Package ‘GFM’

October 12, 2022

Type Package
Title Generalized Factor Model
Version 1.1.0
Date 2021-12-24
License GPL-3
Author Wei Liu [aut, cre],
Huazhen Lin [aut],
Shurong Zheng [aut],
Jin Liu [aut]
Maintainer Wei Liu <weiliu@smail.swufe.edu.cn>
Description Generalized factor model for ultra-high dimensional variables with mixed types.
 We develop a two-step iterative procedure so that each update can be
 carried out in parallel across all variables and samples. The fast
 computation version is provided for ultra-high dimensional data,
 see examples for more details. More details can be referred to

URL https://github.com/feiyoung/GFM
BugReports https://github.com/feiyoung/GFM/issues
Depends doSNOW, parallel, R (>= 3.5.0)
Imports MASS, stats
Suggests knitr, rmarkdown
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2022-01-05 09:10:02 UTC
R topics documented:

Factorm ... 2
gendata ... 3
gfm ... 4
measurefun ... 6
singleIC ... 7

Factorm

Factor Analysis Model

Description

Factor analysis to extract latent linear factor and estimate loadings.

Usage

Factorm(X, q=NULL)

Arguments

- **X**: a \(n\)-by-\(p\) matrix, the observed data
- **q**: an integer between 1 and \(p\) or NULL, default as NULL and automatically choose \(q\) by the eigenvalue ratio method.

Value

return a list with class named fac, including following components:

- **hH**: a \(n\)-by-\(q\) matrix, the extracted latent factor matrix.
- **hB**: a \(p\)-by-\(q\) matrix, the estimated loading matrix.
- **q**: an integer between 1 and \(p\), the number of factor extracted.
- **sigma2vec**: a \(p\)-dimensional vector, the estimated variance for each error term in model.
- **propvar**: a positive number between 0 and 1, the explained proportion of cumulative variance by the \(q\) factors.
- **egvalues**: a \(n\)-dimensional(\(n<p\)) or \(p\)-dimensional(\(p<n\)) vector, the eigenvalues of sample covariance matrix.

Note

nothing

Author(s)

Liu Wei
References

See Also

gfm.

Examples

dat <- gendata(n = 300, p = 500)
res <- Factorm(dat$X)
measurefun(reshH, datH0) # the smallest canonical correlation

Description

Generate simulated data from high dimensional generalized nonlinear factor model.

Usage

gendata(seed=1, n=300, p=50, type=c('homonorm', 'heternorm', 'pois', 'norm_pois', 'pois_bino'), q=6, rho=1)

Arguments

seed
 a nonnegative integer, the random seed, default as 1.
n
 a positive integer, the sample size.
p
 an positive integer, the variable dimension.
type
 a character, specify the variables type, including type = c('homonorm', 'heternorm', 'pois', 'norm_pois', 'pois_bino').
q
 a positive integer, the number of factors.
rho
 a positive number, controlling the magnitude of loading matrix.

Value

return a list including two components:

X
 a n-by-p matrix, the observed data matrix.
H0
 a n-by-q matrix, the true latent factor matrix.
B0
 a p-by-q matrix, the true loading matrix, the last pzero rows are vectors of zeros.
ind_nz
 a integer vector, the index vector for which rows of B0 not zeros.
Note

nothing

Author(s)

Wei Liu

References

See Also

Factorm; gfm.

Examples

dat <- gendata(n=300, p = 500)
str(dat)

gfm

Generalized Factor Model

Description

This function is used to conduct the Generalized Factor Model.

Usage

```r
library(gfm)
gfm(X, group, type, q = NULL, parallel = TRUE, para.type =
    "doSNOW", ncores = 10, dropout = 0, dc_eps = 1e-04,
    maxIter = 50, q_set = 1:10, output = TRUE,
    fast_version = FALSE)
```

Arguments

- `X`:
 a matrix with dimension of `n*p` where `p` is the number of variables.
 `d` is the types of variables, `p_j` is the dimension of `j`-th type variable.
- `group`:
 a vector with length equal to `p`, specify each column of `X` belonging to which group.
- `type`:
 a `d`-dimensional character vector, specify the type of variables in each group.
 For example, `type=c("poisson", "binomial")`, and it is referred to the help file of `glm.fit` function for more details.
- `q`:
 a positive integer or empty, specify the number of factors. If `q` is `NULL`, then IC criteria is used to determined `q`. ```

parallel a logical value with TRUE or FALSE, indicates whether to use parallel computing. Optional parameter with default as TRUE.

para.type a character specifying the type of parallel including 'doSNOW' and 'parallel'.

ncore a positive integer, specify the number of cores used for parallel computing.

dropout a proper subset of $\{1, 2, ..., d\}$, specify which group to be dropped in obtaining the initial estimate of factor matrix H, and the aim is to ensure the convergence of algorithm leaded by weak signal variable types. Optional parameter with default as 0, no group dropping.

dc_eps positive real number, specify the tolerance of varying quantity of objective function in the algorithm. Optional parameter with default as $1e^{-4}$.

maxIter a positive integer, specify the times of iteration. Optional parameter with default as 50.

q_set a positive integer vector, specify the candidates of factor number q, (optional) default as c(1:10) according to Bai,2013.

output a logical value with TRUE or FALSE, specify whether output the intermediate information in iteration process, (optional) default as FALSE.

fast_version logical value with TRUE or FALSE, fast_version = TRUE: use the fast algorithm which omit the one-step updating, but it cannot ensure the estimation efficiency; fast_version = FALSE: use the original algorithm; (optional) default as FALSE;

Details

This function also has the MATLAB version at https://github.com/feiyoung/MGFM/blob/master/gfm.m, which runs faster in MATLAB environment.

Value

return a list with class name 'gfm' and including following components,

hH a n*q matrix, the estimated factor matrix.

hB a p*q matrix, the estimated loading matrix.

hmu a p-dimensional vector, the estimated intercept terms.

obj a real number, the value of objective function when the convergence achieves.

q an integer, the used or estimated factor number.

history a list including the following 7 components: (1)dB: the varied quantity of B in each iteration; (2)dH: the varied quantity of H in each iteration; (3)dc: the varied quantity of the objective function in each iteration; (4)c: the objective value in each iteration; (5)realIter: the real iterations to converge; (6)maxIter: the tolerance of maximum iterations; (7)elapsedTime: the elapsed time.

Note

nothing
Author(s)
Liu Wei

References

See Also
nothing

Examples

mix of normal and Poisson

dat <- gendata(seed=1, n=60, p=60, type='norm_pois', q=2, rho=2)
group <- c(rep(1,ncol(dat$X)/2), rep(2,ncol(dat$X)/2))
type <- c('gaussian','poisson')
we set maxIter=2 for example.
gfm2 <- gfm(dat$X, group, type, dropout = 2, q=2, output = FALSE, maxIter=2, parallel =FALSE)
measurefun(gfm2hH, datH0, type='ccor')
measurefun(gfm2hB, datB0, type='ccor')

measurefun
Assess the performance of an estimator on a matrix

Description
Evaluate the smallest cononical correlation (ccor) coefficients or F-norm (fnorm) between two matrices, where a larger ccor is better; a smaller fnorm is better.

Usage

measurefun(hH, H, type='ccor')

Arguments

hH a n-by-q matrix, the estimated matrix.
H a n-by-q matrix, the true matrix.
type a character taking value within c('ccor', 'fnorm'), default as 'ccor'.

See Also
nothing
singleIC

Value

return a real number.

Note

nothing

Author(s)

Liu Wei

Examples

dat <- gendata(n = 100, p = 200, q=2, rho=3)
res <- Factorm(dat$X)
measurefun(reshB, datB0)

singleIC IC(PC) criteria for selecting number

Description

IC(PC) criteria for selecting number of factors in generalized factor models.

Usage

singleIC(X, group, type, q_set=1:10, dropout=0, dc_eps=1e-4,
maxIter=10, output=FALSE, fast_version=TRUE)

Arguments

X a matrix with dimension of n*p(p=(p1+p2+..+p_d)), observational mixed data matrix, d is the types of variables, p_j is the dimension of j-th type variable.
group a vector with length equal to p, specify each column of X belonging to which group.
type a d-dimensional character vector, specify the type of variables in each group. For example, type=c('poisson', 'binomial'), and it is referred to the help file of glm.fit function for more details.
q_set a positive integer vector, specify the candidates of factor number q, (optional) default as c(1:10) according to Bai,2013.
dropout a proper subset of $\{1, 2, ..., d\}$, specify which group to be dropped in obtaining the initial estimate of factor matrix HS, and the aim is to ensure the convergence of algorithm leaded by weak signal variable types. Optional parameter with default as 0, no group dropping.
dc_eps positive real number, specify the tolerance of varying quantity of objective function in the algorithm. Optional parameter with default as 1e-4.
maxIter a positive integer, specify the times of iteration. Optional parameter with default as 50.

output a logical value with TRUE or FALSE, specify whether output the mediate information in iteration process, (optional) default as FALSE.

fast_version logical value with TRUE or FALSE, fast_version = TRUE: use the fast algorithm which omit the one-step updating, but it cannot ensure the estimation efficiency; fast_version = FALSE: use the original algorithm; (optional) default as FALSE;

Details
This function also has the MATLAB version at https://github.com/feiyoung/MGFM/blob/master/singleIC.m, which runs faster in MATLAB environment.

Value
return an integer, the estimated number of factors.

Note
nothing

Author(s)
Liu Wei

References

See Also
nothing

Examples
```R
## Homogeneous normal variables
dat <- gendata(q = 2, n=100, p=100, rho=3)
group <- rep(1,ncol(dat$X))
type <- 'gaussian'
# select q automatically
singleIC(dat$X, group, type, q_set = 1:3, output = FALSE)
```
Index

* Factor
 Factorm, 2
 gendata, 3
* Feature
 Factorm, 2
 gendata, 3
* GFM
 gfm, 4
* singleIC
 singleIC, 7

Factorm, 2, 4

gendata, 3
gfm, 3, 4, 4
glm.fit, 4, 7
measurefun, 6
singleIC, 7