierarchy.list = NULL, K, Q, att.prob = "uniform")
```

Arguments

- `hierarchy.list` a list specifying the hierarchical structure between attributes. Each element in this list specifies a DIRECT prerequisite relation between two or more attributes. See example for more information.
- `K` the number of attributes involved in the assessment
Q Q-matrix
att.prob How are the probabilities for latent classes simulated? It can be "random" or "uniform".

Value
att.str reduced latent classes under the specified hierarchical structure
impossible.latentclass impossible latent classes under the specified hierarchical structure
att.prob probabilities for all latent classes; 0 for impossible latent classes

Author(s)
Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

See Also
GDINA, autoGDINA

Examples
Not run:
###########
Leighton et al. (2004, p.210)
#
linear structure A1->A2->A3->A4->A5->A6
K <- 6
linear=list(c(1,2),c(2,3),c(3,4),c(4,5),c(5,6))
att.structure(linear,K)

convergent structure A1->A2->A3->A5->A6;A1->A2->A4->A5->A6
K <- 6
converg <- list(c(1,2),c(2,3),c(2,4),
 c(3,4,5), #this is how to show that either A3 or A4 is a prerequisite to A5
 c(5,6))
att.structure(converg,K)

convergent structure [the difference between this one and the previous one is that
A3 and A4 are both needed in order to master A5]
K <- 6
converg2 <- list(c(1,2),c(2,3),c(2,4),
 c(3,5), #this is how to specify that both A3 and A4 are needed for A5
 c(4,5), #this is how to specify that both A3 and A4 are needed for A5
 c(5,6))
att.structure(converg2,K)

divergent structure A1->A2->A3;A1->A4->A5;A1->A4->A6
diverg <- list(c(1,2),
 c(2,3),
attributepattern

Generate all possible attribute patterns

Description

This function generates all possible attribute patterns. The Q-matrix needs to be specified for polytomous attributes.

Usage

attributepattern(K, Q)

Arguments

K number of attributes
Q Q-matrix; required when Q-matrix is polytomous

Value

A $2^K \times K$ matrix consisting of attribute profiles for 2^K latent classes

Author(s)

Wenchao Ma, The University of Alabama. <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

Examples

attributepattern(3)

q <- matrix(scan(text = "0 1 2 1 0 1 1 2 0"),ncol = 3)
q
attributepattern(Q=q)

q <- matrix(scan(text = "0 1 1 0 1 1 0"),ncol = 3)
q
attributepattern(K=ncol(q),Q=q)
autoGDINA conducts a series of CDM analyses within the G-DINA framework. Particularly, the GDINA model is fitted to the data first using the GDINA function; then, the Q-matrix is validated using the function Qval. Based on the suggested Q-matrix, the data is fitted by the G-DINA model again, followed by an item level model selection via the Wald test using modelcomp. Lastly, the selected models are calibrated based on the suggested Q-matrix using the GDINA function. The Q-matrix validation and item-level model selection can be disabled by the users. Possible reduced CDMs for Wald test include the DINA model, the DINO model, A-CDM, LLM and RRUM. See Details for the rules of item-level model selection.

Usage

```r
autoGDINA(dat, Q, modelselection = TRUE,
           modelselectionrule = "simpler", alpha.level = 0.05,
           modelselection.args = list(), Qvalid = TRUE, Qvalid.args = list(),
           GDINA1.args = list(), GDINA2.args = list(), CDM.args = list())
```

S3 method for class 'autoGDINA'

```r
summary(object, ...)```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dat</code></td>
<td>A required $N \times J$ matrix or <code>data.frame</code> consisting of the responses of $N$ individuals to $J$ items. Missing values need to be coded as <code>NA</code>.</td>
</tr>
<tr>
<td><code>Q</code></td>
<td>A required matrix; The number of rows occupied by a single-strategy dichotomous item is 1, by a polytomous item is the number of nonzero categories, and by a multiple-strategy dichotomous item is the number of strategies. The number of column is equal to the number of attributes if all items are single-strategy dichotomous items, but the number of attributes + 2 if any items are polytomous or have multiple strategies. For a polytomous item, the first column represents the item number and the second column indicates the nonzero category number. For a multiple-strategy dichotomous item, the first column represents the item number and the second column indicates the strategy number. For binary attributes, 1 denotes the attributes are measured by the items and 0 means the attributes are not measured. For polytomous attributes, non-zero elements indicate which level of attributes are needed (see Chen, &amp; de la Torre, 2013). See Examples.</td>
</tr>
<tr>
<td><code>modelselection</code></td>
<td>logical; conducting model selection or not?</td>
</tr>
<tr>
<td><code>modelselectionrule</code></td>
<td>how to conducted model selection? Possible options include simpler, largestp and DS. See Details.</td>
</tr>
<tr>
<td><code>alpha.level</code></td>
<td>nominal level for the Wald test. The default is 0.05.</td>
</tr>
</tbody>
</table>
modelselection.args
  arguments passed to modelcomp
Qvalid
  logical; validate Q-matrix or not? TRUE is the default.
Qvalid.args
  arguments passed to Qval
GDINA1.args
  arguments passed to GDINA function for initial G-DINA calibration
GDINA2.args
  arguments passed to GDINA function for the second G-DINA calibration
CDM.args
  arguments passed to GDINA function for final calibration
object
  GDINA object for various S3 methods
... additional arguments

Details

After the Wald statistics for each reduced CDM were calculated for each item, the reduced models with p values less than the pre-specified alpha level were rejected. If all reduced models were rejected for an item, the G-DINA model was used as the best model; if at least one reduced model was retained, three different rules can be implemented for selecting the best model:

When modelselectionrule is simpler:
If (a) the DINA or DINO model was one of the retained models, then the DINA or DINO model with the larger p value was selected as the best model; but if (b) both DINA and DINO were rejected, the reduced model with the largest p value was selected as the best model for this item. Note that when the p-values of several reduced models were greater than 0.05, the DINA and DINO models were preferred over the A-CDM, LLM, and R-RUM because of their simplicity. This procedure is originally proposed by Ma, Iaconangelo, and de la Torre (2016).

When modelselectionrule is largestp:
The reduced model with the largest p-values is selected as the most appropriate model.

When modelselectionrule is DS:
The reduced model with non-significant p-values but the smallest dissimilarity index is selected as the most appropriate model. Dissimilarity index can be viewed as an effect size measure, which quantifies how dis-similar the reduced model is from the G-DINA model (See Ma, Iaconangelo, and de la Torre, 2016 for details).

Value

a list consisting of the following elements:

GDINA1.obj initial GDINA calibration of class GDINA
GDINA2.obj second GDINA calibration of class GDINA
Qval.obj Q validation object of class Qval
Wald.obj model comparison object of class modelcomp
CDM.obj Final CDM calibration of class GDINA

Methods (by generic)

• summary: print summary information
Note

Returned GDINA1.obj, GDINA2.obj and CDM.obj are objects of class GDINA, and all S3 methods suitable for GDINA objects can be applied. See GDINA and extract. Similarly, returned Qval.obj and Wald.obj are objects of class Qval and modelcomp.

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

References


See Also

GDINA, modelcomp, Qval

Examples

```r
Not run:
simulated responses
Q <- sim10GDINA$simQ
dat <- sim10GDINA$simdat

misspecified Q
misQ <- Q
misQ[10,] <- c(0,1,0)
out1 <- autoGDINA(dat,misQ,modelselectionrule="largestp")
summary(out1)
AIC(out1$CDM.obj)

simulated responses
Q <- sim30GDINA$simQ
dat <- sim30GDINA$simdat

misspecified Q
misQ <- Q
misQ[1,] <- c(1,1,0,1,0)
auto <- autoGDINA(dat,misQ,Qvalid = TRUE, Qvalid.args = list(method = "wald"),
 modelselectionrule="simpler")
summary(auto)
AIC(auto$CDM.obj)

using the other selection rule
out11 <- autoGDINA(dat,misQ,modelselectionrule="simpler",
 modelselection.args = list(models = c("DINO","DINA")))
out11
```
summary(out11)

# disable model selection function
out12 <- autoGDINA(dat, misQ, modelselection=FALSE)
out12
summary(out12)

# Disable Q-matrix validation
out3 <- autoGDINA(dat = dat, Q = misQ, Qvalid = FALSE)
out3
summary(out3)

## End(Not run)

---

### bdiagMatrix

Create a block diagonal matrix

#### Description

Create a block diagonal matrix

#### Usage

```
bdiagMatrix(mlist, fill = 0)
```

#### Arguments

- **mlist**: a list of matrices
- **fill**: value to fill the non-diagonal elements

#### Value

a block diagonal matrix

#### See Also

bdiag in Matrix

#### Examples

```
m1 <- bdiagMatrix(list(matrix(1:4, 2), diag(3)))
m2 <- bdiagMatrix(list(matrix(1:4, 2), diag(3)), fill = NA)
```
Calculating standard errors and variance-covariance matrix using bootstrap methods

Description

This function conducts nonparametric and parametric bootstrap to calculate standard errors of model parameters. Parametric bootstrap is only applicable to single group models.

Usage

```r
bootSE(GDINA.obj, bootsample = 50, type = "nonparametric",
 randomseed = 12345)
```

Arguments

- **GDINA.obj**: an object of class GDINA
- **bootsample**: the number of bootstrap samples
- **type**: type of bootstrap method. Can be parametric or nonparametric
- **randomseed**: random seed for resampling

Value

- **itemparm.se**: standard errors for item probability of success in list format
- **delta.se**: standard errors for delta parameters in list format
- **lambda.se**: standard errors for structural parameters of joint attribute distribution
- **boot.est**: resample estimates

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

Examples

```r
Not run:
For illustration, only 5 resamples are run
results are definitely not reliable

dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA", att.dist = "higher.order")
boot.fit <- bootSE(fit, bootsample = 5, randomseed = 123)
boot.fit$delta.se
boot.fit$lambda.se

End(Not run)
```
Calculate classification accuracy

Description

This function calculates test-, pattern- and attribute-level classification accuracy indices based on GDINA estimates from the GDINA function using approaches in Iaconangelo (2017) and Wang, Song, Chen, Meng, and Ding (2015). It is only applicable for dichotomous attributes.

Usage

\[
\text{CA(GDINA.obj, what = "MAP")}
\]

Arguments

- **GDINA.obj**: estimated GDINA object returned from GDINA
- **what**: what attribute estimates are used? Default is "MAP".

Value

A list with elements

- **tau**: estimated test-level classification accuracy, see Iaconangelo (2017, Eq 2.2)
- **tau_l**: estimated pattern-level classification accuracy, see Iaconangelo (2017, p. 13)
- **tau_k**: estimated attribute-level classification accuracy, see Wang, et al (2015, p. 461 Eq 6)
- **CCM**: Conditional classification matrix, see Iaconangelo (2017, p. 13)

References


Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
fit
CA(fit)
End(Not run)
```
cjoint  Combine R Objects by Columns

Description
Combine a sequence of vector, matrix or data-frame arguments by columns. Vector is treated as a column matrix.

Usage
cjoint(..., fill = NA)

Arguments
... vectors or matrices
fill a scalar used when these objects have different number of rows.

Value
a data frame

See Also
cbind

Examples
cjoint(2,c(1,2,3,4),matrix(1:6,2,3))
cjoint(v1 = 2, v2 = c(3,2), v3 = matrix(1:6,3,2),
v4 = data.frame(c(3,4,5,6,7),rep("x",5)),fill = 99)

ClassRate  Classification Rate Evaluation

Description
This function evaluates the classification rates for two sets of attribute profiles

Usage
ClassRate(att1, att2)

Arguments
att1 a matrix or data frame of attribute profiles
att2 a matrix or data frame of attribute profiles
designmatrix

Value

a list with the following components:

PCA the proportion of correctly classified attributes (i.e., attribute level classification rate)

PCV a vector giving the proportions of correctly classified attribute vectors (i.e., vector level classification rate). The fist element is the proportion of at least one attribute in the vector are correctly identified; the second element is the proportion of at least two attributes in the vector are correctly identified; and so forth. The last element is the proportion of all elements in the vector are correctly identified.

Examples

```r
Not run:
N <- 2000
model does not matter if item parameter is probability of success
Q <- sim30GDINA$simQ
J <- nrow(Q)
gs <- matrix(0.1,J,2)

set.seed(12345)
sim <- simGDINA(N,Q,gs.parm = gs)
GDINA.est <- GDINA(sim$dat,Q)

CR <- ClassRate(sim$attribute,personparm(GDINA.est))
CR

End(Not run)
```

designmatrix Generate design matrix

Description

This function generates the design matrix for an item

Usage

designmatrix(Kj = NULL, model = "GDINA", Qj = NULL)

Arguments

Kj Required except for the MS-DINA model; The number of attributes required for item j

model the model associated with the design matrix; It can be "GDINA","DINA","DINO", "ACDM" or "MSDINA". The default is "GDINA". Note that models "LLM" and "RRUM" have the same design matrix as the ACDM.

Qj the Q-matrix for item j; This is required for "MSDINA" model; The number of rows is equal to the number of strategies and the number of columns is equal to the number of attributes.
Value

`a design matrix (Mj). See de la Torre (2011) for details.

References


Examples

```r
Not run:
designmatrix(Kj = 2, model = "GDINA")
designmatrix(Kj = 3, model = "DINA")
msQj <- matrix(c(1,0,0,1,
 1,1,0,0),nrow=2,byrow=TRUE)
designmatrix(model = "MSDINA",Qj = msQj)
End(Not run)
```

---

**dif**

*Differential item functioning for cognitive diagnosis models*

**Description**

This function is used to detect differential item functioning based on the models estimated in the `GDINA` function using the Wald test (Hou, de la Torre, & Nandakumar, 2014) and the likelihood ratio test (Ma, Terzi, Lee, & de la Torre, 2017). It can only detect DIF for two groups currently.

**Usage**

```r
dif(dat, Q, group, model = "GDINA", method = "wald",
 anchor.items = NULL, dif.items = "all", p.adjust.methods = "holm",
 approx = FALSE, SE.type = 2, ...)
```

```r
S3 method for class 'dif'
summary(object, ...)
```

**Arguments**

- `dat` : item responses from two groups; missing data need to be coded as NA
- `Q` : Q-matrix specifying the association between items and attributes
- `group` : a numerical vector with integer 1, 2, ..., # of groups indicating the group each individual belongs to. It must start from 1 and its length must be equal to the number of individuals.
- `model` : model for each item.
method DIF detection method; It can be "wald" for Hou, de la Torre, and Nandakumar’s (2014) Wald test method, and "LR" for likelihood ratio test (Ma, Terzi, Lee,& de la Torre, 2017).

anchor.items which items will be used as anchors? Default is NULL, which means none of the items are used as anchors. For LR method, it can also be an integer vector giving the item numbers for anchors or "all", which means all items are treated as anchor items.

dif.items which items are subject to DIF detection? Default is "all". It can also be an integer vector giving the item numbers.

p.adjust.methods adjusted p-values for multiple hypothesis tests. This is conducted using p.adjust function in stats, and therefore all adjustment methods supported by p.adjust can be used, including "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY". See p.adjust for more details. "holm" is the default.

approx Whether an approximated LR test is implemented? If TRUE, parameters of items except the studied one will not be re-estimated.

SE.type Type of standard error estimation methods for the Wald test.

... arguments passed to GDINA function for model calibration

object dif object for S3 method

Value A data frame giving the Wald statistics and associated p-values.

Methods (by generic)

• summary: print summary information

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

References


See Also

GDINA
Examples

## Not run:
 set.seed(123456)
 N <- 3000
 Q <- sim10GDINA$simQ
 gs <- matrix(c(0.1, 0.2,
 0.1, 0.2,
 0.1, 0.2,
 0.1, 0.2,
 0.1, 0.2,
 0.1, 0.2,
 0.1, 0.2,
 0.1, 0.2,
 0.1, 0.2), ncol = 2, byrow = TRUE)

# By default, individuals are simulated from uniform distribution
# and deltas are simulated randomly
 sim1 <- simGDINA(N, Q, gs.parm = gs, model = "DINA")
 sim2 <- simGDINA(N, Q, gs.parm = gs, model = c(rep("DINA", 9), "DINO"))
 dat <- rbind(extract(sim1, "dat"), extract(sim2, "dat"))
 gr <- c(rep(1, N), rep(2, N))
 dif.out <- dif(dat, Q, group = gr)
 dif.out2 <- dif(dat, Q, group = gr, method = "LR")

## End(Not run)

---

DTM

#### Experimental function for diagnostic multiple-strategy CDMs

---

**Description**

This function estimates the diagnostic tree model (Ma, 2018) for polytomous responses with multiple strategies. It is an experimental function, and will be further optimized.

**Usage**

```r
DTM(dat, Qc, delta = NULL, Tmatrix = NULL, conv.crit = 0.001, conv.type = "pr", maxitr = 1000)
```

**Arguments**

- `dat` A required $N \times J$ data matrix of $N$ examinees to $J$ items. Missing values are currently not allowed.
- `Qc` A required $J \times K + 2$ category and attribute association matrix, where $J$ represents the number of items or nonzero categories and $K$ represents the number of attributes. Entry 1 indicates that the attribute is measured by the item, and 0 otherwise. The first column gives the item number, which must be numeric and match the number of column in the data. The second column indicates the category number.
delta  initial item parameters
Tmatrix  The mapping matrix showing the relation between the OBSERVED responses (rows) and the PSEUDO items (columns); The first column gives the observed responses.
conv.crit  The convergence criterion for max absolute change in item parameters.
conv.type  convergence criteria; Can be pr,LL and delta, indicating category response function, log-likelihood and delta parameters, respectively.
maxitr  The maximum iterations allowed.

Author(s)
Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>

References

See Also
GDINA for MS-DINA model and single strategy CDMs, and GMSCDM for generalized multiple strategies CDMs for dichotomous response data

Examples
```r
Not run:
K=5
g=0.2
item.no <- rep(1:6,each=4)
the first node has three response categories: 0, 1 and 2
node.no <- rep(c(1,1,2,3),6)
Q1 <- matrix(0,length(item.no),K)
Q2 <- cbind(7:(7+K-1),rep(1,K),diag(K))
for(j in 1:length(item.no)) {
 Q1[j,sample(1:K,sample(3,1))] <- 1
}
Qc <- rbind(cbind(item.no,node.no,Q1),Q2)
Tmatrix.set <- list(cbind(c(0,1,2,3,3),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
 cbind(c(0,1,2,3,4),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
 cbind(c(0,1),c(0,1)));
Tmatrix <- Tmatrix.set[c(1,1,1,1,1,1,rep(3,K))]
sim <- simDTM(N=2000,Qc=Qc,gs.parm=matrix(0.2,nrow(Qc),2),Tmatrix=Tmatrix)
est <- DTM(dat=sim$dat,Qc=Qc,Tmatrix = Tmatrix)
End(Not run)
```
Description

Examination for the Certificate of Proficiency in English (ECPE) data (the grammar section) has been used in Henson and Templin (2007), Templin and Hoffman (2013), Feng, Habing, and Huebner (2014), and Templin and Bradshaw (2014), among others.

Usage

ecope

Format

A list of responses and Q-matrix with components:

dat Responses of 2922 examinees to 28 items.
Q The $28 \times 3$ Q-matrix.

Details

The data consists of responses of 2922 examinees to 28 items involving 3 attributes. Attribute 1 is morphosyntactic rules, Attribute 2 is cohesive rules and Attribute 3 is lexical rules.

References


Examples

```r
Not run:
mod1 <- GDINA(ecpe$dat, ecpe$Q)
summary(mod1)

mod2 <- GDINA(ecpe$dat, ecpe$Q, model="RRUM")
anova(mod1, mod2)
```
# You may compare the following results with Feng, Habing, and Huebner (2014)
coef(mod2,"rrum")

# G-DINA with hierarchical structure
# see Templin & Bradshaw, 2014
ast <- att.structure(list(c(3,2),c(2,1)),K=3)
est.gdina2 <- GDINA(ecpe$dat,ecpe$Q,model = "GDINA",
control = list(conv.crit = 1e-6),
att.str = list(c(3,2),c(2,1))))
# see Table 7 in Templin & Bradshaw, 2014
summary(est.gdina2)

## End(Not run)

extract
elements from objects of various classes

Description

A generic function to extract elements from objects of class GDINA, itemfit, modelcomp, Qval or simGDINA. This page gives the elements that can be extracted from the class GDINA. To see what can be extracted from itemfit, modelcomp, and Qval, go to the corresponding function help page.

Objects which can be extracted from GDINA objects include:

- **AIC** AIC
- **att.prior** attribute prior weights for calculating marginalized likelihood in the last EM iteration
- **attributepattern** all attribute patterns involved in the current calibration
- **BIC** BIC
- **CAIC** CAIC
- **catprob.cov** covariance matrix of item probability parameter estimates; Need to specify SE.type
- **catprob.parm** item parameter estimates
- **catprob.se** standard error of item probability parameter estimates; Need to specify SE.type
- **convergence** TRUE if the calibration is converged.
- **dat** raw data
- **del.ind** deleted observation number
- **delta.cov** covariance matrix of delta parameter estimates; Need to specify SE.type
- **delta.parm** delta parameter estimates
- **delta.se** standard error of delta parameter estimates; Need to specify SE.type
- **designmatrix** A list of design matrices for each item/category
- **deviance** deviance, or negative two times observed marginal log likelihood
- **discrim** GDINA discrimination index
expectedCorrect expected # of examinees in each latent group answering item correctly
expectedTotal  expected # of examinees in each latent group
higher.order higher-order model specifications
logLik observed marginal log likelihood
linkfunc link functions for each item
initial.catprob initial item category probability parameters
natt number of attributes
ncat number of categories
ngroup number of groups
nitem number of items
nitr number of EM iterations
nobs number of observations, or sample size
nLC number of latent classes
prevalence prevalence of each attribute
posterior.prob posterior weights for each latent class
reduced.LG Reduced latent group for each item
SABIC SABIC
sequential is a sequential model fitted?

Usage

extract(object, what, ...)

Arguments

object objects from class GDINA, itemfit, modelcomp, Qval or simGDINA
what what to extract
... additional arguments

Examples

## Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
extract(fit,"discrim")
extract(fit,"designmatrix")

## End(Not run)
Description

Fraction Subtraction data (Tatsuoka, 2002) consists of responses of 536 examinees to 20 items measuring 8 attributes.

Usage

frac20

Format

A list of responses and Q-matrix with components:

dat  responses of 536 examinees to 20 items
Q   The $20 \times 8$ Q-matrix

References


Examples

```r
Not run:
mod1 <- GDINA(frac20$dat,frac20$Q,model="DINA")
mod1
summary(mod1)
Higher order model
mod2 <- GDINA(frac20$dat,frac20$Q,model="DINA",att.dist="higher.order")
mod2
anova(mod1,mod2)
End(Not run)
```

GDINA

*CDM calibration under the G-DINA model framework*
Description

GDINA calibrates the generalized deterministic inputs, noisy and gate (G-DINA; de la Torre, 2011) model for dichotomous responses, and its extension, the sequential G-DINA model (Ma, & de la Torre, 2016a; Ma, 2017) for ordinal and nominal responses. By setting appropriate constraints, the deterministic inputs, noisy and gate (DINA; de la Torre, 2009; Junker & Sijtsma, 2001) model, the deterministic inputs, noisy or gate (DINO; Templin & Henson, 2006) model, the reduced reparametrized unified model (R-RUM; Hartz, 2002), the additive CDM (A-CDM; de la Torre, 2011), the linear logistic model (LLM; Maris, 1999), and the multiple-strategy DINA model (MS-DINA; de la Torre & Douglas, 2008; Huo & de la Torre, 2014) can also be calibrated. Note that the LLM is equivalent to the C-RUM (Hartz, 2002), a special case of the GDM (von Davier, 2008), and that the R-RUM is also known as a special case of the generalized NIDA model (de la Torre, 2011).

In addition, users are allowed to specify design matrix and link function for each item, and distinct models may be used in a single test for different items. The attributes can be either dichotomous or polytomous (Chen & de la Torre, 2013). Joint attribute distribution may be modelled using independent or saturated model, structured model, higher-order model (de la Torre & Douglas, 2004), or loglinear model (Xu & von Davier, 2008). Marginal maximum likelihood method with Expectation-Maximization (MMLE/EM) algorithm is used for item parameter estimation.

To compare two or more GDINA objects, use method `anova`.

To calculate structural parameters for item and joint attribute distributions, use method `coef`.

To calculate lower-order incidental (person) parameters use method `personparm`. To extract other components returned, use `extract`. To plot item/category response function, use `plot`. To check whether monotonicity is violated, use `monocheck`. To conduct analysis in graphical user interface, use `startGDINA`.

Usage

GDINA(dat, Q, model = "GDINA", sequential = FALSE, 
att.dist = "saturated", mono.constraint = FALSE, group = NULL, 
linkfunc = NULL, design.matrix = NULL, latent.var = "att", 
att.prior = NULL, att.str = NULL, verbose = 1, 
higher.order = list(), loglinear = 2, catprob.parm = NULL, 
control = list(), item.names = NULL, solver = NULL, 
nloptr.args = list(), auglag.args = list(), solnp.args = list(), ...
)

## S3 method for class 'GDINA'
anova(object, ...)  

## S3 method for class 'GDINA'
coef(object, what = c("catprob", "delta", "gs", 
"itemprob", "LCprob", "rrum", "lambda"), withSE = FALSE, SE.type = 2, 
digits = 4, ...)  

## S3 method for class 'GDINA'
extract(object, what, SE.type = 2, ...)  

## S3 method for class 'GDINA'
personparm(object, what = c("EAP", "MAP", "MLE", "mp", "HO"), digits = 4, ...)

## S3 method for class 'GDINA'
logLik(object, ...)

## S3 method for class 'GDINA'
deviance(object, ...)

## S3 method for class 'GDINA'
nobs(object, ...)

## S3 method for class 'GDINA'
vcov(object, ...)

## S3 method for class 'GDINA'
npar(object, ...)

## S3 method for class 'GDINA'
indlogLik(object, ...)

## S3 method for class 'GDINA'
indlogPost(object, ...)

## S3 method for class 'GDINA'
summary(object, ...)

Arguments

dat A required \(N \times J\) matrix or data.frame consisting of the responses of \(N\) individuals to \(J\) items. Missing values need to be coded as NA.

Q A required matrix; The number of rows occupied by a single-strategy dichotomous item is 1, by a polytomous item is the number of nonzero categories, and by a multiple-strategy dichotomous item is the number of strategies. The number of column is equal to the number of attributes if all items are single-strategy dichotomous items, but the number of attributes + 2 if any items are polytomous or have multiple strategies. For a polytomous item, the first column represents the item number and the second column indicates the nonzero category number. For a multiple-strategy dichotomous item, the first column represents the item number and the second column indicates the strategy number. For binary attributes, 1 denotes the attributes are measured by the items and 0 means the attributes are not measured. For polytomous attributes, non-zero elements indicate which level of attributes are needed (see Chen, & de la Torre, 2013). See Examples.

model A vector for each item or nonzero category, or a scalar which will be used for all items or nonzero categories to specify the CDMs fitted. The possible options include "GDINA","DINA","DINO","ACDM","LLM","RRUM","MSDINA" and "UDF". Note that model can also be "logitGDINA" and "logGDINA", indicating the sat-
urated G-DINA model in logit and log link functions. They are equivalent to the identity link saturated G-DINA model. The logit G-DINA model is identical to the log-linear CDM. When "UDF", indicating user defined function, is specified for any item, arguments design.matrix and linkfunc need to be defined.

**sequential** logical; TRUE if the sequential model is fitted for polytomous responses.

**att.dist** How is the joint attribute distribution estimated? It can be (1) saturated, which is the default, indicating that the proportion parameter for each permissible latent class is estimated separately; (2) higher.order, indicating that a higher-order joint attribute distribution is assumed (higher-order model can be specified in higher.order argument); (3) fixed, indicating that the weights specified in att.prior argument are fixed in the estimation process. If att.prior is not specified, a uniform joint attribute distribution is employed initially; (4) independent, indicating that all attributes are assumed to be independent; and (5) loglinear, indicating a loglinear model is employed. If different groups have different joint attribute distributions, specify att.dist as a character vector with the same number of elements as the number of groups. However, if a higher-order model is used for any group, it must be used for all groups.

**mono.constraint** logical; TRUE indicates that \( P(\alpha_1) \leq P(\alpha_2) \) if for all \( k, \alpha_{1k} < \alpha_{2k} \). Can be a vector for each item or nonzero category or a scalar which will be used for all items to specify whether monotonicity constraint should be added.

**group** a numerical vector with integer 1, 2, ..., # of groups indicating the group each individual belongs to. It must start from 1 and its length must be equal to the number of individuals.

**linkfunc** a vector of link functions for each item/category; It can be "identity", "log" or "logit". Only applicable when, for some items, model="UDF".

**design.matrix** a list of design matrices; Its length must be equal to the number of items (or nonzero categories for sequential models). If CDM for item j is specified as "UDF" in argument model, the corresponding design matrix must be provided; otherwise, the design matrix can be NULL, which will be generated automatically.

**latent.var** A string indicating the nature of the latent variables. It is "att" (by default) if the latent variables are attributes, and "bugs" if the latent variables are misconceptions. When "bugs" is specified, only the DINA, DINO or G-DINA model can be specified in model argument (Kuo, Chen, Yang & Mok, 2016).

**att.prior** A vector of length \( 2^K \) for single group model, or a matrix of dimension \( 2^K \times \) no. of groups to specify attribute prior distribution for \( 2^K \) latent classes for all groups under a multiple group model. Only applicable for dichotomous attributes. The sum of all elements does not have to be equal to 1; however, it will be normalized so that the sum is equal to 1 before calibration. The label for each latent class can be obtained by calling attributepattern(K). See examples for more info.

**att.str** Specify attribute structures. NULL, by default, means there is no structure. Attribute structure needs be specified as a list - which will be internally handled by att.structure function. See examples. It can also be a matrix giving all permissible attribute profiles.
verbose

How to print calibration information after each EM iteration? Can be 0, 1 or 2, indicating to print no information, information for current iteration, or information for all iterations.

higher.order

A list specifying the higher-order joint attribute distribution with the following components:

• model - a character indicating the IRT model for higher-order joint attribute distribution. Can be "2PL", "1PL" or "Rasch", representing two parameter logistic IRT model, one parameter logistic IRT model and Rasch model, respectively. For "1PL" model, a common slope parameter is estimated. "Rasch" is the default model when att.dist = "higher.order". Note that slope-intercept form is used for parameterizing the higher-order IRT model (see Details).

• nquad - a scalar specifying the number of integral nodes. Default = 25.

• SlopeRange - a vector of length two specifying the range of slope parameters. Default = [0.1, 5].

• InterceptRange - a vector of length two specifying the range of intercept parameters. Default = [-4, 4].

• SlopePrior - a vector of length two specifying the mean and variance of log(slope) parameters, which are assumed normally distributed. Default: mean = 0 and sd = 0.25.

• InterceptPrior - a vector of length two specifying the mean and variance of intercept parameters, which are assumed normally distributed. Default: mean = 0 and sd = 1.

• Prior - logical; indicating whether prior distributions should be imposed to slope and intercept parameters. Default is FALSE.

loglinear

the order of loglinear smooth for attribute space. It can be either 1 or 2 indicating the loglinear model with main effect only and with main effect and first-order interaction.

catprob.parm

A list of initial success probability parameters for each nonzero category.

control

A list of control parameters with elements:

• maxitr A vector for each item or nonzero category, or a scalar which will be used for all items or nonzero categories to specify the maximum number of EM cycles allowed. Default = 2000.

• conv.crit The convergence criterion. Default = 0.0001.

• conv.type How is the convergence criterion evaluated? A vector with possible elements: "ip", indicating the maximum absolute change in item success probabilities, "mp", representing the maximum absolute change in mixing proportion parameters, "delta", indicating the maximum absolute change in delta parameters, neg2LL indicating the absolute change in negative two times loglikelihood, or neg2LL indicating the relative absolute change in negative two times loglikelihood (i.e., the absolute change divided by -2LL of the previous iteration). Multiple criteria can be specified. If so, all criteria need to be met. Default = c("ip", "mp").

• nstarts how many sets of starting values? Default = 3.
• `lower.p` A vector for each item or nonzero category, or a scalar which will be used for all items or nonzero categories to specify the lower bound for success probabilities. Default = .0001.

• `upper.p` A vector for each item or nonzero category, or a scalar which will be used for all items or nonzero categories to specify the upper bound for success probabilities. Default = .9999.

• `lower.prior` The lower bound for mixing proportion parameters (latent class sizes). Default = .Machine$double.eps.

• `randomseed` Random seed for generating initial item parameters. Default = 123456.

• `smallNcorrection` A numeric vector with two elements specifying the corrections applied when the expected number of individuals in some latent groups are too small. If the expected no. of examinees is less than the second element, the first element and two times the first element will be added to the numerator and denominator of the closed-form solution of probabilities of success. Only applicable for the G-DINA, DINA and DINO model estimation without monotonic constraints.

• `MstepMessage` Integer; Larger number prints more information from Mstep optimizer. Default = 1.

`item.names` A vector giving the item names. By default, items are named as "Item 1", "Item 2", etc.

`solver` A string indicating which solver should be used in M-step. By default, the solver is automatically chosen according to the models specified. Possible options include `slsqp`, `nloptr`, `solnp` and `auglag`.

`nloptr.args` a list of control parameters to be passed to `opts` argument of `nloptr` function.

`auglag.args` a list of control parameters to be passed to the `alabama::auglag()` function. It can contain two elements: `control.outer` and `control.optim`. See `auglag`.

`solnp.args` a list of control parameters to be passed to `control` argument of `solnp` function.

`...` additional arguments

`object` GDINA object for various S3 methods

`what` argument for various S3 methods; For calculating structural parameters using `coef`, `what` can be

• `itemprob` - item success probabilities of each reduced attribute pattern.

• `catprob` - category success probabilities of each reduced attribute pattern; the same as `itemprob` for dichotomous response data.

• `LCprob` - item success probabilities of each attribute pattern.

• `gs` - guessing and slip parameters of each item/category.

• `delta` - delta parameters of each item/category, see G-DINA formula in details.

• `rrum` - RRUM parameters when items are estimated using RRUM.

• `lambda` - structural parameters for joint attribute distribution.

For calculating incidental parameters using `personparm`, `what` can be

• `EAP` - EAP estimates of attribute pattern.
• MAP - MAP estimates of attribute pattern.
• MLE - MLE estimates of attribute pattern.
• mp - marginal mastery probabilities.
• HO - EAP estimates of higher-order ability if a higher-order is fitted.

withSE argument for method coef; estimate standard errors or not?
SE.type type of standard errors. For now, SEs are calculated based on outer-product of gradient. It can be 1 based on item-wise information, 2 based on incomplete information and 3 based on complete information.
digits How many decimal places in each number? The default is 4.

Value

GDINA returns an object of class GDINA. Methods for GDINA objects include extract for extracting various components, coef for extracting structural parameter estimates, personparm for calculating incidental (person) parameters, summary for summary information. AIC, BIC, logLik, deviance and npar can also be used to calculate AIC, BIC, observed log-likelihood, deviance and number of parameters.

Methods (by generic)
• anova: Model comparison using likelihood ratio test
• coef: extract structural parameter estimates
• extract: extract various elements of GDINA estimates
• personparm: calculate person attribute patterns and higher-order ability
• logLik: calculate log-likelihood
• deviance: calculate deviance
• nobs: calculate number of observations
• vcov: calculate covariance-matrix for delta parameters
• npar: calculate the number of parameters
• indlogLik: extract log-likelihood for each individual
• indlogPost: extract log posterior for each individual
• summary: print summary information

The G-DINA model

The generalized DINA model (G-DINA; de la Torre, 2011) is an extension of the DINA model. Unlike the DINA model, which collapses all latent classes into two latent groups for each item, if item $j$ requires $K_j^*$ attributes, the G-DINA model collapses $2^{K_j}$ latent classes into $2^{K_j^*}$ latent groups with unique success probabilities on item $j$, where $K_j^* = \sum_{k=1}^{K} q_{jk}$.

Let $\alpha_{lj}^*$ be the reduced attribute pattern consisting of the columns of the attributes required by item $j$, where $l = 1, \ldots, 2^{K_j^*}$. For example, if only the first and the last attributes are required, $\alpha_{lj}^* = (\alpha_{l1}, \alpha_{lK})$. For notational convenience, the first $K_j^*$ attributes can be assumed to be the required attributes for item $j$ as in de la Torre (2011). The probability of success $P(X_j = 1|\alpha_{lj}^*)$ is denoted by $P(\alpha_{lj}^*)$. To model this probability of success, different link functions as in the generalized linear
GDINA models are used in the G-DINA model. The item response function of the G-DINA model using the identity link can be written as

$$f[P(\alpha_{ij}^*]) = \delta_{j0} + \sum_{k=1}^{K_j^*} \delta_{jk} \alpha_{lk} + \sum_{k'=k+1}^{K_j^*} \sum_{k=1}^{K_j^* - 1} \delta_{jkk'} \alpha_{lk} \alpha_{lk'} + \cdots + \delta_{j12\cdots K_j^*} \prod_{k=1}^{K_j^*} \alpha_{lk},$$

or in matrix form,

$$f[P_j] = M_j \delta,$$

where $\delta_{j0}$ is the intercept for item $j$, $\delta_{jk}$ is the main effect due to $\alpha_{lk}$, $\delta_{jkk'}$ is the interaction effect due to $\alpha_{lk}$ and $\alpha_{lk'}$, $\delta_{j12\cdots K_j^*}$ is the interaction effect due to $\alpha_{l1}, \ldots, \alpha_{lK_j^*}$. The log and logit links can also be employed.

**Other CDMs as special cases**

Several widely used CDMs can be obtained by setting appropriate constraints to the G-DINA model. This section introduces the parameterization of different CDMs within the G-DINA model framework very briefly. Readers interested in this please refer to de la Torre (2011) for details.

**DINA model**

In DINA model, each item has two item parameters - guessing ($g$) and slip ($s$). In traditional parameterization of the DINA model, a latent variable $\eta$ for person $i$ and item $j$ is defined as

$$\eta_{ij} = \prod_{k=1}^{K} \alpha_{qjk}^{\eta_{ijk}}$$

Briefly speaking, if individual $i$ master all attributes required by item $j$, $\eta_{ij} = 1$; otherwise, $\eta_{ij} = 0$. Item response function of the DINA model can be written by

$$P(X_{ij} = 1|\eta_{ij}) = (1 - s_j)^{\eta_{ij}} g_j^{1-\eta_{ij}}$$

To obtain the DINA model from the G-DINA model, all terms in identity link G-DINA model except $\delta_0$ and $\delta_{12\cdots K_j^*}$ need to be fixed to zero, that is,

$$P(\alpha_{ij}^*) = \delta_{j0} + \delta_{j12\cdots K_j^*} \prod_{k=1}^{K_j^*} \alpha_{lk}$$

In this parameterization, $\delta_{j0} = g_j$ and $\delta_{j0} + \delta_{j12\cdots K_j^*} = 1 - s_j$.

**DINO model**

The DINO model can be given by

$$P(\alpha_{ij}^*) = \delta_{j0} + \delta_{j1} I(\alpha_{ij}^* \neq 0)$$

where $I(\cdot)$ is an indicator variable. The DINO model is also a constrained identity link G-DINA model. As shown by de la Torre (2011), the appropriate constraint is

$$\delta_{jk} = -\delta_{jk'k''} = \cdots = (-1)^{K_j^* + 1} \delta_{j12\cdots K_j^*},$$

for $k = 1, \ldots, K_j^*$, $k' = 1, \ldots, K_j^* - 1$, and $k'' > k', \ldots, K_j^*$. 
Additive models with different link functions The A-CDM, LLM and R-RUM can be obtained by setting all interactions to be zero in identity, logit and log link G-DINA model, respectively. Specifically, the A-CDM can be formulated as

$$P(\alpha_{ij}^*) = \delta_j + \sum_{k=1}^{K^*} \delta_{jk} \alpha_{ik}.$$  

The item response function for LLM can be given by

$$\text{logit}[P(\alpha_{ij}^*)] = \delta_j + \sum_{k=1}^{K^*} \delta_{jk} \alpha_{ik},$$

and lastly, the RRUM, can be written as

$$\text{log}[P(\alpha_{ij}^*)] = \delta_j + \sum_{k=1}^{K^*} \delta_{jk} \alpha_{ik}.$$  

It should be noted that the LLM is equivalent to the compensatory RUM, which is subsumed by the GDM, and that the RRUM is a special case of the generalized noisy inputs, deterministic “And” gate model (G-NIDA).

**Joint Attribute Distribution**

The joint attribute distribution can be modeled using various methods. This section mainly focuses on the so-called higher-order approach, which was originally proposed by de la Torre and Douglas (2004) for the DINA model. It has been extended in this package for all condensation rules. Particularly, three IRT models are available for the higher-order attribute structure: Rasch model (Rasch), one parameter logistic model (1PL) and two parameter logistic model (2PL). For the Rasch model, the probability of mastering attribute $k$ for individual $i$ is defined as

$$P(\alpha_k = 1|\theta_i, \lambda_{0k}) = \frac{\exp(\theta_i + \lambda_{0k})}{1 + \exp(\theta_i + \lambda_{0k})}.$$  

For the 1PL model, the probability of mastering attribute $k$ for individual $i$ is defined as

$$P(\alpha_k = 1|\theta_i, \lambda_{0k}, \lambda_1) = \frac{\exp(\lambda_1 \theta_i + \lambda_{0k})}{1 + \exp(\lambda_1 \theta_i + \lambda_{0k})}.$$  

For the 2PL model, the probability of mastering attribute $k$ for individual $i$ is defined as

$$P(\alpha_k = 1|\theta_i, \lambda_{0k}, \lambda_{1k}) = \frac{\exp(\lambda_{1k} \theta_i + \lambda_{0k})}{1 + \exp(\lambda_{1k} \theta_i + \lambda_{0k})}.$$  

where $\theta_i$ is the ability of examinee $i$. $\lambda_{0k}$ and $\lambda_{1k}$ are the intercept and slope parameters for attribute $k$, respectively. In the Rasch model, $\lambda_{1k} = 1\forall k$; whereas in the 1PL model, a common slope parameter $\lambda_1$ is estimated. The probability of joint attributes can be written as

$$P(\alpha|\theta, \lambda) = \prod_k P(\alpha_k|\theta, \lambda).$$
Model Estimation

The MMLE/EM algorithm is implemented in this package. For G-DINA, DINA and DINO models, closed-form solutions exist. See de la Torre (2009) and de la Torre (2011) for details. For ACDM, LLM and RRUM, closed-form solutions do not exist, and therefore some general optimization techniques are adopted in M-step (Ma, Iaconangelo & de la Torre, 2016). The selection of optimization techniques mainly depends on whether some specific constraints need to be added.

The sequential G-DINA model is a special case of the diagnostic tree model (DTM; Ma, in press) and estimated using the mapping matrix accordingly (See Tutz, 1997; Ma, in press).

The Number of Parameters

For dichotomous response models: Assume a test measures \( K \) attributes and item \( j \) requires \( K_j^+ \) attributes: The DINA and DINO model has 2 item parameters for each item; if item \( j \) is ACDM, LLM or RRUM, it has \( K_j^+ + 1 \) item parameters; if it is G-DINA model, it has \( 2^{K_j^+} \) item parameters. Apart from item parameters, the parameters involved in the estimation of joint attribute distribution need to be estimated as well. When using the saturated attribute structure, there are \( 2^K - 1 \) parameters for joint attribute distribution estimation; when using a higher-order attribute structure, there are \( K, K + 1, \) and \( 2 \times K \) parameters for the Rasch model, 1PL model and 2PL model, respectively. For polytomous response data using the sequential G-DINA model, the number of item parameters are counted at category level.

Note

anova function does NOT check whether models compared are nested or not.

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

References


**See Also**

See autoGDINA for Q-matrix validation, item-level model comparison and model calibration in one run; See modelfit and itemfit for model and item fit analysis, Qval for Q-matrix validation, modelcomp for item level model comparison and simGDINA for data simulation. GMSCDM for a series of multiple strategy CDMs for dichotomous data, and DTM for diagnostic tree model for multiple strategies in polytomous response data Also see gdn1a in CDM package for the G-DINA model estimation.
Examples

## Not run:
####################################
# Example 1. #
# GDINA, DINA, DINO #
# ACDM, LLM and RRUM #
# estimation and comparison #
# #
####################################

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ

#--------GDINA model --------#
mod1 <- GDINA(dat = dat, Q = Q, model = "GDINA")
mod1
# summary information
summary(mod1)

AIC(mod1) #AIC
BIC(mod1) #BIC
logLik(mod1) #log-likelihood value
deviance(mod1) # deviance: -2 log-likelihood
npar(mod1) # number of parameters

head(indlogLik(mod1)) # individual log-likelihood
head(indlogPost(mod1)) # individual log-posterior

# structural parameters
# see ?coef
coef(mod1) # item probabilities of success for each latent group
coef(mod1, withSE = TRUE) # item probabilities of success & standard errors
coef(mod1, what = "delta") # delta parameters
coef(mod1, what = "delta", withSE = TRUE) # delta parameters
coef(mod1, what = "gs") # guessing and slip parameters
coef(mod1, what = "gs", withSE = TRUE) # guessing and slip parameters & standard errors

# person parameters
# see ?personparm
personparm(mod1) # EAP estimates of attribute profiles
personparm(mod1, what = "MAP") # MAP estimates of attribute profiles
personparm(mod1, what = "MLE") # MLE estimates of attribute profiles

# plot item response functions for item 10
plot(mod1, item = 10)
plot(mod1, item = 10, withSE = TRUE) # with error bars

# plot mastery probability for individuals 1, 20 and 50
plot(mod1, what = "mp", person = c(1, 20, 50))

# Use extract function to extract more components
# See ?extract

# -------- DINA model --------

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod2 <- GDINA(dat = dat, Q = Q, model = "DINA")
coef(mod2, what = "gs") # guess and slip parameters
coef(mod2, what = "gs", withSE = TRUE) # guess and slip parameters and standard errors

# Model comparison at the test level via likelihood ratio test
anova(mod1, mod2)

# -------- DINO model --------

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod3 <- GDINA(dat = dat, Q = Q, model = "DINO")
#slip and guessing
coef(mod3, what = "gs") # guess and slip parameters
coef(mod3, what = "gs", withSE = TRUE) # guess and slip parameters + standard errors

# Model comparison at test level via likelihood ratio test
anova(mod1, mod2, mod3)

# -------- ACDM model --------

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod4 <- GDINA(dat = dat, Q = Q, model = "ACDM")

# -------- LLM model --------

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod4b <- GDINA(dat = dat, Q = Q, model = "LLM")

# -------- RRUM model --------

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod4c <- GDINA(dat = dat, Q = Q, model = "RRUM")

# --- Different CDMs for different items ---

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
models <- c(rep("GDINA", 3), "LLM", "DINA", "DINO", "ACDM", "RRUM", "LLM", "RRUM")
mod5 <- GDINA(dat = dat, Q = Q, model = models)
anova(mod1, mod2, mod3, mod4, mod4b, mod4c, mod5)

####################################

# Example 2. #
# Model estimations #
# With monotonocity constraints #
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
# for item 10 only
mod11 <- GDINA(dat = dat, Q = Q, model = "GDINA", mono.constraint = c(rep(FALSE,9),TRUE))
mod11
mod11a <- GDINA(dat = dat, Q = Q, model = "DINA", mono.constraint = TRUE)
mod11a
mod11b <- GDINA(dat = dat, Q = Q, model = "ACDM", mono.constraint = TRUE)
mod11b
mod11c <- GDINA(dat = dat, Q = Q, model = "LLM", mono.constraint = TRUE)
mod11c
mod11d <- GDINA(dat = dat, Q = Q, model = "RRUM", mono.constraint = TRUE)
mod11d
c coef(mod11d,"delta")
c coef(mod11d,"rrum")

# Example 3a.
# Model estimations
# With Higher-order att structure
# Example 3b.
# Model estimations
# With log-linear att structure
# Example 3c.
# Model estimations
# With independent att structure
### GDINA model with independent attribute space

```r
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod33 <- GDINA(dat = dat, Q = Q, att.dist="independent")
coef(mod33,"lambda") # mastery probability for each attribute
```

### Example 4.

#### with fixed att structure

#### User-specified attribute priors

```r
prior distribution is fixed during calibration
Assume each of 000,100,010 and 001 has probability of 0.1
and each of 110, 101,011 and 111 has probability of 0.15
Note that the sum is equal to 1
prior <- c(0.1,0.1,0.1,0.1,0.15,0.15,0.15,0.15)
fit GDINA model with fixed prior dist.
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
modp1 <- GDINA(dat = dat, Q = Q, att.prior = prior, att.dist = "fixed")
extract(modp1, what = "att.prior")
```

### Example 5a.

#### G-DINA

#### with hierarchical att structure

```r
Q <- sim30GDINA$simQ
K <- ncol(Q)
divergent structure A1->A2->A3;A1->A4->A5
diverg <- list(c(1,2),
 c(2,3),
 c(1,4),
 c(4,5))
struc <- att.structure(diverg,K)
set.seed(123)
data simulation
N <- 1000
true.lc <- sample(c(1:2^K),N,replace=TRUE,prob=struc$att.prob)
table(true.lc) # check the sample
true.att <- attributepattern(K)[true.lc,]
gs <- matrix(rep(0.1,2*nrow(Q)),ncol=2)
data simulation
simD <- simGDINA(N,Q,gs.parm = gs, model = "GDINA",attribute = true.att)
dat <- extract(simD,"dat")
```
modp1 <- GDINA(dat = dat, Q = Q, att.str = diverg, att.dist = "saturated")
modp1
coef(modp1,"lambda")

# Example 5b. 
# Reduced model (e.g.,ACDM) 
# with hierarchical att structure 

# --- User-specified attribute structure ----#
Q <- sim30GDINA$simQ
K <- ncol(Q)
linear <- list(c(1,2),
c(2,3),
c(3,4),
c(4,5))
struc <- att.structure(linear,K)
set.seed(123)
# data simulation
N <- 1000
true.lc <- sample(c(1,2^K),N,replace=TRUE,prob=struc$att.prob)
table(true.lc) #check the sample
true.att <- attributepattern(K)[true.lc,]
gs <- matrix(rep(0.1,2*nrow(Q)),ncol=2)
# data simulation
simD <- simGDINA(N,Q,gs.parm = gs, model = "ACDM",attribute = true.att)
dat <- extract(simD,"dat")
modp1 <- GDINA(dat = dat, Q = Q, model = "ACDM",
              att.str = linear, att.dist = "saturated")
coef(modp1)
coef(modp1,"lambda")

# Example 6. 
# Fix item and structure parameters#
# Estimate person attribute profile#

# check initials to see the format for initial item parameters
initials <- sim10GDINA$simItempar
prior <- c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.15,0.15,0.15,0.15)
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod.ini <- GDINA(dat,Q,catprob.parm = initials,att.prior = prior,
                 att.dist = "fixed",control=list(maxitr = 0))
personparm(mod.ini)
# compare item parameters
Map(rbind, initials,coef(mod.ini))
# Example 7.
# Fix parameters for some items
# Estimate person attribute profile

# check initials to see the format for initial item parameters
initials <- sim10GDINA$simItempar
prior <- c(0.1, 0.1, 0.1, 0.1, 0.1, 0.15, 0.15, 0.15, 0.15)

dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ

# fix parameters of the first 5 items; do not fix mixing proportion parameters
mod.ini <- GDINA(dat, Q, catprob.parm = initials,
                 att.dist = "saturated", control = list(maxitr = c(rep(0, 5), rep(2000, 5))))

personparm(mod.ini)
# compare item parameters
Map(rbind, initials, coef(mod.ini))

# Example 8.
# polytomous attribute
# model estimation
# see Chen, de la Torre 2013

# --- polytomous attribute G-DINA model ---

dat <- sim30pGDINA$simdat
Q <- sim30pGDINA$simQ

# polytomous G-DINA model
pout <- GDINA(dat, Q)

# ----- polymous DINA model --------
pout2 <- GDINA(dat, Q, model = "DINA")
anova(pout, pout2)

# Example 9.
# Sequential G-DINA model
# see Ma, & de la Torre 2016

# --- polytomous attribute G-DINA model ---
dat <- sim20seqGDINA$simdat
Q <- sim20seqGDINA$simQ

# Item Cat A1 A2 A3 A4 A5
# 1 1 1 0 0 0
# 1 2 0 1 0 0
# 2 1 0 0 1 0
# 2 2 0 0 0 1
# 3 1 0 0 0 1
# 3 2 1 0 0 0
# 4 1 0 0 0 1
# sequential G-DINA model
sGDINA <- GDINA(dat,Q,sequential = TRUE)
sDINA <- GDINA(dat,Q,sequential = TRUE,model = "DINA")
anova(sGDINA,sDINA)
coef(sDINA) # processing function
coef(sDINA,"itemprob") # success probabilities for each item
coef(sDINA,"LCprob") # success probabilities for each category for all latent classes

# Example 10a.
# Multiple-Group G-DINA model
# Example 10b.
# Multiple-Group G-DINA model

Q <- sim10GDINA$simQ
K <- ncol(Q)
# parameter simulation
# Group 1 - female
N1 <- 3000
gs1 <- matrix(rep(0.1,2*nrow(Q)),ncol=2)
# Group 2 - male
N2 <- 3000
gs2 <- matrix(rep(0.2,2*nrow(Q)),ncol=2)

# data simulation for each group
sim1 <- simGDINA(N1,Q,gs.parm = gs1,model = "DINA",att.dist = "higher.order",higher.order.parm = list(theta = rnorm(N1),lambda = data.frame(a=rep(0.1,K),b=seq(-1,1,length.out=K))))
sim2 <- simGDINA(N2,Q,gs.parm = gs2,model = "DINO",att.dist = "higher.order",higher.order.parm = list(theta = rnorm(N2),lambda = data.frame(a=rep(0.1,K),b=seq(-2,2,length.out=K))))

# combine data - all items have the same item parameters
dat <- rbind(extract(sim1,"dat"),extract(sim2,"dat"))
gr <- rep(c(1,2),c(3000,3000))
# Fit G-DINA model
mg.est <- GDINA(dat = dat,Q = Q,group = gr)
summary(mg.est)
extract(mg.est,"posterior.prob")
coef(mg.est,"lambda")

# Example 10b.
# Multiple-Group G-DINA model

Q <- sim30GDINA$simQ
K <- ncol(Q)
# parameter simulation
N1 <- 3000
gs1 <- matrix(rep(0.1,2*nrow(Q)),ncol=2)
N2 <- 3000
gs2 <- matrix(rep(0.2,2*nrow(Q)),ncol=2)

# data simulation for each group
# two groups have different theta distributions
sim1 <- simGDINA(N1,Q,gs.parm = gs1,model = "DINA",att.dist = "higher.order",
                 higher.order.parm = list(theta = rnorm(N1),
                             lambda = data.frame(a=rep(1,K),b=seq(-2,2,length.out=K))))
sim2 <- simGDINA(N2,Q,gs.parm = gs2,model = "DINO",att.dist = "higher.order",
                 higher.order.parm = list(theta = rnorm(N2,1,1),
                             lambda = data.frame(a=rep(1,K),b=seq(-2,2,length.out=K))))

# combine data - different groups have distinct item parameters
# see ?bdiagMatrix
dat <- bdiagMatrix(list(extract(sim1,"dat"),extract(sim2,"dat")),fill=NA)
Q <- rbind(Q,Q)
gr <- rep(c(1,2),c(3000,3000))
mg.est <- GDINA(dat = dat,Q = Q,group = gr)
# Fit G-DINA model
mg.est <- GDINA(dat = dat,Q = Q,group = gr,att.dist="higher.order",
                higher.order=list(model = "Rasch"))
summary(mg.est)
coeff(mg.est,"lambda")
persnparm(mg.est)
persnparm(mg.est,"HO")
extract(mg.est,"posterior.prob")

############################################################
# Example 11.  
# Bug DINO model  
############################################################

set.seed(123)
Q <- sim10GDINA$simQ # 1 represents misconceptions/bugs
ip <- list(
c(0.8,0.2),
c(0.7,0.1),
c(0.9,0.2),
c(0.9,0.1,0.1,0.1),
c(0.9,0.1,0.1,0.1),
c(0.9,0.1,0.1,0.1),
c(0.9,0.1,0.1,0.1),
c(0.9,0.1,0.1,0.1),
c(0.9,0.1,0.1,0.1),
c(0.9,0.1,0.1,0.1))
sim <- simGDINA(N=1000,Q=Q,catprob.parm = ip,model = "DINO")
dat <- extract(sim,"dat")
# use latent.var to specify a bug model
est <- GDINA(dat=dat,Q=Q,latent.var="bugs",model="DINO")
coeff(est)

############################################################
set.seed(123)
Q <- sim10GDINA$simQ # 1 represents misconceptions/bugs
ip <- list(
c(0.8,0.2),
c(0.7,0.1),
c(0.9,0.2),
c(0.9,0.9,0.9,0.1),
c(0.9,0.9,0.9,0.1),
c(0.9,0.9,0.9,0.1),
c(0.9,0.9,0.9,0.1),
c(0.9,0.9,0.9,0.1),
c(0.9,0.9,0.9,0.1),
c(0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.1))
sim <- simGDINA(N=1000,Q=Q,catprob.parm = ip,model="DINA")
dat <- extract(sim,"dat")
# use latent.var to specify a bug model
est <- GDINA(dat=dat,Q=Q,latent.var="bugs",model="DINA")
coef(est)

dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ

# LCDM
lcdm <- GDINA(dat = dat, Q = Q, model = "logitGDINA", control=list(conv.type="neg2LL"))

# Another way is to find design matrix for each item first => must be a list
D <- lapply(rowSums(Q),designmatrix,model="GDINA")
# for comparison, use change in -2LL as convergence criterion
# LCM
lcdm2 <- GDINA(dat = dat, Q = Q, model = "UDF", design.matrix = D, linkfunc = "logit", control=list(conv.type="neg2LL"),solver="slsqp")

# identity link GDINA
iGDINA <- GDINA(dat = dat, Q = Q, model = "GDINA", control=list(conv.type="neg2LL"),solver="slsqp")

# compare all three models => identical
anova(lcdm,lcdm2,iGDINA)
dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ

# specify design matrix for each item => must be a list
# D can be defined by the user
D <- lapply(rowSums(Q), designmatrix, model="ACDM")
# for comparison, use change in -2LL as convergence criterion
# RRUM
logACDM <- GDINA(dat = dat, Q = Q, model = "UDF", design.matrix = D,
                 linkfunc = "log", control = list(conv.type="neg2LL"), solver="slsqp")

# identity link GDINA
RRUM <- GDINA(dat = dat, Q = Q, model = "RRUM",
               control = list(conv.type="neg2LL"), solver="slsqp")

# compare two models => identical
anova(logACDM, RRUM)

# Example 14. #
# Multiple-strategy DINA model #
Q <- matrix(c(1,1,1,1,0,
             1,2,0,1,1,
             2,1,1,0,0,
             3,1,0,1,0,
             4,1,0,0,1,
             5,1,1,0,0,
             5,2,0,0,1), ncol = 5, byrow = TRUE)
d <- list(
  item1=c(0.2,0.7),
  item2=c(0.1,0.6),
  item3=c(0.2,0.6),
  item4=c(0.2,0.7),
  item5=c(0.1,0.8))
set.seed(12345)
sim <- simGDINA(N=1000, Q = Q, delta.parm = d,
                model = c("MSDINA","MSDINA","DINA",
                          "DINA","DINA","MSDINA","MSDINA"))

# simulated data
dat <- extract(sim, what = "dat")
# estimation
# MSDINA need to be specified for each strategy
est <- GDINA(dat, Q, model = c("MSDINA","MSDINA","DINA",
                                "DINA","DINA","MSDINA","MSDINA"))
coef(est,"delta")

## End(Not run)
Description

An (experimental) function for calibrating the multiple-strategy CDMs for dichotomous response data (Ma & Guo, 2019)

Usage

```r
GMSCDM(dat, msQ, model = "ACDM", s = 1, att.prior = NULL, delta = NULL, control = list())
```

Arguments

dat A required binary item response matrix
msQ A multiple-strategy Q-matrix; the first column gives item numbers and the second column gives the strategy number. See examples.
model CDM used; can be "DINA", "DINO", "ACDM", "LLM", and "RRUM", representing the GMS-DINA, GMS-DINO, GMS-ACDM, GMS-LLM and GMS-RRUM in Ma & Guo (2019), respectively. It can also be "rDINA" and "rDINO", representing restricted GMS-DINA and GMS-DINO models where delta_jm1 are equal for all strategies. Note that only a single model can be used for the whole test.
s strategy selection parameter. It is equal to 1 by default.
att.prior mixing proportion parameters.
delta delta parameters in list format.
control a list of control arguments

Value

an object of class `GMSCDM` with the following components:

- **IRF** A matrix of success probabilities for each latent class on each item (IRF)
- **delta** A list of delta parameters
- **attribute** A list of estimated attribute profiles including EAP, MLE and MAP estimates.
- **testfit** A list of test fit statistics including deviance, number of parameters, AIC and BIC
- **sIRF** strategy-specific item response function
- **pjmc** Probability of adopting each strategy on each item for each latent class
- **sprv** Strategy prevalence

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
References


See Also

GDINA for MS-DINA model and single strategy CDMs, and DT M for diagnostic tree model for multiple strategies in polytomous response data

Examples

```r
Not run:
##################
data simulation
##################
set.seed(123)
msQ <- matrix(c(1,1,0,1, 1,2,1,0, 2,1,1,0, 3,1,0,1, 4,1,1,1, 5,1,1,1,6,4),byrow = T)
J x L - 00,10,01,11
LC.prob <- matrix(c(0.2,0.7727,0.5889,0.8125, 0.1,0.9,0.1,0.9, 0.1,0.1,0.8,0.8, 0.2,0.5,0.4,0.7, 0.2,0.4,0.7,0.9),byrow=TRUE)
N <- 10000
att <- sample(1:4,N,replace=TRUE)
dat <- 1*(t(LC.prob[,att])>matrix(runif(N*5),N,5))
est <- GMSCDM(dat,msQ)
item response function
est$IRF
strategy specific IRF
est$sIRF

################################
Example 14 from GDINA function
################################
Q <- matrix(c(1,1,1,1,0, 1,2,0,1,1, 2,1,0,0,0),byrow = T)
```

```r
```
Iterative latent-class analysis

Description

This function implements an iterative latent class analysis (ILCA; Jiang, 2019) approach to estimating attributes for cognitive diagnosis.

Usage

ILCA(dat, Q, seed.num = 5)

Arguments

dat A required binary item response matrix.
Q A required binary item and attribute association matrix.
seed.num seed number; Default = 5.
indlogLik

Value

Estimated attribute profiles.

Author(s)

Zhehan Jiang, The University of Alabama

References


Examples

```r
Not run:
ILCA(sim10GDINA$simdat, sim10GDINA$simQ)

End(Not run)
```

---

indlogLik Extract log-likelihood for each individual

Description

Extract individual log-likelihood.

Usage

```r
indlogLik(object, ...)
```

Arguments

- `object` GDINA object
- `...` additional arguments

Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ

fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
iL <- indlogLik(fit)
iL[1:6,]

End(Not run)
```
itemfit

**itemfit**

Item fit statistics

Description

Calculate item fit statistics (Chen, de la Torre, & Zhang, 2013) and draw heatmap plot for item pairs.

Usage

itemfit(GDINA.obj, person.sim = "post", p.adjust.methods = "holm",
    cor.use = "pairwise.complete.obs", digits = 4, N.resampling = NULL,
    randomseed = 123456)

## S3 method for class 'itemfit'
extract(object, what, ...)

## S3 method for class 'itemfit'
summary(object, ...)

---

indlogPost

*Extract log posterior for each individual*

Description

Extract individual log posterior.

Usage

indlogPost(object, ...)

Arguments

- **object**: GDINA object
- **...**: additional arguments

Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
iP <- indlogPost(fit)
iP[1:6,]
End(Not run)
```
Arguments

GDINA.obj	An estimated model object of class GDINA
person.sim	Simulate expected responses from the posterior or based on EAP, MAP and MLE estimates.
p.adjust.methods	
p-values for the proportion correct, transformed correlation, and log-odds ratio can be adjusted for multiple comparisons at test and item level. This is conducted using p.adjust function in stats, and therefore all adjustment methods supported by p.adjust can be used, including "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY". See p.adjust for more details. "holm" is the default.
cor.use	how to deal with missing values when calculating correlations? This argument will be passed to use when calling stats::cor.
digits	How many decimal places in each number? The default is 4.
N.resampling	the sample size of resampling. By default, it is the maximum of 1e+5 and ten times of current sample size.
randomseed	random seed; This is used to make sure the results are replicable. The default random seed is 123456.
object	objects of class itemfit for various S3 methods
what	argument for S3 method extract indicating what to extract; It can be "p" for proportion correct statistics, "r" for transformed correlations, logOR for log odds ratios and "maxitemfit" for maximum statistics for each item.
...	additional arguments

Value

an object of class itemfit consisting of several elements that can be extracted using method extract. Components that can be extracted include:

p	the proportion correct statistics, adjusted and unadjusted p values for each item
r	the transformed correlations, adjusted and unadjusted p values for each item pair
logOR	the log odds ratios, adjusted and unadjusted p values for each item pair
maxitemfit	the maximum proportion correct, transformed correlation, and log-odds ratio for each item with associated item-level adjusted p-values

Methods (by generic)

• extract: extract various elements from itemfit objects
• summary: print summary information

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong
References


Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ

mod1 <- GDINA(dat = dat, Q = Q, model = "GDINA")
mod1
itmfit <- itemfit(mod1)

Print "test-level" item fit statistics
p-values are adjusted for multiple comparisons
for proportion correct, there are J comparisons
for log odds ratio and transformed correlation,
there are J*(J-1)/2 comparisons

itmfit

The following gives maximum item fit statistics for
each item with item level p-value adjustment
For each item, there are J-1 comparisons for each of
log odds ratio and transformed correlation
summary(itmfit)

use extract to extract various components
extract(itmfit, "r")

mod2 <- GDINA(dat,Q,model="DINA")
itmfit2 <- itemfit(mod2)

#misfit heatmap
plot(itmfit2)
itmfit2

End(Not run)
```

---

The function `itemparm` has been deprecated; use `coef` instead.
Usage

itemparm(object, what = c("catprob", "gs", "delta", "rrum", "itemprob", "LCprob"), withSE = FALSE, SE.type = 2, digits = 4, ...)

## S3 method for class 'GDINA'
itemparm(object, what = c("catprob", "gs", "delta", "rrum", "itemprob", "LCprob"), withSE = FALSE, SE.type = 2, digits = 4, ...)

Arguments

object
what
withSE
SE.type
digits
...

References


Examples

## Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
# deprecated
itemparm(fit)
coef(fit)

## End(Not run)

LC2LG

Transformation between latent classes and latent groups

Description

This function gives the equivalent latent classes which have the same category success probabilities for each category or item.

Usage

LC2LG(Q, sequential = FALSE, att.str = NULL)
Arguments

- **Q**: A required $J \times K$ binary Q-matrix. $J$ represents test length and $K$ represents the number of attributes of this test. Entry 1 at row $j$ and column $k$ represents the $k^{th}$ attribute is measured by item $j$, and 0 means item $j$ does not measure attribute $k$.
- **sequential**: logical; whether the Q-matrix is a Qc-matrix for sequential models?
- **att.str**: attribute structure. See GDINA for details.

Value

An item or category by latent class matrix. In the G-DINA model, if item $j$ measures $K_j$ attributes, $2^K$ latent classes can be combined into $2^{K_j}$ latent groups. This matrix gives which latent group each of $2^K$ latent classes belongs to for each item.

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

Examples

```r
callibration(3)
q <- matrix(scan(text = "0 1 0 1 0 1 1 1 0"), ncol = 3)
q
LC2LG(Q = q)
```

Description

This function estimates the multiple-choice DINA model (de la Torre, 2009).

Usage

```r
MCmodel(dat, Qc, model = "MCDINA", key = NULL, conv.crit = 0.001,
maxitr = 2000, conv.type = "pr")
```

Arguments

- **dat**: A required $N \times J$ data matrix of $N$ examinees to $J$ items. Values must be 1, 2,... representing nominal categories. Missing values are currently not allowed.
Qc

A required category and attribute association matrix. The first column gives the item number, which must be numeric (i.e., 1,2,...) and match the number of column in the data. The second column indicates the coded category of each item. The number in the second column must match with the number in the data, but if a category is not coded, it should not be included in the Q-matrix. Entry 1 indicates that the attribute is measured by the category, and 0 otherwise. Note that the MC-DINA model assumes that the category with the largest number of 1s is the key and that the coded distractors should allow to assign examinees uniquely.

model

MC-DINA only currently. Other MC models may be incorporated.

key

a numeric vector giving the key of each item. See Examples. NULL by default indicating the coded category requiring the largest number of 1s is the key.

conv.crit

The convergence criterion for max absolute change in conv.type for two consecutive iterations.

maxitr

The maximum iterations allowed.

conv.type

cconvergence criteria; Can be pr or LL, indicating category response function, or -2 times log-likelihood, respectively.

Value

an object of class MCmodel with the following components:

prob.parm

A list of success probabilities for each reduced latent class on each item (IRF)

prob.se

A list of standard errors of item parameters

attribute

A list of estimated attribute profiles including EAP, MLE and MAP estimates.

testfit

A list of test fit statistics including deviance, number of parameters, AIC and BIC

R

expected # of individuals in each latent group choosing each option

lik

posterior probability

itr

Total # of iterations

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>

References


See Also

GDINA for G-DINA model
Examples

```r
Not run:
check the format of the data
Entry 0 is not allowed
head(sim1MCDINA$simdat)

#---------------------------------
check the format of the Q-matrix
#---------------------------------
Take item 1 as an example:
category 2 has a q-vector (1,0,0)
category 1 has a q-vector (0,1,0)
category 4 has a q-vector (1,1,0)
category 3 is not included in the Q-matrix because it is not coded
the order of the coded categories in the Q-matrix doesn't matter

sim1MCDINA$simQ
 # Item coded cat A1 A2 A3
 # 1 1 2 1 0 0
 # 1 1 1 0 0
 # 1 1 4 1 1 0
 #...
est <- MCmodel(sim1MCDINA$simdat,sim1MCDINA$simQ)
est
est$testfit

#--------------------------------------
Distractors involving more attributes
#--------------------------------------
some distractors may involve attributes that are not involved by the key option
this is not allowed by the "original" MC-DINA (de la Torre, 2009) but is allowed
in the current implementation

Users need to specify the key for each item to appropriately handle such an issue
Note item 1 below: category 1 is the key (as indicated in the key argument below)
The distractor (category 4) involves an attribute not included by the key option

Qc <- matrix(c(1,1,1,1,0,
 1,2,0,1,0,
 1,3,1,0,0,
 1,4,1,0,1,
 2,1,1,0,0,
 2,3,1,1,0,
 2,2,1,1,1,
 3,4,1,1,1,
 3,2,1,1,0,
 3,3,0,1,1,
 4,1,0,1,1,
 4,2,0,0,1,
 5,1,1,0,0,
 6,3,0,1,0,
 7,2,0,0,1,
 ...
), byrow = TRUE, ncol = 5)
```

8, 4, 1, 0, 0,
9, 1, 0, 1, 0,
10, 4, 0, 0, 1), ncol = 5, byrow = TRUE)
est2 <- MCmodel(sim10MCDINA$simdat, Qc, key = c(1, 2, 4, 1, 3, 2, 4, 1, 4))
est2
est2$prob.parm
est2$testfit
est2$attribute
## End(Not run)

---

modelcomp

Item-level model comparison using Wald, LR or LM tests

Description

This function evaluates whether the saturated G-DINA model can be replaced by reduced CDMs without significant loss in model data fit for each item using the Wald test, likelihood ratio (LR) test or Lagrange multiplier (LM) test. For Wald test, see de la Torre (2011), de la Torre and Lee (2013), Ma, Iaconangelo and de la Torre (2016) and Ma & de la Torre (2018) for details. For LR test and a two-step LR approximation procedure, see Sorrel, de la Torre, Abad, and Olea (2017), Ma (2017) and Ma & de la Torre (2018). For LM test, which is only applicable for DINA, DINO and ACDM, see Sorrel, Abad, Olea, de la Torre, and Barrada (2017). This function also calculates the dissimilarity between the reduced models and the G-DINA model, which can be viewed as a measure of effect size (Ma, Iaconangelo & de la Torre, 2016).

Usage

modelcomp(GDINA.obj = NULL, method = "Wald", items = "all",
          p.adjust.methods = "holm", models = c("DINA", "DINO", "ACDM", "LLM", "RRUM"),
          decision.args = list(rule = "simpler", alpha.level = 0.05,
                               adjusted = FALSE), DS = FALSE,
          Wald.args = list(SE.type = 2, varcov = NULL),
          LR.args = list(LR.approx = FALSE),
          LM.args = list(reducedMDINA = NULL, reducedMDINO = NULL, reducedMACDM = NULL, SE.type = 2))

## S3 method for class 'modelcomp'
extract(object, what = c("stats", "pvalues",
                        "adj.pvalues", "df", "DS", "selected.model"), digits = 4, ...)

## S3 method for class 'modelcomp'
summary(object, ...)

Arguments

GDINA.obj

An estimated model object of class GDINA

method

method for item level model comparison; can be wald, LR or LM.
items  a vector of items to specify the items for model comparison
p.adjust.methods  adjusted p-values for multiple hypothesis tests. This is conducted using p.adjust function in stats, and therefore all adjustment methods supported by p.adjust can be used, including "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY". See p.adjust for more details. "holm" is the default, indicating the Holm method.
models  a vector specifying which reduced CDMs are possible reduced CDMs for each item. The default is "DINA", "DINO", "ACDM", "LLM", and "RRUM".
decision.args  a list of options for determining the most appropriate models including (1) rule can be either "simpler" or "largestp". See details; (2) alpha.level for the nominal level of decision; and (3) adjusted can be either TRUE or FALSE indicating whether the decision is based on p value (adjusted = FALSE) or adjusted p values.
DS  whether dissimilarity index should be calculated? FALSE is the default.
Wald.args  a list of options for Wald test including (1) SE.type giving the type of covariance matrix for the Wald test; by default, it uses outer product of gradient based on incomplete information matrix; (2) varcov for user specified variance-covariance matrix. If supplied, it must be a list, giving the variance covariance matrix of success probability for each item or category. The default is NULL, in which case, the estimated variance-covariance matrix from the GDINA function is used.
LR.args  a list of options for LR test including for now only LR.approx, which is either TRUE or FALSE, indicating whether a two-step LR approximation is implemented or not.
LM.args  a list of options for LM test including reducedMDINA, reducedMDINO, and reducedMACDM for DINA, DINO and ACDM estimates from the GDINA function; SE.type specifies the type of covariance matrix.
object  object for class modelcomp for various S3 methods
what  argument for S3 method extract indicating what to extract; It can be "wald" for wald statistics, "wald.p" for associated p-values, "df" for degrees of freedom, and "DS" for dissimilarity between G-DINA and other CDMs.
digits  How many decimal places in each number? The default is 4.
...  additional arguments

Details

After the test statistics for each reduced CDM were calculated for each item, the reduced models with p values less than the pre-specified alpha level were rejected. If all reduced models were rejected for an item, the G-DINA model was used as the best model; if at least one reduced model was retained, two different rules can be implemented for selecting the best model specified in argument decision.args:

(1) when rule="simpler", which is the default,

If (a) the DINA or DINO model was one of the retained models, then the DINA or DINO model with the larger p value was selected as the best model; but if (b) both DINA and DINO were rejected, the reduced model with the largest p value was selected as the best model for this item. Note that
when the p-values of several reduced models were greater than 0.05, the DINA and DINO models were preferred over the A-CDM, LLM, and R-RUM because of their simplicity. This procedure is originally proposed by Ma, Iaconangelo, and de la Torre (2016).

(2) When rule="largestp":

The reduced model with the largest p-values is selected as the most appropriate model.

Value

an object of class modelcomp. Elements that can be extracted using extract method include

stats Wald or LR statistics
pvalues p-values associated with the test statistics
adj.pvalues adjusted p-values
df degrees of freedom
DS dissimilarity between G-DINA and other CDMs

Methods (by generic)

• extract: extract various elements from modelcomp objects
• summary: print summary information

Author(s)

Wenchao Ma, The University of Alabama. <wenchao.ma@ua.edu>
Miguel A. Sorrel, Universidad Autonoma de Madrid
Jimmy de la Torre, The University of Hong Kong

References


See Also

GDINA, autoGDINA
Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
--- GDINA model ---#
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
fit

###################
Wald test
###################
w <- modelcomp(fit)
w
wald statistics
extract(w,"stats")
p values
extract(w,"pvalues")
selected models
extract(w,"selected.model")

##########################
LR and Two-step LR test#
##########################
lr <- modelcomp(fit,method = "LR")
lr
TwostepLR <- modelcomp(fit,items =c(6:10),method = "LR",LR.args = list(LR.approx = TRUE))
TwostepLR

##########################
LM test
##########################
dina <- GDINA(dat = dat, Q = Q, model = "DINA")
dino <- GDINA(dat = dat, Q = Q, model = "DINO")
acdm <- GDINA(dat = dat, Q = Q, model = "ACDM")
lm <- modelcomp(method = "LM",LM.args=list(reducedMDINA = dina,
reducedMDINO = dino, reducedMACDM = acdm))

End(Not run)
```
modelfit

<table>
<thead>
<tr>
<th>modelfit</th>
<th>Model fit statistics</th>
</tr>
</thead>
</table>

**Description**

Calculate various absolute model-data fit statistics

**Usage**

```r
modelfit(GDINA.obj, CI = 0.9, ItemOnly = FALSE)
```

**Arguments**

- `GDINA.obj` An estimated model object of class `GDINA`
- `CI` numeric value from 0 to 1 indicating the range of the confidence interval for RMSEA. Default returns the 90% interval.
- `ItemOnly` should joint attribute distribution parameters be considered? Default = FALSE. See Ma (2019).

**Details**

Various model-data fit statistics including M2 statistic for G-DINA model with dichotomous responses (Liu, Tian, & Xin, 2016; Hansen, Cai, Monroe, & Li, 2016) and for sequential G-DINA model with graded responses (Ma, 2019). It also calculates SRMSR and RMSEA2.

**Author(s)**

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>

**References**


Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod1 <- GDINA(dat = dat, Q = Q, model = "DINA")
modelfit(mod1)

End(Not run)
```

---

**monocheck**

This function checks if monotonicity is violated

### Description

If mastering an additional attribute lead to a lower probabilities of success, the monotonicity is violated.

### Usage

```r
monocheck(object, strict = FALSE)
```

### Arguments

- `object`: object of class `GDINA`
- `strict`: whether a strict monotonicity is checked?

### Value

A logical vector for each item or category indicating whether the monotonicity is violated (`TRUE`) or not (`FALSE`)

### Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ

mod1 <- GDINA(dat = dat, Q = Q, model = "DINA")
check <- monocheck(mod1)
check
check2 <- monocheck(mod2, mono.constraint = check)
check2

End(Not run)
```
npar

**Description**

Calculate the number of parameters for GDINA estimates. Returned the total number of parameters, the number of item parameters and the number parameters of joint attribute distribution.

**Usage**

```r
npar(object, ...)
```

**Arguments**

- `object` GDINA object
- `...` additional arguments

**Examples**

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
npar(fit)
End(Not run)
```

personparm

**Description**

Function to calculate various person attribute parameters, including "EAP", "MAP", and "MLE", for EAP, MAP and MLE estimates of attribute patterns (see Huebner & Wang, 2011), "mp" for marginal mastery probabilities, and "HO" for higher-order ability estimates if a higher-order model is fitted. See GDINA for examples.

**Usage**

```r
personparm(object, what = c("EAP", "MAP", "MLE", "mp", "HO"),
 digits = 4, ...)
```
Arguments

object
what
digits
... 

Arguments

object
what
digits
... 

Arguments

object
what
digits
... 

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

References


Examples

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
EAP
head(personparm(fit))
MAP
head(personparm(fit, what = "MAP"))

End(Not run)
```

Description

Create various plots for GDINA estimates

Usage

```r
S3 method for class 'GDINA'
plot(x, what = "IRF", item = "all", withSE = FALSE,
 SE.type = 2, person = 1, att.names = NULL, ...)
```
**plot.itemfit**

**Arguments**

- `x`: model object of class `GDINA`
- `what`: type of plot. Can be "IRF" for item/category response function plot, or "mp" for mastery probabilities for individuals.
- `item`: A scalar or vector specifying the item(s) for IRF plots.
- `withSE`: logical; Add error bar (estimate - SE, estimate + SE) to the IRF plots?
- `SE.type`: How is SE estimated. By default, it's based on OPG using incomplete information.
- `person`: A scalar or vector specifying the number of individuals for mastery plots.
- `att.names`: Optional; a vector for attribute names.
- `...`: additional arguments

**See Also**

`GDINA`, `autoGDINA`

**Examples**

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod1 <- GDINA(dat = dat, Q = Q, model = "GDINA")
plot item response functions for item 10
plot(mod1, item = 10)
plot(mod1, what = "IRF", item = 10, withSE = TRUE)

plot mastery probabilities for individuals 4 and 10
plot(mod1, what = "mp", person = c(4,10))
plot(mod1, what = "mp", person = c(4,10,15),
 att.names = c("addition","subtraction","multiplication"))
```

## End(Not run)

---

**plot.itemfit**  

*Item fit plots*

**Description**

Create plots of bivariate heatmap for item fit

**Usage**

```r
S3 method for class 'itemfit'
plot(x, type = "all", adjusted = TRUE, ...)
```
plot.Qval

Mesa plot for Q-matrix validation

Description

The mesa plot was first proposed by de la Torre and Ma (2016) for graphically illustrating the best q-vector(s) for each item. The q-vector on the edge of the mesa is likely to be the best q-vector.

Usage

```r
S3 method for class 'Qval'
plot(x, item, type = "best", no.qvector = 10,
 data.label = TRUE, eps = "auto", original.q.label = FALSE,
 auto ylim = TRUE, ...)
```

Arguments

- `x`: model object of class `Qvalidation`
- `item`: a vector specifying which item(s) the plots are drawn for
- `type`: types of the plot. It can be "best" or "all". If "best", for all q-vectors requiring the same number of attributes, only the one with the largest PVAF is plotted, which means $K_j$ q-vectors are plotted; If "all", all q-vectors will be plotted.
no.qvector  the number of q vectors that need to be plotted when type="all". The default is 10, which means the 10 q vectors with the largest PVAFs are plotted.
data.label  logical; To show data label or not?
eps  the cutoff for PVAF. If not NULL, it must be a value between 0 and 1. A horizontal line will be drawn accordingly.
original.q.label  logical; print the label showing the original q-vector or not?
auto.ylim  logical; create y range automatically or not?
...  additional arguments passed to plot function

References


See Also

 Qval, autoGDINA

Examples

## Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
Q[1,] <- c(0,1,0)
mod1 <- GDINA(dat = dat, Q = Q, model = "GDINA")
out <- Qval(mod1, eps = 0.9)
item <- c(1,2,10)
plot(out,item=item,data.label=FALSE,type="all")
plot(out,item=10,type="best",eps=0.95)
plot(out,item=10,type="all",no.qvector=6)

## End(Not run)

Qval  
Q-matrix validation

Description

Q-matrix validation for the (sequential) G-DINA model based on PVAF (de la Torre & Chiu, 2016; Najera, Sorrel, & Abad, 2019), stepwise Wald test (Ma & de la Torre, 2019) or mesa plot (de la Torre & Ma, 2016). All these methods are suitable for dichotomous and ordinal response data. If too many modifications are suggested based on the default PVAF method, you are suggested to try the stepwise Wald test method or predicted cutoffs. You should always check the mesa plots for further examination.
Usage

Qval(GDINA.obj, method = "PVAF", eps = 0.95, digits = 4, wald.args = list())

## S3 method for class 'Qval'
extract(object, what = c("sug.Q", "varsigma", "PVAF", "eps", "Q"), ...)

## S3 method for class 'Qval'
summary(object, ...)

Arguments

GDINA.obj An estimated model object of class GDINA
method which Q-matrix validation method is used? Can be either "PVAF" or "wald".
eps cutoff value for PVAF from 0 to 1. Default = 0.95. Note that it can also be -1, indicating the predicted cutoff based on Najera, P., Sorrel, M., and Abad, P. (2019).
digits How many decimal places in each number? The default is 4.
wald.args a list of arguments for the stepwise Wald test method.
SE.type Type of covariance matrix for the Wald test
alpha.level alpha level for the wald test
GDI It can be 0, 1 or 2; 0 means GDI is not used to choose the attribute - when more than one attributes are significant, the one with the largest p-value will be selected; GDI=1 means the attribute with the largest GDI will be selected; GDI=2 means the q-vector with the largest GDI will be selected.
verbose Print detailed information or not?
stepwise TRUE for stepwise approach and FALSE for forward approach
object Qval objects for S3 methods
what argument for S3 method extract indicating what to extract; It can be "sug.Q" for suggested Q-matrix, "Q" for original Q-matrix, "varsigma" for varsigma index, and "PVAF" for PVAF.
...
additional arguments

Value

An object of class Qval. Elements that can be extracted using extract method include:

sug.Q suggested Q-matrix
Q original Q-matrix
varsigma varsigma index
PVAF PVAF
Methods (by generic)

- extract: extract various elements from Qval objects
- summary: print summary information

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

References


See Also

GDINA

Examples

```r
Not run:
###
Binary response
###
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
Q[10,] <- c(0,1,0)
Fit the G-DINA model
mod1 <- GDINA(dat = dat, Q = Q, model = "GDINA")
Q-validation using de la Torre and Chiu's method
pvaf <- Qval(mod1,method = "PVAF",eps = 0.95)
pvaf
extract(pvaf,what = "PVAF")
#See also:
extract(pvaf,what = "varsigma")
extract(pvaf,what = "sug.Q")
Draw mesa plots using the function plot
```
plot(pvaf,item=10)

# The stepwise Wald test
stepwise <- Qval(mod1,method = "wald")
stepwise
extract(stepwise,what = "PVAF")
# See also:
extract(stepwise,what = "varsigma")
extract(stepwise,what = "sug.Q")

# Set eps = -1 to determine the cutoff empirically
pvaf2 <- Qval(mod1,method = "PVAF",eps = -1)
pvaf2

################################
# Ordinal response
################################
seq.est <- GDINA(sim20seqGDINA$simdat,sim20seqGDINA$simQ,sequential = TRUE)
stepwise <- Qval(seq.est, method = "wald", eps = -1)

## End(Not run)

---

**rowMatch**  
*Count the frequency of a row vector in a data frame*

**Description**

Count the frequency of a row vector in a data frame

**Usage**

rowMatch(df, vec = NULL)

**Arguments**

- `df`  
a data frame or matrix
- `vec`  
the vector for matching

**Value**

count the number of vector vec in the data frame
row.no row numbers of the vector vec in the data frame
**Examples**

```r
df <- data.frame(V1=c(1L,2L),V2=LETTERS[1:3],V3=rep(1,12))
rowMatch(df,c(2,"B",1))
```

<table>
<thead>
<tr>
<th>score</th>
<th>Score function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Description**

Calculate score function for each dichotomous item or each nonzero category for polytomous items
Only applicable to saturated model of joint attribute distribution

**Usage**

```r
score(object, parm = "delta")
```

**Arguments**

- `object`: an object of class GDINA
- `parm`: Either `delta` or `prob` indicating score function for delta parameters and success probability parameters

**Value**

a list where elements give the score functions for each item or category

**Examples**

```r
Not run:
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA")
score(fit)

End(Not run)
```
**Description**

Simulated data, Q-matrix and item parameters for a 10-item test with 3 attributes.

**Usage**

`sim10GDINA`

**Format**

A list with components:

- `simdat` simulated responses of 1000 examinees
- `simQ` artificial Q-matrix
- `simItempar` artificial item parameters (probability of success for each latent group)

---

**Description**

Simulated data, Q-matrix and item parameters for a 10-item test measuring 3 attributes.

**Usage**

`sim10MCDINA`

**Format**

A list with components:

- `simdat` simulated responses of 3000 examinees
- `simQ` artificial Q-matrix
sim20seqGDINA  Simulated data (20 items, sequential G-DINA model)

Description
Simulated data, Qc-matrix and item parameters for a 20-item test measuring 5 attributes.

Usage
sim20seqGDINA

Format
A list with components:
simdat  simulated polytomous responses of 2000 examinees
simQ  artificial Qc-matrix
simItempar artificial item parameters (category level probability of success for each latent group)

sim21seqDINA  Simulated data (21 items, sequential DINA model)

Description
Simulated data, and Qc-matrix for a 21-item test measuring 5 attributes.

Usage
sim21seqDINA

Format
A list with components:
simdat  simulated responses of 2000 examinees
simQ  artificial Qc-matrix
**sim30DINA**  
*Simulated data (30 items, DINA model)*

**Description**  
Simulated data, Q-matrix and item parameters for a 30-item test measuring 5 attributes.

**Usage**  
sim30DINA

**Format**  
A list with components:

- `simdat` simulated responses of 1000 examinees
- `simQ` artificial Q-matrix
- `simItempar` artificial item parameters (probability of success for each latent group)

**sim30GDINA**  
*Simulated data (30 items, G-DINA model)*

**Description**  
Simulated data, Q-matrix and item parameters for a 30-item test measuring 5 attributes.

**Usage**  
sim30GDINA

**Format**  
A list with components:

- `simdat` simulated responses of 1000 examinees
- `simQ` artificial $30 \times 5$ Q-matrix
- `simItempar` artificial item parameters (probability of success for each latent group)
**sim30pGDINA**  
*Simulated data (30 items, polytomous G-DINA model)*

**Description**  
Simulated data, Q-matrix and item parameters for a 30-item test measuring 5 attributes.

**Usage**  
sim30pGDINA

**Format**  
A list with components:

- simdat  
simulated responses of 3000 examinees
- simQ  
artificial Q-matrix
- simItempar  
artificial item parameters (probability of success for each latent group)

**simDTM**  
*Simulating data for diagnostic tree model*

**Description**  
Data generation for diagnostic tree model

**Usage**  
simDTM(N, Qc, gs.parm, Tmatrix, red.delta = NULL, att.gr = NULL)

**Arguments**

- **N**  
sample size
- **Qc**  
Association matrix between attributes (column) and PSEUDO items (row); The first column is item number and the second column is the pseudo item number for each item. If a pseudo item has more than one nonzero categories, more than one rows are needed.
- **gs.parm**  
the same as the gs.parm in simGDINA function in the GDINA package. It is a list with the same number of elements as the number of rows in the Qc matrix
- **Tmatrix**  
mapping matrix showing the relation between the OBSERVED responses (rows) and the PSEUDO items (columns); The first column gives the observed responses.
- **red.delta**  
reduced delta parameters using logit link function
- **att.gr**  
attribute group indicator
## Examples

```r
Not run:
K=5
g=0.2
item.no <- rep(1:6,each=4)
the first node has three response categories: 0, 1 and 2
node.no <- rep(c(1,1,2,3),6)
Q1 <- matrix(0,length(item.no),K)
Q2 <- cbind(7:(7+K-1),rep(1,K),diag(K))
for(j in 1:length(item.no)) {
 Q1[j,sample(1:K,sample(3,1))] <- 1
}
Qc <- rbind(Q1,Q2)
Tmatrix.set <- list(cbind(c(0,1,2,3,3),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
 cbind(c(0,1,2,3,4),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
 cbind(c(0,1),c(0,1)))
Tmatrix <- Tmatrix.set[c(1,1,1,1,1,1,rep(3,K))]
sim <- simDTM(N=2000,Qc=Qc,gs.parm=matrix(0.2,nrow(Qc),2),Tmatrix=Tmatrix)
est <- DTM(dat=sim$dat,Qc=Qc,Tmatrix = Tmatrix)
End(Not run)
```

# simGDINA

Data simulation based on the G-DINA models

## Description

Simulate responses based on the G-DINA model (de la Torre, 2011) and sequential G-DINA model (Ma & de la Torre, 2016), or CDMs subsumed by them, including the DINA model, DINO model, ACDM, LLM and R-RUM. Attributes can be simulated from uniform, higher-order or multivariate normal distributions, or be supplied by users. See Examples and Details for how item parameter specifications. See the help page of GDINA for model parameterizations.

## Usage

```r
simGDINA(N, Q, gs.parm = NULL, delta.parm = NULL, catprob.parm = NULL, model = "GDINA",
 sequential = FALSE, gs.args = list(type = "random", mono.constraint = TRUE),
 delta.args = list(design.matrix = NULL, linkfunc = NULL),
 attribute = NULL, att.dist = "uniform", item.names = NULL,
 higher.order.parm = list(theta = NULL, lambda = NULL),
 mvnorm.parm = list(mean = NULL, sigma = NULL, cutoffs = NULL),
 att.prior = NULL, digits = 4)
```

### S3 method for class 'simGDINA'

```r
extract(object, what = c("dat", "Q", "attribute", "catprob.parm", "delta.parm", "higher.order.parm", "mvnorm.parm", "LCprob.parm"), ...)
```
Arguments

N  Sample size.

Q  A required matrix; The number of rows occupied by a single-strategy dichotomous item is 1, by a polytomous item is the number of nonzero categories, and by a multiple-strategy dichotomous item is the number of strategies. The number of column is equal to the number of attributes if all items are single-strategy dichotomous items, but the number of attributes + 2 if any items are polytomous or have multiple strategies. For a polytomous item, the first column represents the item number and the second column indicates the nonzero category number. For a multiple-strategy dichotomous item, the first column represents the item number and the second column indicates the strategy number. For binary attributes, 1 denotes the attributes are measured by the items and 0 means the attributes are not measured. For polytomous attributes, non-zero elements indicate which level of attributes are needed. See Examples.

gs.parm  A matrix or data frame for guessing and slip parameters. The number of rows occupied by a dichotomous item is 1, and by a polytomous item is the number of nonzero categories. The number of columns must be 2, where the first column represents the guessing parameters (or \(P(0)\)), and the second column represents slip parameters (or \(1 - P(1)\)). This may need to be used in conjunction with the argument gs.args.

delta.parm  A list of delta parameters of each latent group for each item or category. This may need to be used in conjunction with the argument delta.args.

catprob.parm  A list of success probabilities of each latent group for each non-zero category of each item. See Examples and Details for more information.

model  A character vector for each item or nonzero category, or a scalar which will be used for all items or nonzero categories to specify the CDMs. The possible options include "GDINA", "DINA", "DINO", "ACDM", "LLM", "RRUM", "MSDINA" and "UDF". When "UDF", indicating user defined function, is specified for any item, delta.parm must be specified, as well as options design.matrix and linkfunc in argument delta.args.

sequential  logical; TRUE if the sequential model is used for polytomous responses simulation, and FALSE if there is no polytomously scored items.

gs.args  a list of options when gs.parm is specified. It consists of two components:
  • type How are the delta parameters for ACDM, LLM, RRUM generated? It can be either "random" or "equal". "random" means the delta parameters are simulated randomly, while "equal" means that each required attribute contributes equally to the probability of success (P), logit(P) or log(P) for ACDM, LLM and RRUM, respectively. See Details for more information.
  • mono.constraint A vector for each item/category or a scalar which will be used for all items/categories to specify whether monotonicity constraints should be satisfied if the generating model is the G-DINA model. Note that this is applicable only for the G-DINA model when gs.parm is used. For ACDM, LLM and RRUM, monotonicity constraints are always satisfied and therefore this argument is ignored.

delta.args  a list of options when delta.parm is specified. It consists of two components:
• `linkfunc` a vector of link functions for each item/category. It can be "identity", "log" or "logit". Only necessary when, for some items, `model="UDF"`.

• `design.matrix` a list of design matrices; Its length must be equal to the number of items (or nonzero categories for sequential models). If CDM for item `j` is specified as "UDF" in argument `model`, the corresponding design matrix must be provided; otherwise, the design matrix can be NULL, which will be generated automatically.

`attribute` optional user-specified person attributes. It is a \(N \times K\) matrix or data frame. If this is not supplied, attributes are simulated from a distribution specified in `att.dist`.

`att.dist` A string indicating the distribution for attribute simulation. It can be "uniform", "higher.order", "mvnorm" or "multinomial" for uniform, higher-order, multivariate normal and multinomial distributions, respectively. The default is the uniform distribution. To specify structural parameters for the higher-order and multivariate normal distributions, see `higher.order.parm` and `mvnorm.parm`, respectively. To specify the probabilities for the multinomial distribution, use `att.prior` argument.

`item.names` A vector giving the name of items or categories. If it is NULL (default), items are named as "Item 1", "Item 2", etc.

`higher.order.parm` A list specifying parameters for higher-order distribution for attributes if `att.dist=higher.order`. Particularly, `theta` is a vector of length \(N\) representing the higher-order ability for each examinee and `lambda` is a \(K \times 2\) matrix. Column 1 gives the slopes for the higher-order model and column 2 gives the intercepts. See GDINA for the formulations of the higher-order models.

`mvnorm.parm` a list of parameters for multivariate normal attribute distribution. `mean` is a vector of length \(K\) specifying the mean of multivariate normal distribution; and `sigma` is a positive-definite symmetric matrix specifying the variance-covariance matrix. `cutoffs` is a vector giving the cutoff for each attribute. See Examples.

`att.prior` probability for each attribute pattern. Order is the same as that returned from `attributepattern(Q = Q)`. This is only applicable when `att.dist="multinomial"`.

`digits` How many decimal places in each number? The default is 4.

`object` object of class `simGDINA` for method `extract`

`what` argument for S3 method `extract` indicating what to extract

`...` additional arguments

**Details**

Item parameter specifications in `simGDINA`:

Item parameters can be specified in one of three different ways.

The first and probably the easiest way is to specify the guessing and slip parameters for each item or nonzero category using `gs.parm`, which is a matrix or data frame for \(P(\alpha^*_{lj} = 0)\) and \(1 - P(\alpha^*_{lj} = 1)\) for all items for dichotomous items and \(S(\alpha^*_{ljh} = 0)\) and \(1 - S(\alpha^*_{ljh} = 1)\) for all nonzero categories for polytomous items. Note that \(1 - P(\alpha^*_{lj} = 0) - P(\alpha^*_{lj} = 1)\) or \(1 - S(\alpha^*_{lj} = 0) - S(\alpha^*_{lj} = 1)\) must be greater than 0. For generating ACDM, LLM, and RRUM, delta parameters
are generated randomly if type="random", or in a way that each required attribute contributes equally, as in Ma, Iaconangelo, & de la Torre (2016) if type="equal". For ACDM, LLM and RRUM, generated delta parameters are always positive, which implies that monotonicity constraints are always satisfied. If the generating model is the G-DINA model, mono.constraint can be used to specify whether monotonicity constraints should be satisfied.

The second way of simulating responses is to specify success probabilities (i.e., $P(\alpha_{ij}^*)$ or $S(\alpha_{ijh}^*)$) for each nonzero category of each item directly using the argument catprob.parm. If an item or category requires $K_j^*$ attributes, $2^{K_j^*}$ success probabilities need to be provided. catprob.parm must be a list, where each element gives the success probabilities for nonzero category of each item. Note that success probabilities cannot be negative or greater than one.

The third way is to specify delta parameters for data simulation. For DINA and DINO model, each nonzero category requires two delta parameters. For ACDM, LLM and RRUM, if a nonzero category requires $K_j^*$ attributes, $K_j^* + 1$ delta parameters need to be specified. For the G-DINA model, a nonzero category requiring $K_j^*$ attributes has $2^{K_j^*}$ delta parameters. It should be noted that specifying delta parameters needs to ascertain the derived success probabilities are within the $[0, 1]$ interval.

Please note that you need to specify item parameters in ONLY one of these three ways. If gs.parm is specified, it will be used regardless of the inputs in catprob.parm and delta.parm. If gs.parm is not specified, simGDINA will check if delta.parm is specified; if yes, it will be used for data generation. if both gs.parm and delta.parm are not specified, catprob.parm is used for data generation.

**Value**

an object of class simGDINA. Elements that can be extracted using method extract include:

- **dat** simulated item response matrix
- **Q** Q-matrix
- **attribute** A $N \times K$ matrix for individuals’ attribute patterns
- **catprob.parm** a list of non-zero category success probabilities for each latent group
- **delta.parm** a list of delta parameters
- **higher.order.parm** Higher-order parameters
- **mvnorm.parm** multivariate normal distribution parameters
- **LCprob.parm** A matrix of item/category success probabilities for each latent class

**Author(s)**

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>
Jimmy de la Torre, The University of Hong Kong

**References**


Examples

```r
Not run:
##
Example 1
Data simulation (DINA)
##
N <- 500
Q <- sim30GDINA$simQ
J <- nrow(Q)
gs <- data.frame(guess=rep(0.1,J),slip=rep(0.1,J))

Simulated DINA model; to simulate G-DINA model
and other CDMs, change model argument accordingly
sim <- simGDINA(N,Q,gs.parm = gs,model = "DINA")

True item success probabilities
extract(sim,what = "catprob.parm")

True delta parameters
extract(sim,what = "delta.parm")

simulated data
extract(sim,what = "dat")

simulated attributes
extract(sim,what = "attribute")
```

# Example 2 #
# Data simulation (DINA) #
```r
Example 2
Data simulation (DINA)
```
# Example 2
# Data simulation (RRUM)
########################################################################
N <- 500
Q <- sim30GDINA$simQ
J <- nrow(Q)
gs <- data.frame(guess=rep(0.2,J),slip=rep(0.2,J))
  # Simulated RRUM
  # deltas except delta0 for each item will be simulated
  # randomly subject to the constraints of RRUM
sim <- simGDINA(N,Q,gs.parm = gs,model = "RRUM")

  # simulated data
extract(sim,what = "dat")

  # simulated attributes
extract(sim,what = "attribute")

########################################################################
# Example 3
# Data simulation (LLM)
########################################################################
N <- 500
Q <- sim30GDINA$simQ
J <- nrow(Q)
gs <- data.frame(guess=rep(0.1,J),slip=rep(0.1,J))
  # Simulated LLM
  # By specifying type="equal", each required attribute is
  # assumed to contribute to logit(P) equally
sim <- simGDINA(N,Q,gs.parm = gs,model = "LLM",gs.args = list(type="equal"))

  #check below for what the equal contribution means
extract(sim,what = "delta.parm")

  # simulated data
extract(sim,what = "dat")

  # simulated attributes
extract(sim,what = "attribute")

########################################################################
# Example 4
# Data simulation (all CDMs)
########################################################################
set.seed(12345)
N <- 500
Q <- sim10GDINA$simQ
J <- nrow(Q)
gs <- data.frame(guess=rep(0.1,J),slip=rep(0.1,J))
  # Simulated different CDMs for different items
models <- c("GDINA","DINO","DINA","ACDM","LLM","RRUM","GDINA","LLM","RRUM","DINA")
sim <- simGDINA(N,Q,gs.parm = gs,model = models,gs.args = list(type="random"))
# simulated data
extract(sim,what = "dat")

# simulated attributes
extract(sim,what = "attribute")

# Example 5
# Data simulation (all CDMs)
# using probability of success in list format
####################################################

# success probabilities for each item need to be provided in list format as follows:
# if item j requires Kj attributes, 2^Kj success probabilities
# need to be specified
# e.g., item 1 only requires 1 attribute
# therefore P(0) and P(1) should be specified;
# similarly, item 10 requires 3 attributes,
# P(000), P(100), P(010), ..., P(111) should be specified;
# the latent class represented by each element can be obtained
# by calling attributepattern(Kj)
itemparm.list <- list(item1=c(0.2,0.9),
                      item2=c(0.1,0.8),
                      item3=c(0.1,0.9),
                      item4=c(0.1,0.3,0.5,0.9),
                      item5=c(0.1,0.1,0.1,0.8),
                      item6=c(0.2,0.9,0.9,0.9),
                      item7=c(0.1,0.45,0.45,0.8),
                      item8=c(0.1,0.28,0.28,0.8),
                      item9=c(0.1,0.4,0.4,0.8),
                      item10=c(0.1,0.2,0.3,0.4,0.4,0.5,0.7,0.9))

set.seed(12345)
N <- 500
Q <- sim10GDINA$simQ
# When simulating data using catprob.parm argument,
# it is not necessary to specify model and type
sim <- simGDINA(N,Q,catprob.parm = itemparm.list)

# Example 6
# Data simulation (all CDMs)
# using delta parameters in list format
####################################################

delta.list <- list(c(0.2,0.7),
                   c(0.1,0.7),
                   c(0.1,0.8),
                   c(0.1,0.7),
                   c(0.1,0.8),
                   c(0.2,0.3,0.2,0.1),
                   c(0.1,0.35,0.35),
                   c(0.2,0.7,0.7,0.1),
                   c(0.1,0.3,0.3,0.1),
                   c(0.1,0.3,0.3,0.1))
c(-1.386294, 0.980829, 1.791759),
c(-1.609438, 0.693147, 0.6),
c(0.1, 0.1, 0.2, 0.3, 0.0, 0.0, 0.1, 0.1))

model <- c("GDINA", "GDINA", "GDINA", "DINA", "DINO", "GDINA", "ACDM", "LLM", "RRUM", "GDINA")
N <- 500
Q <- sim10GDINA$simQ
# When simulating using delta.parm argument, model needs to be
# specified
sim <- simGDINA(N, Q, delta.parm = delta.list, model = model)

# Example 7
# Data simulation (higher order DINA model)
Q <- sim30GDINA$simQ
gs <- matrix(0.1, nrow(Q), 2)
N <- 500
set.seed(12345)
theta <- rnorm(N)
K <- ncol(Q)
lambda <- data.frame(a = rep(1, K), b = seq(-2, 2, length.out = K))
sim <- simGDINA(N, Q, gs.parm = gs, model = "DINA", att.dist = "higher.order",
               higher.order.parm = list(theta = theta, lambda = lambda))

# Example 8
# Data simulation (higher-order CDMs)
Q <- sim30GDINA$simQ
gs <- matrix(0.1, nrow(Q), 2)
models <- c(rep("GDINA", 5),
            rep("DINO", 5),
            rep("DINA", 5),
            rep("ACDM", 5),
            rep("LLM", 5),
            rep("RRUM", 5))
N <- 500
set.seed(12345)
theta <- rnorm(N)
K <- ncol(Q)
lambda <- data.frame(a = runif(K, 0.7, 1.3), b = seq(-2, 2, length.out = K))
sim <- simGDINA(N, Q, gs.parm = gs, model = models, att.dist = "higher.order",
               higher.order.parm = list(theta = theta, lambda = lambda))

# Example 9
# Data simulation (higher-order model)
# using the multivariate normal threshold model
# See Chiu et al., (2009)

N <- 500
Q <- sim10GDINA$simQ
K <- ncol(Q)
gs <- matrix(0.1,nrow(Q),2)
cutoffs <- qnorm(c(1:K)/(K+1))
m <- rep(0,K)
vcov <- matrix(0.5,K,K)
diag(vcov) <- 1
simMV <- simGDINA(N,Q,gs.parm = gs, att.dist = "mvnorm",
                   mvnorm.parm=list(mean = m, sigma = vcov,cutoffs = cutoffs))

# Example 10
# Simulation using
# user-specified att structure#

# --- User-specified attribute structure ----#
Q <- sim30GDINA$simQ
K <- ncol(Q)
# divergent structure A1->A2->A3;A1->A4->A5;A1->A4->A6
diverg <- list(c(1,2),
c(2,3),
c(1,4),
c(4,5))
struc <- att.structure(diverg,K)

# data simulation
N <- 1000
# data simulation
gs <- matrix(0.1,nrow(Q),2)
simD <- simGDINA(N,Q,gs.parm = gs,
                 model = "DINA",att.dist = "multinomial",att.prior = struc$att.prob)

# Example 11
# (GDINA with monotonicity constraints)#

set.seed(12345)
N <- 500
Q <- sim30GDINA$simQ
J <- nrow(Q)
gs <- data.frame(guess=rep(0.1,J),slip=rep(0.1,J))
# Simulated different CDMs for different items
sim <- simGDINA(N,Q,gs.parm = gs,model = "GDINA",gs.args=list(mono.constraint=TRUE))

# True item success probabilities
extract(sim,what = "catprob.parm")

# True delta parameters
extract(sim,what = "delta.parm")

# simulated data
extract(sim,what = "dat")

# simulated attributes
extract(sim,what = "attribute")

# Example 12
# Data simulation
# (Sequential G-DINA model - polytomous responses)

set.seed(12345)
N <- 2000
# restricted Qc matrix
Qc <- sim20seqGDINA$simQ
# total number of categories
J <- nrow(Qc)
gs <- data.frame(guess=rep(0.1,J),slip=rep(0.1,J))
# simulate sequential DINA model
simseq <- simGDINA(N, Qc, sequential = TRUE, gs.parm = gs, model = "GDINA")

# True item success probabilities
extract(simseq,what = "catprob.parm")

# True delta parameters
extract(simseq,what = "delta.parm")

# simulated data
extract(simseq,what = "dat")

# simulated attributes
extract(simseq,what = "attribute")

# Example 13
# DINA model Attribute generated using multinomial distribution

Q <- sim10GDINA$simQ
gs <- matrix(0.1,nrow(Q),2)
N <- 5000
set.seed(12345)
prior <- c(0.1,0.2,0,0,2,0,0,0.5)
sim <- simGDINA(N,Q,gs.parm = gs, model="DINA", att.dist = "multinomial", att.prior = prior)
# check latent class sizes
table(sim$att.group)/N

#############################################################################
# Example 14
# MS-DINA model
#############################################################################

Q <- matrix(c(1,1,1,1,0,
              1,2,0,1,1,
              2,1,0,0,
              3,1,0,1,0,
              4,1,0,0,1,
              5,1,1,0,0,
              5,2,0,0,1),ncol = 5,byrow = TRUE)
d <- list(
  item1=c(0.2,0.7),
  item2=c(0.1,0.6),
  item3=c(0.2,0.6),
  item4=c(0.2,0.7),
  item5=c(0.1,0.8))

set.seed(12345)
sim <- simGDINA(N=1000,Q = Q, delta.parm = d,
                model = c("MSDINA","MSDINA","DINA","DINA","DINA","MSDINA","MSDINA"))

# simulated data
extract(sim,what = "dat")
# simulated attributes
extract(sim,what = "attribute")
## End(Not run)

startGDINA

startGDINA

Graphical user interface of the GDINA function

Description

An experimental interactive Shiny application for running GDINA function

Usage

startGDINA()
unique_only

Author(s)

Wenchao Ma, The University of Alabama, <wenchao.ma@ua.edu>

Examples

```r
Not run:
library(shiny)
library(shinydashboard)
startGDINA()

End(Not run)
```

---

**unique_only**    
*Unique values in a vector*

Description

Unique values in a vector

Usage

```r
unique_only(vec)
```

Arguments

- `vec` a vector

Value

sorted unique values

See Also

`unique`

Examples

```r
vec <- c(4,2,3,5,4,4,4)
unique_only(vec)
see the difference from unique
unique(vec)

vec <- letters[1:5]
unique_only(vec)
```
unrestrQ  

*Generate unrestricted Qc matrix from an restricted Qc matrix*

**Description**

Generate unrestricted Qc matrix from an restricted Qc matrix

**Usage**

`unrestrQ(Qc)`

**Arguments**

- **Qc**
  an restricted Qc matrix

**Value**

an unrestricted Qc matrix

**Examples**

```r
Qc <- sim21seqDINA$simQc
Qc
unrestrQ(Qc)
```
Index

*Topic datasets
  ecpe, 20
  frac20, 23
  sim10GDINA, 70
  sim10MCDINA, 70
  sim20seqGDINA, 71
  sim21seqDINA, 71
  sim30DINA, 72
  sim30GDINA, 72
  sim30pGDINA, 73

*Topic package
  GDINA-package, 3

anova, 24
anova.GDINA (GDINA), 23
attributepattern, 7
auglag, 28
autoGDINA, 6, 8, 10, 13, 16, 17, 19, 23, 45, 51, 53, 57, 60–64, 67, 74, 76
GDINA-package, 3
GMSCDM, 4, 19, 33, 44
ILCA, 46
indlogLik, 47
indlogLik.GDINA (GDINA), 23
indlogPost, 48
indlogPost.GDINA (GDINA), 23
itemfit, 4, 21, 33, 48, 64
itemparm, 50
LC2LG, 51
logLik.GDINA (GDINA), 23
MCmodel, 52
modelcomp, 4, 8, 10, 21, 33, 55
modelfit, 4, 33, 59
monocheck, 24, 60
nloptr, 28
nobs.GDINA (GDINA), 23
npar, 61
npar.GDINA (GDINA), 23
personparm, 24, 28, 29, 61
personparm.GDINA (GDINA), 23
plot, 24
plot.DINA, 62
plot.itemfit, 63
plot.Qval, 64
Qval, 4, 8, 10, 21, 33, 63, 65
rowMatch, 68
score, 69

extract.simGDINA (simGDINA), 74
frac20, 23
GDINA, 3, 6, 8, 10, 13, 16, 17, 19, 23, 45, 51, 53, 57, 60–64, 67, 74, 76
GDINA-package, 3
GMSCDM, 4, 19, 33, 44
ILCA, 46
indlogLik, 47
indlogLik.GDINA (GDINA), 23
indlogPost, 48
indlogPost.GDINA (GDINA), 23
itemfit, 4, 21, 33, 48, 64
itemparm, 50
LC2LG, 51
logLik.GDINA (GDINA), 23
MCmodel, 52
modelcomp, 4, 8, 10, 21, 33, 55
modelfit, 4, 33, 59
monocheck, 24, 60
nloptr, 28
nobs.GDINA (GDINA), 23
npar, 61
npar.GDINA (GDINA), 23
personparm, 24, 28, 29, 61
personparm.GDINA (GDINA), 23
plot, 24
plot.DINA, 62
plot.itemfit, 63
plot.Qval, 64
Qval, 4, 8, 10, 21, 33, 63, 65
rowMatch, 68
score, 69
sim10GDINA, 70
sim10MCDINA, 70
sim20seqGDINA, 71
sim21seqDINA, 71
sim30DINA, 72
sim30pGDINA, 73
simDTM, 73
simGDINA, 33, 74
slsqp, 28
solnp, 28
startGDINA, 24, 84
summary.autoGDINA(autoGDINA), 8
summary.dif(dif), 16
summary.GDINA(GDINA), 23
summary.itemfit(itemfit), 48
summary.modelcomp(modelcomp), 55
summary.Qval(Qval), 65

unique, 85
unique_only, 85
unrestrQ, 86

vcov.GDINA(GDINA), 23