Package ‘GGEBiplots’

July 24, 2017

Title GGE Biplots with 'ggplot2'
Version 0.1.1
Description Genotype plus genotype-by-environment (GGE) biplots rendered using 'ggplot2'. Provides a command line interface to all of the functionality contained within 'GGEBiplotGUI'.
Depends R (>= 3.3.1)
License GPL-3
Encoding UTF-8
LazyData true
Imports ggplot2 (>= 2.2.0), ggforce (>= 0.1.1), scales (>= 0.4.1), grDevices (>= 3.3.1), stats (>= 3.3.1), GGEBiplotGUI (>= 1.0-9), grid (>= 3.3.1), utils (>= 3.3.1), gge (>= 1.2)
RoxygenNote 6.0.1.9000
NeedsCompilation no
Author Sam Dumble [aut, cre], Elisa Frutos Bernal [ctb], Purificacion Galindo Villardon [ctb]
Maintainer Sam Dumble <s.dumble@stats4sd.org>
Repository CRAN
Date/Publication 2017-07-24 18:38:35 UTC

R topics documented:

CompareGens .. 2
DiscRep .. 2
EnvRelationship .. 3
ExamineEnv ... 3
ExamineGen ... 4
GGEModel ... 4
GGEPlot .. 6
MeanStability ... 8
RankEnv .. 8
CompareGenets

Compare two genotypes biplot

Description

Compare the performance of two genotypes across all environments

Usage

```r
CompareGenets(GGEMo델, G1, G2, ...)
```

Arguments

- `GGEMo델`: An object of class `GGEMo델` or `gge`.
- `G1`: genotype to compare. Must be a string which matches a genotype label.
- `G2`: genotype to compare. Must be a string which matches a genotype label and not equal to `G1`.
- `...`: Other arguments sent to `GGEPlot`.

Examples

```r
library(GGEBiplotGUI)
data(Ontario)
GGEmodel <- GGEMoдель(Ontario)
CompareGenets(GGEmodel,"cas","luc")
```

DiscRep

Discrimination vs. representativeness biplot

Description

Evaluating the environments based on both discriminating ability and representativeness

Usage

```r
DiscRep(GGEMo델, ...)
```

Arguments

- `GGEMoдель`: An object of class `GGEMoдель` or `gge`.
- `...`: Other arguments sent to `GGEPlot`.

Examples

```r
```
EnvRelationship

Examples

```r
library(GGEBiplotGUI)
data(Ontario)
GGE1<-GGEModel(Ontario)
DiscRep(GGE1)
```

Description

Relationship between environments

Usage

```r
EnvRelationship(GGEModel, ...)
```

Arguments

- `GGEModel`: An object of class `GGEModel` or `gge`
- `...`: Other arguments sent to `GGEPlot`

Examples

```r
library(GGEBiplotGUI)
data(Ontario)
GGE1<-GGEModel(Ontario)
EnvRelationship(GGE1)
```

ExamineEnv

Examine an environment

Description

Ranking the cultivars based on their performance in any given environment

Usage

```r
ExamineEnv(GGEModel, Env, ...)
```

Arguments

- `GGEModel`: An object of class `GGEModel` or `gge`
- `Env`: environment to examine. Must be a string which matches an environment label
- `...`: Other arguments sent to `GGEPlot`
Examples

```r
library(GGEBiplotGUI)
data(Ontario)
GGEl<-GGEModel(Ontario)
ExamineEnv(GGE1,"WP93")
```

ExamineGen

Examine a genotype biplot

Description

Ranking the environments based on the relative performance of any given cultivar

Usage

```r
ExamineGen(GGEModel, Gen, ...)
```

Arguments

- **GGEModel**: An object of class GGEModel or gge
- **Gen**: genotype to examine. Must be a string which perfectly matches an genotype label
- **...**: Other arguments sent to GGEPPlot

Examples

```r
library(GGEBiplotGUI)
data(Ontario)
GGEl<-GGEModel(Ontario)
ExamineGen(GGE1,"cas")
```

GGEModel

Produces genotype plus genotype-by-environment model from a 2-way table of means

Description

Calculates the GGE model where presented with a two way table of means with genotypes in rows, where genotype names are set as row names, and environments in columns, where environment names are set as column names. This function serves as a command line interface to the internal code contained within GGEBiplot. For dealing with missing data then a better implementation is available through gge.

Usage

```r
GGEModel(Data, centering = "tester", scaling = "none", SVP = "column")
```
GGModel

Arguments

Data
a data frame or matrix containing genotype by environment means with the genotypes in rows and the environments in columns. Row names and column names should be set to indicate the genotype names and environment names.

centering
centering method. Either "tester" for tester centered (G+GE), "global" for global centered (E+G+GE), "double" for double centred (GE) or "none" for no centering. Models produced without centering cannot be used in the `GGEPlot` function.

scaling
scaling method. Either "sd" for standard deviation or "none" for no scaling.

SVP
method for singular value partitioning. Either "row","column","dual" or "symmetrical".

Value

A list of class `GGModel` containing:

- coordgenotype
 plotting coordinates for genotypes from all components

- coordenviroment
 plotting coordinates for environments from all components

- eigenvalues
 vector of eigenvalues from each component

- vartotal
 overall variance

- varexpl
 percentage of variance explained by each component

- labelgen
 genotype names

- labelenv
 environment names

- axes
 axis labels

- Data
 scaled and centered input data

- centering
 name of centering method

- scaling
 name of scaling method

- SVP
 name of SVP method

References

Examples

```r
library(GGEBiplotGUI)
data(Ontario)
GGEl<-GGModel(Ontario)
GGEPlot(GGE1)
```
Description

Produces the GGE biplot as an object of class 'ggplot' from a model produced by a call to either `GGEModel` or `gge`. Nearly all stylistic attributes of output can either be customised within the function or disabled so that the user can customise output to their own liking.

Usage

```r
GGEPlot(GGEModel, type = 1, d1 = 1, d2 = 2, selectedE = NA,
        selectedG = NA, selectedG1 = NA, selectedG2 = NA,
        colGen = "forestgreen", colEnv = "blue", colSegment = "red",
        colHull = "black", sizeGen = 4, sizeEnv = 4, largeSize = 4.5,
        axis_expand = 1.2, axislabels = TRUE, axes = TRUE, limits = TRUE,
        titles = TRUE, footnote = TRUE)
```

Arguments

- `GGEModel`: An object of class `GGEModel` or `gge`
- `type`: type of biplot to produce.
 1. Basic biplot.
 2. Examine environment. See `ExamineEnv`
 3. Examine genotype. See `ExamineGen`
 4. Relationship among environments. See `EnvRelationship`
 5. Compare two genotypes. See `CompareGens`
 6. Which won where/what. See `WhichWon`
 7. Discrimination vs. representativeness. See `DiscRep`
 8. Ranking environments. See `RankEnv`
 9. Mean vs. stability. See `MeanStability`
 10. Ranking gentoypes See `RankGen`
- `d1`: PCA component to plot on x axis. Defaults to 1
- `d2`: PCA component to plot on y axis. Defaults to 2
- `selectedE`: name of the environment to examine when type=2. Must be a string which matches an environment label
- `selectedG`: name of the genotype to examine when type=3. Must be a string which matches a genotype label
- `selectedG1`: name of a genotype to compare when type=5. Must be a string which matches a genotype label
- `selectedG2`: name of a genotype to compare when type=5. Must be a string which matches a genotype label and not equal to `selectedG1`
- `colGen`: colour for genotype attributes on biplot. Defaults to "forestgreen"
colEnv colour for environment attributes on biplot. Defaults to "blue"
colSegment colour for segment or circle lines. Defaults to "red"
colHull colour for hull when type=6. Defaults to "black"
sizeGen text size for genotype labels. Defaults to 4
sizeEnv text size for environment labels. Defaults to 4
largeSize text size to use for larger labels where type=5, used for the two selected genotypes, and where type=6, used for the outermost genotypes. Defaults to 4.5
axis_expand multiplication factor to expand the axis limits by to enable fitting of labels. Defaults to 1.2
axislabels logical. If TRUE then include automatically generated labels for axes
axes logical. If TRUE then include x and y axes going through the origin
limits logical. If TRUE then automatically rescale axes
titles logical. If TRUE then include automatically generated titles
footnote logical. If TRUE then include automatically generated footnote

Value

A biplot of class ggplot

References

Examples

library(GGEBiplotGUI)
data(Ontario)
GGE1<-GGEModel(Ontario)
GGEPlot(GGE1)

#using 'gge' instead

library(gge)
GGE2<-gge(as.matrix(Ontario))
GGEPlot(GGE2)
MeanStability

Mean vs. Stability Biplot

Description
Evaluating cultivars based on both average yield and stability

Usage
MeanStability(GGEModel, ...)

Arguments
- **GGEModel**: An object of class GGEModel or gge
- ...: Other arguments sent to GGEPlot

Examples
```r
library(GGEBiplotGUI)
data(Ontario)
GGE1 <- GGEModel(Ontario)
MeanStability(GGE1)
```

RankEnv

Ranking Environments Biplot

Description
Ranking environments with respect to the ideal environment

Usage
RankEnv(GGEModel, ...)

Arguments
- **GGEModel**: An object of class GGEModel or gge
- ...: Other arguments sent to GGEPlot

Examples
```r
library(GGEBiplotGUI)
data(Ontario)
GGE1 <- GGEModel(Ontario)
RankEnv(GGE1)
```
RankGen

Ranking genotypes with respect to the ideal genotype

Description

Ranking genotypes with respect to the ideal genotype

Usage

```
RankGen(GGEModel, axis_expanded = 1.4, ...)
```

Arguments

- **GGEModel**: An object of class GGEModel or gge
- **axis_expanded**: Multiplication factor to expand the axis limits by to enable fitting of labels. Defaults to 1.4 for genotype ranking plot as the circles usually extend beyond limits of the other biplot types.
- ... Other arguments sent to GGEPlot

Examples

```
library(GGEBiplotGUI)
data(Ontario)
GGEl <- GGEModel(Ontario)
RankGen(GGE1)
```

stattable

Produce a two-way summary table of results

Description

Transforms raw data into a simple two-way table for use in GGEModel with row names and column names. By design rather than just a side-effect of combining list with tapply

Usage

```
stattable(rowfactor, columnfactor, outcome, FUN = mean, ...)
```

Arguments

- **rowfactor**: variable to be included in the rows
- **columnfactor**: variable to be included in the columns
- **outcome**: vector containing outcome values
- **FUN**: name of summary function to use
- ... Other arguments for FUN
Examples

simdata<-data.frame(expand.grid(Genotype=1:10,Environment=1:10,Rep=1:3),Outcome=rnorm(300))
meantab<-stattable(simdata$Genotype,simdata$Environment,simdata$Outcome,FUN=mean,na.rm=TRUE)
GGEPlot(GGEModel(meantab))

<table>
<thead>
<tr>
<th>WhichWon</th>
<th>Which Won Where/What Biplot</th>
</tr>
</thead>
</table>

Description

Identifying the 'best' cultivar in each environment

Usage

WhichWon(GGEModel, ...)

Arguments

GGEModel An object of class GGEModel or gge
... Other arguments sent to GGEPlot

Examples

library(GGEBiplotGUI)
data(Ontario)
GGE1<-GGEModel(Ontario)
WhichWon(GGE1)
Index

*Topic 2way
stattable, 9

*Topic Biplot
GGEPlot, 6

*Topic GGEBiplotGUI
stattable, 9

*Topic GGE
CompareGens, 2
DiscRep, 2
EnvRelationship, 3
ExamineEnv, 3
ExamineGen, 4
GGEModel, 4
GGEPlot, 6
MeanStability, 8
RankEnv, 8
RankGen, 9
WhichWon, 10

*Topic biplot
GGEModel, 4

*Topic ggplot2
GGEModel, 4

*Topic means
stattable, 9

*Topic statistics
stattable, 9

*Topic summary
stattable, 9

*Topic table
stattable, 9

CompareGens, 2, 6

DiscRep, 2, 6

EnvRelationship, 3, 6
ExamineEnv, 3, 6
ExamineGen, 4, 6

gge, 4, 6

GGEBiplot, 4
GGEModel, 4, 6, 9
GGEPlot, 2–5, 6, 8–10

MeanStability, 6, 8
RankEnv, 6, 8
RankGen, 6, 9

stattable, 9

WhichWon, 6, 10