Package ‘GEVStableGarch’

August 20, 2015

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>ARMA-GARCH/APARCH Models with GEV and Stable Distributions</td>
</tr>
<tr>
<td>Version</td>
<td>1.1</td>
</tr>
<tr>
<td>Date</td>
<td>2015-08-19</td>
</tr>
<tr>
<td>Description</td>
<td>Package for simulation and estimation of ARMA-GARCH/APARCH models with GEV and stable distributions.</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>Depends</td>
<td>R(>= 2.15.0),Rsolnp,methods,skewt</td>
</tr>
<tr>
<td>Imports</td>
<td>fGarch,fExtremes,stabledist,timeDate,timeSeries</td>
</tr>
<tr>
<td>Enhances</td>
<td>stable</td>
</tr>
<tr>
<td>Note</td>
<td>Package stable is available at http://www.robustanalysis.com</td>
</tr>
<tr>
<td>LazyData</td>
<td>yes</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>Author</td>
<td>Thiago Sousa [aut, cre],</td>
</tr>
<tr>
<td></td>
<td>Cira Otiniano [ctb],</td>
</tr>
<tr>
<td></td>
<td>Silvia Lopes [ctb],</td>
</tr>
<tr>
<td></td>
<td>Diethelm Wuertz [ctb, cph]</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Thiago Sousa thiagoestatistico@gmail.com</td>
</tr>
<tr>
<td>Repository</td>
<td>CRAN</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2015-08-20 10:39:40</td>
</tr>
</tbody>
</table>

R topics documented:

- GEVStableGarch-package ... 2
- Datasets ... 3
- gat ... 4
- GEVSTABLEGARCH-class ... 6
- GEVSTABLEGARCHSPEC-class ... 7
- gsFit ... 8
- gsMomentAparch ... 13
- gsSelect ... 15
GEVStableGarch-package

ARMA-GARCH/APARCH modelling with GEV and stable distributions

Description

This package is designed to perform maximum likelihood estimation of ARMA-GARCH/APARCH models with generalized extreme distribution (GEV), stable, generalized asymmetric t (GAt) and skew Student’s t from Fernandez and Steel (1998). The package also allows the researcher to restrict the search within the stationarity region (see the gsFit function). Other common conditional distribution (normal, Student’s t and generalized error distribution (GED)) are also allowed since they are very important for testing purposes.

Details

Package: GEVStableGarch
Type: Package
Version: 1.1
Date: 2015-07-19
License: GPL(>=2)
Depends: R(>= 2.15.0), fGarch, fExtremes, stabledist, skewt, Rsolnp

GARCH models have proven to be highly effective for analyzing financial data over the past decades. In particular, the combination of ARMA-GARCH models with stable and GEV distributions was successfully applied for forecasting volatility and for the measurement of Value at Risk (VAR).

Choosing the normal distribution as probability distribution for the innovations was a common choice in the beginning of the development of ARCH-type models. But recent research Nolan (1999), Mittnik et al. (2002), Mittnik and Paolella (2003), Curto et al. (2006), Frain (2009), Zhao et al. (2011) has shown that other distributions should be considered, specially because normal distribution can not account for fat tails and asymmetry found in real data.

This package contains functions for simulating and estimating ARMA-GARCH or ARMA-APARCH models using the maximum likelihood technique (MLE) under different assumptions: GEV, stable, GAt (also known as t3-distribution) and skew Student’s t (Fernandez and Steel (1998)).

The current version of package GEVStableGarch has a new algorithm that allows the user to enforce stationarity during estimation. Additionaly, it contains functions for selecting the best model according to a predetermined goodness-of-fit criteria (see gsSelect).
Time Series Simulation

Contains functions to simulate ARMA-GARCH/APARCH processes with conditional GEV or stable distributions. Note: These routines were adapted from functions garchSpec and garchSim available in fGarch package to make the interfaces more similar.

Functions:

- **gsSpec** Specifies an univariate ARMA-GARCH/APARCH model,
- **gsSim** Simulates an ARMA-GARCH/APARCH process.

Parameter Estimation

Contains functions to fit the parameters of ARMA-GARCH/APARCH time series processes.

Functions:

- **gsFit** Fits the parameters of an ARMA-GARCH/APARCH process.
 This function also provides an algorithm to enforce stationarity during estimation,
- **gsSelect** Selects the best model according to a goodness-of-fit criteria.

Other Conditional Distribution Functions

Contains functions to compute density, distribution, quantiles and generate random values using important conditional distributions used in the garch literature.

Functions:

- **[dpqr]skstd** Skew Student’s t distribution function from Fernandez and Steel (1998),
- **[dpqr]gat** Generalized Asymmetric t distribution (GAt).
 The GAt distribution was also referred in the literature as t3-distribution.
- **gsmomentaparch** Computes APARCH Moments of the form \(E(|Z| - \gamma Z)\delta \) for several distributions using analytical expressions (except for the GEV case).

Author(s)

Thiago do Rego Sousa, Cira Etheowalda Guevara Otiniano and Silvia Regina Costa Lopes.
Maintainer: Thiago do Rego Sousa <thiagoestatistico@gmail.com>
dem2gbp

The vector dem2gbp contains daily observations of the Deutschmark vs British Pound foreign exchange rate log-returns. This data set has been promoted as an informal benchmark for GARCH time-series software validation. See McCullough and Renfro (1999), and Brooks, Burke, and Persand (2001) for details. The nominal returns are expressed in percent as in Bollerslev and Ghysels (1996). The sample period is from January 3, 1984, to December 31, 1991, for a total of 1974 observations.

sp500dge

The vector sp500dge contains daily returns from the SP500 index as used in the paper of Ding, Granger and Engle (1993). The sample period is from January 3, 1928 to August 30, 1991 for a total of 17055 observations.

References

gat Generalized Asymmetric t Distribution

Description

Functions to compute density, distribution function, quantile function and to generate random variates for the generalized asymmetric t distribution (GAt). Notice that this is the same t3-distribution mentioned in the literature and defined by Paolella (1997) and Mittnik and Paolella (2000). The GAt distribution includes the Student’s t, Laplace, Cauchy and the normal distribution when the shape parameter ($\nu \to \infty$) (see Mittnik and Paolella (2000)).

Usage

dgat(x, mean = 0, sd = 1, nu = 2, d = 3, xi = 1, log = FALSE)
pgat(q, mean = 0, sd = 1, nu = 2, d = 3, xi = 1)
qgat(p, mean = 0, sd = 1, nu = 2, d = 3, xi = 1)
rgat(n, mean = 0, sd = 1, nu = 2, d = 3, xi = 1)
Arguments
mean, sd, d, nu, xi
location parameter mean, scale parameter sd, shape 1 parameter nu, shape 2
d parameter d, asymmetry parameter xi.
n the number of observations.
p a numeric vector of probabilities.
x, q a numeric vector of quantiles.
log a logical; if TRUE, densities are given as log densities.

Value
d* returns the density, p* returns the distribution function, q* returns the quantile function, and r*
generates random deviates,
all values are numeric vectors.

Author(s)
Thiago do Rego Sousa

References
Mittnik, S., Paolella, M.S. (2000). *Prediction of Financial Downside-Risk with Heavy-Tailed Con-
ditional Distributions* Available at SSRN 391261.

Examples

```r
# Simulate Random Values and compare with
# the empirical density and probability functions
# Note: This example was addapted from "sstd (fGarch) R Documentation"

# Configure plot and generate random values
par(mfrow = c(2, 2))
set.seed(1000)
r = rgat(n = 1000)
plot(r, type = "l", main = "GAt Random Values", col = "steelblue")

# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
box()
x = seq(min(r), max(r), length = 201)
lines(x, dga(x), lwd = 2)

# Plot density function and compare with true df:
plot(sort(r), (1:1000/1000), main = "Probability", col = "steelblue",
     ylab = "Probability")
lines(x, pga(x), lwd = 2)
```
Compute quantiles:
Here we compute the quantiles corresponding to the probability points from
-10 to 10 and expect to obtain the same input sequence
round(pquantile(qgat(pquantile(q = seq(-10, 10, by = 0.5)), digits = 6))

GEVSTABLEGARCH-class
Class "GEVSTABLEGARCH"

Description

The class GEVSTABLEGARCH represents an ARMA-GARCH/APARCH model estimated with function `gsfit`.

Objects from the Class

Objects can be created by calling function `gsfit`. This object contains the estimated parameters of a time series process.

Slots

- **call**: Object of class "call": the call of the `gsfit` function.
- **formula**: Object of class "formula": a formula object specifying mean and variance equation.
- **method**: Object of class "character": a string describing the optimization method used to search for the optimum value.
- **convergence**: Object of class "numeric": an integer code. 0 indicates successful convergence of the estimation method used to perform the optimization of the log-likelihood function. A value different from zero indicates a failure in achieving convergence. Notice that sometimes the optimization algorithm will return a "true" convergence, even when the optimized negative log-likelihood equals to 1e99. In this case, we set the variable `convergence` to 1 to indicate that convergence was not achieved. In the general case, the variable `convergence` assumes the same value reported by the internal solver used inside function `gsfit`. Hence, additional interpretation of the convergence codes can be made by using the R help of the corresponding optimization routine: `solnp` ("sqp" and "sqp.restriction" algorithms) or `nlminb` ("nlminb" and "nlminb+nm" algorithms).
- **messages**: Object of class "list": a character string giving additional informations collected during estimation.
- **data**: Object of class "numeric": a numeric vector containing the data of the time series to be estimated.
- **fit**: Object of class "list": a list with the results from the parameter estimation.
- **residuals**: Object of class "numeric": a numeric vector with the residual values.
- **h.t**: Object of class "numeric": a numeric vector with the conditional variances.
- **sigma.t**: Object of class "numeric": a numeric vector with the conditional standard deviations.
- **title**: Object of class "character": a string with the title.
- **description**: Object of class "character": a string with a description.
Methods

show signature(object = "GEVSTABLEGARCH"): prints an object of class 'GEVSTABLEGARCH'.

Author(s)

Thiago do Rego Sousa for the latest modifications
Diethelm Wuertz for the original implementation of the fGARCH-class from package fGarch

References

GEVSTABLEGARCHSPEC-class

Class "GEVSTABLEGARCHSPEC"

Description

This class represents an ARMA-GARCH/APARCH model with innovations following an univariate distribution with zero location and unit scale.

Objects from the Class

Objects can be created by calls of the function gsspec. This object specifies an univariate ARMA-GARCH/APARCH model with GEV or stable conditional distribution. Note that we only allow the user to create an object that do not violate the model specifications. For more details about the definition of those models see: see Mittnik and Paolella (2000) (GAt innovations), Mittnik et al. (2002) (stable innovations), Zhao et al. (2011) (GEV innovations) Wuertz et al. (2009) (finite variance innovations).

Slots

call: Object of class "call": the call of the gsspec function.
formula: Object of class "formula": a list with two formula entries for the mean and variance equation of the combined ARMA-GARCH/APARCH model.
model: Object of class "list": a list with the model parameters specifying the model parameters (see the model definition described in function gsfit.
presample: Object of class "matrix": a numeric matrix with presample values.
distribution: Object of class "character": a character string with the name of the conditional distribution.
rseed: Object of class "numeric": an integer with the random number generator seed.
Methods

show signature(object = "GEVSTABLEGARCHSPEC"): prints an object of class 'GEVSTABLEGARCH'

Author(s)

Thiago do Rego Sousa for the latest modifications
Diethelm Wuertz for the original implementation of the fGARCHSPEC-class from package fGarch

References

gsFit

Estimation of ARMA-GARCH/APARCH models

Description

This function uses Maximum Likelihood technique to estimate the parameters of ARMA-GARCH or ARMA-APARCH model with several conditional distributions. The user can also enforce stationarity during estimation

Usage

gsFit(formula = ~garch(1, 1), data, cond.dist = c("stableS0", "stableS1", "stableS2", "gev", "gat", "norm", "std", "sstd", "skstd", "ged"), include.mean = TRUE, algorithm = c("sqp", "sqp.restriction", "nlminb", "nlminb+nm"), control = NULL, tolerance = NULL, title = NULL, description = NULL)

Arguments

formula a formula object specifying mean and variance equation. The mean equation should be specified using the names: "arma", "garch" or "aparch". For example: ~arma(1,0)-garch(1,0) for AR(1)-ARCH(1), or ~arma(0,1)-garch(2,2) for MA(1)-GARCH(2,2).
data a numeric vector containing the data of the time series to be estimated.
cond.dist a character string naming the conditional distribution of innovations. The package was created to accept the following distributions: "stableS0" (stable in S0-parameterization), "stableS1" (stable in S1-parameterization), "stableS2" (stable in S2-parameterization), "gev", "gat" and "skstd" (skew Student’s t from Fernandez and Steel (1998)). Other common conditional distribution (normal, Student’s t, "sstd" (skew Student’s t from fGarch package) and GED) are also allowed since they are very important for testing purposes.

include.mean This is a boolean variable. It intercept is TRUE than we estimate the model with intercept.

algorithm The algorithm to be used to search for the optimum value. The current version of the GEVStableGarch package implements four different optimization procedures, namely the "sqp", "sqp.restriction" (enforce stationarity), "nlminb" and "nlminb+nm". See the details section for more information about the estimation algorithms.

tolerance Control parameters passed to the optimization routine. For the "sqp" and "sqp.restriction" algorithms the control parameters are passed to the solnp function from Rsolnp package. For the other algorithms ("nlminb" and "nlminb+nm") the control parameters are passed to the nlminb function from stats package.

title a string with the title.
description a string with a description.

Details

The starting values of the model parameters are key in getting any possible convergence and they were chosen to reflect this. For example, the GEV shape starting value was chosen to be 0 since in this case the support of the distribution with zero location and unit scale will encompasses both positive and negative parts of the real line (the support is at (-\infty, +\infty)).

The parameters will be interpreted according to the following equations (see Wurtz et al., 2009)

\[X_t = \mu + \sum_{i=1}^{m} a_i X_{t-i} + \sum_{j=1}^{n} b_j \varepsilon_{t-j} + \varepsilon_t \]

\[\varepsilon_t = \sigma_t z_t, \quad z_t \overset{iid}{\sim} D(0, 1), \]

\[\sigma_t^\delta = \omega + \sum_{i=1}^{p} \alpha_i (\varepsilon_{t-i} - \gamma_i |\varepsilon_{t-i}|)^\delta + \sum_{j=1}^{q} \beta_j \sigma_{t-j}^\delta \]

where \(D(0, 1) \) is the density of the innovations with zero location and unit scale and \(\vartheta \) are additional distributional parameters that describe the skew and the shape of the distribution.
Estimation Algorithms:
Most software packages implement the estimation of GARCH models without imposing stationarity, but restricting the parameter set by appropriate bounds. This last approach was implemented in the GEVStableGarch package through the following algorithms: "sqp", "nlminb" and "nlminb + nm". The first two algorithms search for the optimum value by restricting the parameter set to appropriate lower and upper bounds. The last implements a two step optimization procedure, which consists in starting the search by using the constrained routine nlminb and then performing another search using an unconstrained method (in our case the Nelder-Mead method implemented in the R base function optim). This approach was suggested by Wuertz et al. (2009) since in many cases it leads to an improved solution (in terms of the likelihood function of the data).
Finally, the "sqp.restriction" algorithm performs a constrained search to maximize the log-likelihood function in order to obtain an stationary model. It can be used to estimate models with the following conditional distributions: "stableS1", "gev", "gat", "skstd", "norm", "std" and "ged".

Stationarity Solutions:
Since we want to estimate the parameters that better adjust real data to ARMA-APARCH models, the notion of stationarity is crucial. Usually, even when the data set is non-stationary in appearance, we still are able to apply transformation techniques so that the resulting time series can be reasonably modeled as a stationary process (see Brockwell and Davis (1996)). The APARCH(p,q) model with finite variance innovations has a unique δ-order stationary solution if and only if (see Ling and McAller (2002))

$$\sum_{i=1}^{p} E(|Z| - \gamma_i Z)^{\delta} \alpha_i + \sum_{j=1}^{q} \beta_j < 1,$$

The case of infinite variance has a somewhat different historical background. The first assumption made on stable distributions is that the index of stability α must be greater than one, because in this case the innovations have finite first moment. The second assumption is that they must have a δ-moment finite, which means that we must restrict our model to $1 < \delta < \alpha$.
Diongue et al. (2008) showed that the APARCH(p,q) (all coefficients $\gamma_i = 0$) model has a strictly stationary solution if and only if

$$\sum_{i=1}^{p} E(|Z| - \gamma_i Z)^{\delta} \alpha_i + \sum_{j=1}^{q} \beta_j < 1,$$

where Z has distribution $S(\alpha, \beta; 1)$ (stable in 1-parameterization). The estimation of stationary models is mainly dependent on the time taken to evaluate the expression for the asymmetric stable distribution $E(|Z| - \gamma_i Z)^{\delta}$.

The moment expression used to verify the stationarity condition is given by

$$E(|Z| - \gamma Z)^{\delta} = \frac{(1 - \gamma)^{\delta} \delta^{\delta + 1} \Gamma(\delta + 1) \Gamma(-\frac{\delta}{\alpha})}{\alpha \delta \Gamma\left[\frac{1}{2} + \frac{\beta k(\alpha)}{2\alpha}\right] (-\delta)\Gamma\left[\frac{1}{2} - \frac{\beta k(\alpha)}{2\alpha} + \left(\frac{1}{2} + \frac{\beta k(\alpha)}{2\alpha}\right)\right]} + \frac{(1 + \gamma)^{\delta} \delta^{\delta + 1} \Gamma(\delta + 1) \Gamma(-\frac{\delta}{\alpha})}{\alpha \delta \Gamma\left[\frac{1}{2} - \frac{\beta k(\alpha)}{2\alpha}\right] (-\delta)\Gamma\left[\frac{1}{2} + \frac{\beta k(\alpha)}{2\alpha} + \left(\frac{1}{2} - \frac{\beta k(\alpha)}{2\alpha}\right)\right]}.$$
where

\[\tilde{\sigma} = \left[1 + \beta^2 \tan^2 \left(\frac{\alpha \pi}{2} \right) \right]^{\frac{1}{2}}, \]

\[k(\alpha) = \begin{cases} \alpha, & \alpha < 1, \\ \alpha - \frac{2}{\pi}, & \alpha > 1, \end{cases} \]

and

\[\tilde{\beta} = \begin{cases} \frac{2}{\pi \alpha} \arctan(\beta \tan(\frac{\alpha \pi}{2})), & 0 < \alpha < 1, \\ \frac{2}{\pi(\alpha - 2)} \arctan(\beta \tan(\frac{\pi(\alpha - 2)}{2})), & 1 < \alpha < 2. \end{cases} \]

Notice that this expression is only valid for the stable distribution in 1-parameterization, and thus cannot be used to estimate models with stable distribution in 0 or 2 parameterizations.

The stationarity restriction implemented inside GEVStableGarch package imposes the following restriction

\[\sum_{i=1}^{\nu} E(|Z| - \gamma_i Z)^\delta \alpha_i + \sum_{j=1}^{\eta} \beta_j < 1 - \text{TOL.STATIONARITY}, \]

where the variable TOL.STATIONARITY is set to 0.001 by default. For numerical reasons, the value of this variable cannot be greater than 0.05.

Value
gsFit
returns a S4 object of class "GEVSTABLEGARCH" with the following slots:

@call the call of the gsFit function.
@formula a list with two formula entries, one for the mean and the other one for the variance equation.
@method a string denoting the optimization method.
@data a numeric vector containing the data of the estimated time series.
@fit a list with the results from the parameter estimation:
par - the estimated parameters;
llh - the estimated negative log-likelihood function;
hessian - the hessian matrix returned by the optimization algorithm;
ics - the value of the goodness-of-fit measures (AIC, AICc and BIC) (See Brockwell and Davis, 2002 for more details);
order - a list with the ARMA and GARCH/APARCH orders;
cond.dis - the conditional distribution;
se.coef - standard errors of the estimated parameters;
tValue - tValue of the estimated parameters;
matcoef - an organized matrix with the estimated parameters.
@residuals a numeric vector with the residual values (\(\varepsilon_t \)).
@h.t a numeric vector with the conditional variance (\(h_t = \sigma_t^2 \)).
@sigma.t a numeric vector with the conditional standard deviation (σ_t).
@title a string with the title.
@description a string with a description.

The entries of the @fit slot show the results from the optimization.

Enhances

The estimation of ARMA-GARCH/APARCH models with conditional stable distribution is mainly dependent on the time taken during the calculation of density points. Although the package can be used with the R stabledist package, the estimation of such models is only feasible if we use the fast implementation of stable densities using the R stable package designed by J.P.Nolan (see http://academic2.american.edu/~jpnolan/stable/stable.html).

The stable package implements a faster computation of stable densities that are accurately enough to perform numerical optimization and is available at http://www.robustanalysis.com.

Author(s)

Thiago do Rego Sousa, Cira Etheowalda Guevara Otiniano and Silvia Regina Costa Lopes

References

Computation of moments for several conditional distribution

Description

Computation of the moments expression \(E(\left| Z \right| - \gamma Z)^{\delta} \) where \(D_\theta(0,1) \) is the density of the innovations with zero location and unit scale and \(\theta \) are additional distributional parameters that describe the skew and the shape of the distribution.

Usage

```r
gsMomentAparch(cond.dist = c("stableS1", "gev", "gat", "norm", "std", "sstd", "skstd", "ged"), shape = 1.5, skew = 0, delta = 1, gm = 0)
```

Arguments

- **cond.dist**: a character string naming conditional distribution of innovations. The package was created to accept the following distributions: "stableS0", "stableS1", "stableS2", "gev" and "gat". Other common distributions are also possible such as the "norm", "std", "sstd", "skstd", "ged".
- **shape, skew**: The shape and skew parameter for the conditional distribution. For the stable distribution the shape and skew are the index of stability (\(\alpha \)) and the asymmetry parameter (\(\beta \)). For the Generalized Asymmetric t distribution there are two shape parameters (\(\nu \) and \(\delta \)) and one asymmetry parameter called \(\xi \). For the skew Student’s t distribution the shape is the degrees of freedom (\(\nu \)) and \(\xi \) is the asymmetry parameter. Finally, for the GEV distribution the shape parameter is called \(\xi \).
- **delta, gm**: The \(\delta \) and \(\gamma \) parameters of the ARMA-GARCH/APARCH model. See the R documentation of function `gsFit` for more details.
Details

For each conditional distribution, the evaluation of the moment expression $E(|Z| - \gamma Z)^\delta$ is crucial if one is interested in finding a stationary solution. Analytical expressions to compute these moments are available throughout the GARCH literature for many conditional distributions and we have derived an efficient formula for the asymmetric stable case. It is true that we can use numerical integration to compute those moments but there are several drawbacks that represent limitations. The first one is that numerical integration is always slower than using a closed expression to compute those formulas. The second is that this technique fails when the distribution becomes very pick or very concentrated on a small portion of the real line. For example, if we use the R base function integrate to calculate the area total probability on the interval $(-\infty, \infty)$ for the standard gat distribution with parameters $\nu = 2, d = 0.05$ and $\xi = 1$ we get $3.690067e - 07$, which is not true since the total probability must be 1. Therefore, it is very important for us to have the exact expression for all those moments in order to evaluate correctly the stationarity restrictions.

The gsMomentAparch function can be used to compute those expressions for the following distributions: Normal, Student’s t, skewed Student’s t from Fernandez and Steel (1998), GED, stable in its 1-parameterization and the GAt distribution. Only for the GEV distribution we use numerical integration.

Note: The GEVStableGarch package implements a slightly different version of the Student’s skew distribution that is different from the one implemented inside the fGarch package. Therefore, the APARCH moment formula is only valid for the GEVStableGarch implementation (skstd) and not for the fGarch implementation sstd.

Value

Returns the following expression for several conditional distributions $E(|Z| - \gamma Z)^\delta$. If any of the input parameters are outside the parameter space, this function returns ∞.

Author(s)

Thiago do Rego Sousa.

References

Examples

```r
# Computation of the Moment E( |Z| - gamma Z) ^ delta for several distributions
gsMomentAparch(cond.dist = "stableS1", shape = 1.1, skew = 0, delta = 1.01, gm = 0.99999)
gsMomentAparch(cond.dist = "gev", shape = -4, skew = 0, delta = 1.4, gm = 0)
gsMomentAparch(cond.dist = "gat", shape = c(1.9,2.3), skew = 0.5, delta = 0.4, gm = 0)
gsMomentAparch(cond.dist = "norm", shape = c(1.9,2.3), skew = 1, delta = 11.4, gm = -0.999)
gsMomentAparch(cond.dist = "std", shape = 2.001, skew = -0.5, delta = 2, gm = -0.99)
gsMomentAparch(cond.dist = "sstd", shape = 2.001, skew = 0.11, delta = 2, gm = -0.99)
gsMomentAparch(cond.dist = "skstd", shape = 5.001, skew = 0.11, delta = 3, gm = -0.5)
gsMomentAparch(cond.dist = "ged", shape = 6, skew = 0.11, delta = 5.11, gm = -0.5)
```

gsSelect

Selects the best model according to goodness-of-fit criteria

Description

This function estimates ARMA-GARCH/APARCH models with varying order and returns the one with the smallest goodness-of-fit criteria.

Usage

```r
gsSelect(data, order.max = c(1, 1, 1, 1),
selection.criterias = c("AIC", "AICc", "BIC"), is.aparch = FALSE,
cond.dist = c("stableS0", "stableS1", "stableS2", "gev",
"gat", "norm", "std", "sstd", "skstd", "ged"),
include.mean = TRUE,
algorithm = c("sqp", "sqp.restriction", "nlminb", "nlminb+nm"), ...)
```

Arguments

- **data**
 Data with the time series to be estimated. It must be a numeric vector not contain NA, NULL or Inf values.

- **order.max**
 Maximum order of models to search. It must be a vector of the type c(mMax, nMax, pMax, qMax) with each entry representing the maximum order of the model that will be fitted when searching for the best model.

- **selection.criterias**
 The goodness-of-fit criterion to be used when searching for the best model. Three different criterias are allowed: AIC, AICc or BIC. For more information see Brockwell and Davis (1996).
is.aparch

Boolean variable indicating whether to search for ARMA-GARCH or ARMA-APARCH models.

cond.dist

a character string naming conditional distribution of innovations. The package was created to accept the following distributions: "stableS0", "stableS1", "stableS2", "gev" and "GAt". Other common distributions are also possible such as the "norm", "std", "sstd", "skstd", "ged".

include.mean

This is a boolean variable. It intercept is TRUE than we estimate the model with intercept.

algorithm

The algorithm to be used to search for the optimum value. The current version of the GEVStableGarch package implements four different optimization procedures, namely the "sqp", "sqp.restriction" (enforce stationarity), "nlminb" and "nlminb+nm". See the details section for more information about the estimation algorithms.

... Additional parameters to be passed to function gsFit during estimation.

Value

Returns a S4 object of class "GEVSTABLEGARCH" with the best model. See GEVSTABLEGARCH-class for details.

Author(s)

Thiago do Rego Sousa.

References

Examples

Best ARMA-GARCH model within the range ARMA(0,0)-GARCH(1,0) to ARMA(0,0)-GARCH(1,1)
using the Corrected Akaike Information Criteria (AICc)
data(demgbp)
x = demgbp[,1]
model = gsSelect (data = x, order.max = c(0,0,1,1), is.aparch = FALSE,
algorithm = "sqp", cond.dist = "gev", selection.criterias = "AIC",
include.mean = FALSE)
gsSim

Simulation of ARMA-GARCH/APARCH process

Description

This function simulates time series following ARMA-GARCH/APARCH models with GEV and stable distributions. This function was developed through the available code from fGarch package available at CRAN.

Usage

\[
gsSim(spec = \text{gsSpec()}, n = 100, n.start = 100)
\]

Arguments

- `spec`: A model specified with function \text{gsSpec}.
- `n`: The size of simulated time series.
- `n.start`: Length of the "burn-in" period of the simulated time series.

Details

The initial values of the time series are fixed and the recursion formulas of the model are used to simulate the dynamics of the process. We do not verify the stationarity conditions of the model because the simulation of non-stationary process could also be of interest by the researcher.

Value

The function returns an object containing the following items:

- `model`: A string describing the estimated model.
- `cond.dist`: The conditional distribution used to fit the model.
- `series`: An array with three columns, where the first column contains the simulated ARMA-GARCH/APARCH process (`garch`), the second column the conditional standard deviations ("\text{sigma}"), and the last column the innovations ("\text{eps}").

Author(s)

Thiago do Rego Sousa for the latest modifications
Diethelm Wuertz for the original implementation of the garchSpec function from package fGarch
References

Examples

Simulation of a ARMA-APARCH process with stable conditional distribution
#x <- GSgarch.Sim(N = 2500, mu = 0, a = c(0.2,0.3), b = c(0.2,0.5),
#omega = 0.1, alpha = c(0.1,0.2), beta = c(0.1,0.1), gm=c(0.3,-0.3),
#delta = 1, skew = 0.3, shape = 1.9, cond.dis = "stable")

gsSpec

Specification of ARMA-GARCH/APARCH models with GEV or stable distributions

Description

Specifies an ARMA-GARCH or ARMA-APARCH model.

Usage

```r
gsSpec(model = list(), presample = NULL, 
cond.dist = c("stableS0", "stableS1", "stableS2", "nev", 
"gat", "norm", "std", "sstd", "skstd", "ged"), 
rseed = NULL)
```

Arguments

- `model` a list of ARMA-GARCH/APARCH model parameters:
 - `omega` - the coefficient of the variance equation;
 - `alpha` - the value or vector of autoregressive coefficients;
 - `beta` - the value or vector of variance coefficients;
 The values for the ARMA part are:
 - `mu` - the mean value;
 - `ar` - the autoregressive coefficients;
 - `ma` - the moving average coefficients.
 The parameters for the conditional distributions are:
 - `skew` - the skewness parameter;
 - `shape` - the shape parameter.
presample
A numeric "matrix" with 3 columns and with max(m,n,p,q) rows. The first column are the innovations, the second the conditional variances, and the last the time series. When the presample matrix is missing, it is constructed as \([z,h,y]\) where \(z \sim \text{Normal}(0,1)\), \(h = \text{"uev" recursion initialization described in Wuertz et al. (2009)}\) and \(y = \mu\). Note that the conditional variance column can contain only strictly positive numbers and the function gsSpec check for invalid values.

cond.dist
a character string naming the conditional distribution of innovations. The package was created to accept the following distributions: "stableS0" (stable in S0-parameterization), "stableS1" (stable in S1-parameterization), "stableS2" (stable in S2-parameterization), "gev", "gat" and "skstd" (skew Student's t from Fernandez and Steel (1998)). Other common conditional distribution (normal, Student's t, "sstd" (skew Student's t from fGarch package) and GED) are also allowed since they are very important for testing purposes.

rseed
the seed for the initialization of the random number generator for the innovations.

Details
This functions uses the interface of the garchSpec routine from package fGarch to simulate random values of the ARMA-GARCH/APARCH model with conditional GEV or stable distribution.

Value
The returned value is an object of class "GEVSTABLEGARCHSPEC".

Author(s)
Thiago do Rego Sousa for the latest modifications
Diethelm Wuertz for the original implementation of the garchSim function from package fGarch

References

Examples

```r
# stable-GARCH from Curto et al. (2009) for the DJIA dataset
spec.stable = gsSpec(model = list(mu = 0.0596, omega = 0.0061,
                           alpha = 0.8497, beta = 0.9325, skew = -0.9516, shape = 1.9252),
                        cond.dist = "stableS1")
sim.stable = gsSim(spec = spec.stable, n = 1000)
```
GEV-GARCH model from Zhao et al. (2011)
spec.gev = gsSpec(model = list(mu = 0.21, a = 0.32, omega = 0.01,
alpha = 0.45, beta = 0.08, shape = 0.08), cond.dist = "gev")
sim.gev = gsSim(spec = spec.gev, n = 1000)

show-methods

GEVSTABLEGARCH Package Show Methods

Description

Methods to organize the output to the user when printing objects of class GEVSTABLEGARCH and GEVSTABLEGARCHSPEC. The show methods and the classes GEVSTABLEGARCH and GEVSTABLEGARCHSPEC were developed through the available code from fGarch package available at CRAN in order to make the interfaces more similar to the user.

Methods

- signature(object = "GEVSTABLEGARCH") Print function for objects of class "GEVSTABLEGARCH"
- signature(object = "GEVSTABLEGARCHSPEC") Print function for objects of class "GEVSTABLEGARCHSPEC"

Author(s)

Thiago do Rego Sousa for the latest modifications
Diethelm Wuertz for the original implementation of the show-methods from package fGarch

References

skstd

Skew Student’s t Distribution from Fernandez and Steel (1997)

Description

Functions to compute density, distribution function, quantile function and to generate random values for the Skew Student’s t distribution from Fernandez and Steel (1997). Notice that this function is different from the skew Student’s t sstd from package fGarch. Although the two distributions use the same approach from Fernandez and Steel (1997), the second one was reparameterized in such a way that when the parameters mean = 0 and sd = 1 the distribution will have a zero mean and unit variance, no matter the value of the skew parameter. The distributions skstd and sstd are the same when the asymmetry parameter xi equals to 1, in which case they correspond to the well known Student’s t distribution std.
Usage

dskstd(x, mean = 0, sd = 1, nu = 3, xi = 1, log = FALSE)
pskstd(q, mean = 0, sd = 1, nu = 3, xi = 1)
qskstd(p, mean = 0, sd = 1, nu = 3, xi = 1)
rskstd(n, mean = 0, sd = 1, nu = 3, xi = 1)

Arguments

mean, sd, nu, xi
location parameter mean, scale parameter sd, shape parameter nu, asymmetry parameter xi.
n the number of observations.
p a numeric vector of probabilities.
x, q a numeric vector of quantiles.
log a logical; if TRUE, densities are given as log densities.

Value

d* returns the density, p* returns the distribution function, q* returns the quantile function, and r* generates random deviates.
All values are numeric vectors.

Author(s)

Thiago do Rego Sousa.

References

Examples

```r
# Simulate Random Values and compare with
# the empirical density and probability functions
# Note: This example was addapted from "sstd {fGarch} R Documentation"

# Configure plot and generate random values
par(mfrow = c(2, 2))
set.seed(1000)
r = rskstd(n = 1000)
plot(r, type = "l", main = "Skew Student's t Random Values", col = "steelblue")

# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
box()
x = seq(min(r), max(r), length = 201)
lines(x, dskstd(x), lwd = 2)
```
Plot density function and compare with true df:
plot(sort(r), (1:1000/1000), main = "Probability", col = "steelblue",
 ylab = "Probability")
lines(x, pskstd(x), lwd = 2)

Compute quantiles:
Here we compute the quantiles corresponding to the probability points from
-10 to 10 and expect to obtain the same input sequence
round(qskstd(pskstd(q = seq(-10, 10, by = 0.5))), digits = 6)
Index

*Topic **ARMA-APARCH**
 GEVStableGarch-package, 2

*Topic **ARMA-GARCH**
 GEVStableGarch-package, 2

*Topic **GAt distribution**
 GEVStableGarch-package, 2

*Topic **GEV distribution**
 GEVStableGarch-package, 2

*Topic **aparch**
 gsMomentAparch, 13

*Topic **classes**
 GEVStableGARCH-class, 6
 GEVSTABLEGARCHSPEC-class, 7

*Topic **distribution**
 gat, 4
 skstd, 20

*Topic **models**
 gsSpec, 18
 show-methods, 20

*Topic **moments**
 gsMomentAparch, 13

*Topic **stable distribution**
 GEVStableGarch-package, 2

*Topic **t3-distribution**
 GEVStableGarch-package, 2

gsSim, 17
gsSpec, 7, 17, 18
pgat (gat), 4
pskstd (skstd), 20
qgat (gat), 4
qskstd (skstd), 20
rgat (gat), 4
rskstd (skstd), 20

show, GEVSTABLEGARCH-method
 (show-methods), 20
show, GEVSTABLEGARCH-update
 (GEVSTABLEGARCH-class), 6
show, GEVSTABLEGARCHSPEC-method
 (show-methods), 20
show, GEVSTABLEGARCHSPEC-update
 (GEVSTABLEGARCHSPEC-class), 7
show-methods, 20
skstd, 20
sp500dge (Datasets), 3

Datasets, 3
dem2gbp (Datasets), 3
dgat (gat), 4
dskstd (skstd), 20
gat, 4
GEVStableGarch
 (GEVStableGarch-package), 2
GEVSTABLEGARCH-class, 6
GEVStableGarch-package, 2
GEVSTABLEGARCHSPEC-class, 7
gsFit, 2, 6, 7, 8, 13, 16
gsMomentAparch, 13
gsSelect, 2, 13, 15