Package ‘GGMncv’

July 12, 2020

Type Package

Title Gaussian Graphical Models with Non-Convex Penalties

Version 1.1.0

Date 2020-07-03

Description Estimate Gaussian graphical models with non-convex penalties, including
the atan Wang and Zhu (2016) <doi:10.1155/2016/6495417>,
seamless L0 Dicker, Huang, and Lin (2013) <doi:10.5705/ss.2011.074>,
exponential Wang, Fan, and Zhu <doi:10.1007/s10463-016-0588-3>,
smooth integration of counting and absolute deviation Lv and Fan (2009) <doi:10.1214/09-AOS683>,
logarithm Mazumder, Friedman, and Hastie (2011) <doi:10.1198/jasa.2011.tm09738>,
Lq, smoothly clipped absolute deviation Fan and Li (2001) <doi:10.1198/016214501753382273>,
and minimax concave penalty Zhang (2010) <doi:10.1214/09-AOS729>. There are also extensions
for computing variable inclusion probabilities, multiple regression coefficients, and

License GPL-2

Depends R (>= 4.0.0)

Imports Rcpp (>= 1.0.4.6), Rdpack (>= 0.11-1), reshape, ggplot2 (>=
3.3.0), glassoFast (>= 1.0), numDeriv (>= 2016.8-1.1), MASS (>=
7.3-51.5), methods, psych (>= 1.9.12.31), stats, utils

Suggests qgraph (>= 1.6.5)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

LinkingTo Rcpp, RcppArmadillo

RdMacros Rdpack

BugReports https://github.com/donaldRwilliams/GGMncv/issues

NeedsCompilation yes

Author Donald Williams [aut, cre]
Description

Regression Coefficients from `ggmncv` Objects

Usage

```r
## S3 method for class 'ggmncv'
coef(object, ...)
```

Arguments

- `object` An Object of class `ggmncv`
- `...` Currently ignored

Value

A matrix of regression coefficients

Note

The matrix of coefficients can be accessed by removing the class from the returned object (e.g., `unclass(coefs)`).
Examples

```r
# data
Y <- GGMncv::ptsd

# correlations
S <- cor(Y)

# fit model
fit <- GGMncv(S, n = nrow(Y))

coefs <- coef(fit)
```

`constrained`

Constrained Precision Matrix

Description

Compute the maximum likelihood estimate, given certain elements are constrained to zero (e.g., an adjacency matrix). This approach is described in Hastie et al. (2015).

Usage

```r
constrained(Sigma, adj)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma</td>
<td>Covariance matrix</td>
</tr>
<tr>
<td>adj</td>
<td>Matrix with contraints. A zero indicates that element should be constrained to zero.</td>
</tr>
</tbody>
</table>

Value

A list containing the inverse covariance matrix and the covariance matrix.

Note

The algorithm is written in c++.
Examples

data
Y <- GGMncv::ptsd[,1:5]

columns
p <- ncol(Y)

constraint matrix
constraints <- matrix(0,p,p)

set one value to zero
constraints[2,3] <- 1
constraints[3,2] <- 1

estimate, given constraints
fit <- constrained(cor(Y), adj = constraints)
Theta <- fit$Theta

desparsify De-sparsified Glasso Estimator

Description

Compute the desparsified glasso estimator with the approach described in Equation 7 of Jankova and Van De Geer (2015).

Usage

desparsify(object, ...)

Arguments

 object An object of class ggmncv

 ... Currently ignored

Value

The de-sparsified estimates, including

 * Theta De-sparsified precision matrix
 * P De-sparsified partial correlation matrix

Note

This assumes the Gaussian data.
References

Examples

```r
# data
Y <- GGMncv::ptsd

# fit model
fit <- GGMncv(cor(Y), n = nrow(Y))

desparsify(fit)
```

Description

Estimate Gaussian graphical models with non-convex penalties.

Usage

```r
GGMncv(
  x,
  n,
  penalty = "atan",
  ic = "bic",
  lambda = NULL,
  n_lambda = 50,
  gamma = NULL,
  select = FALSE,
  L0_learn = FALSE,
  refit = FALSE,
  LLA = TRUE,
  initial = "sicm",
  method = "pearson",
  progress = TRUE,
  store = TRUE,
  vip = FALSE,
  vip_iter = 1000,
  ...
)
```
Arguments

x
There are 2 options: either a \(n\) by \(p\) data matrix or a \(p\) by \(p\) correlation matrix.

n
Numeric. Sample size.

penalty
Character string. Which penalty should be used (defaults to atan).

ic
Character string. Which information criterion should be used (defaults to bic). give select = TRUE. The options include aic, ebic (ebic_gamma defaults to 0.5; see details), ric, or any generalized information criterion provided in section 5 of Kim et al. (2012). The options are gic_1 (i.e., bic) to gic_7.

lambda
Numeric. Tuning parameter governing the degrees of penalization. Defaults to NULL which results in fixing lambda to \(\sqrt{\log(p)/n}\).

n.lambda
Numeric. The number of regularization/thresholding parameters (defaults to 100).

gamma
Numeric. Hyperparameter for the penalty function. Defaults to 0.1 which is the recommended value for the default penalty (see details).

select
Logical. Should lambda be selected with BIC (defaults to FALSE)?

L0_learn
Logical. Should lambda be selected based on the non-regularized precision matrix (defaults to FALSE; see details).

refit
Logical. Should the precision matrix be refitted, given the adjacency matrix (defaults to FALSE)? When set to TRUE, this provides the non-regularized, maximum likelihood estimate with constraints.

LLA
Logical. Should the local linear approximation be used for maximizing the penalized likelihood? The default is TRUE (see details). Setting to FALSE results in the so-called one-step approach.

initial
Character string. Which initial values should be used for the one-step approach (i.e., LLA = FALSE)? Default is the sample inverse covariance matrix (sicm). Options include sicm and lw (Ledoit and Wolf shrinkage estimator; Ledoit and Wolf 2004).

method
Character string. Which correlation coefficient should be computed. One of "pearson" (default), "spearman", or "polychoric".

progress
Logical. Should a progress bar be included (defaults to TRUE)? Note that this only applies when select = TRUE.

store
Logical. Should all of the fitted models be saved (defaults to NULL). Note this only applies when select = TRUE. and ignored otherwise (the one model is saved.)

vip
Logical. Should variable inclusion "probabilities" be computed (defaults to FALSE)?

current
Numeric. How many bootstrap sample for computing vip (defaults to 1000)? Note also that only the default lambda is implemented (select is not implemented).

... Currently ignored.
Details

Several of the penalties are (continuous) approximations to the L0 penalty, that is, best subsets model selection. However, the solution does not require enumerating all possible models which results in a computationally efficient algorithm.

L0 approximations:

- Atan: penalty = "atan" (Wang and Zhu 2016). This is currently the default.
- Seamless L0: penalty = "selo" (Dicker et al. 2013).
- Exponential: penalty = "exp" (Wang et al. 2018)
- Log: penalty = "log" (Mazumder et al. 2011).
- Sica: penalty = "sica" (Lv and Fan 2009)

Additional penalties:

- SCAD: penalty = "scad" (Fan and Li 2001).
- MCP: penalty = "mcp" (Zhang 2010).
- Adaptive lasso penalty = "adapt" (Zou 2006)
- Lasso penalty = "lasso" (Tibshirani 1996)

Gamma

The code gamma argument corresponds to additional hyperparameter for each penalty. The defaults are set to the recommended values from the respective papers.

L0_learn

L0_learn is perhaps a misnomer, in that best subsets solution is not computed. This option corresponds to the following steps, assuming select = TRUE:

1. Estimate the graph for a given lambda value
2. Refit the precision matrix, given the contraints from step 1. This results in the maximum likelihood estimate (non-regularized).
3. Compute BIC for the refitted graph from step 2.
4. After repeating steps 1-3 for lambda value, select the graph according to BIC.

Note that this is most useful in datasets that have more nodes than variables (i.e., low-dimensional).

LLA

The local linear approximate is for non-covex penalties is described in (Fan et al. 2009). This is essentially a weighted (g)lasso. Note that by default LLA = TRUE. This can be set to FALSE when n is much larger than p (e.g., this can improve power). This is due to the work of (Zou and Li 2008), which suggested that, so long as the starting values are good, then it is possible to use a one-step estimator. In the case of low-dimensional data, the sample based inverse covariance matrix is used to compute the lambda matrix. This is expected to work well, assuming that n is sufficiently larger than p. For high-dimensional data, the initial values for obtaining the lambda matrix are obtained from glasso.

Model Selection
It is common to select lambda. However, in more recent approaches (see references above), lambda is fixed to $\sqrt{\log(p)/n}$. This has the advantage of being tuning free and this value is expected to provide competitive performance. It is possible to select lambda by setting select = TRUE.

EBIC

When setting ic = "ebic", the additional parameter that determines the additional penalty to BIC is passed via the ... argument. This must be specified as ebic_gamma = 1, with the default set to 0.5.

Value

An object of class ggmncv, including:

- **Theta** Inverse covariance matrix
- **Sigma** Covariance matrix
- **P** Weighted adjacency matrix
- **adj** Adjacency matrix
- **lambda** Tuning parameter (i.e., $\sqrt{\log(p)/n}$)
- **fit** glasso fitted model (a list)

References

Examples

```r
# data
Y <- GGMncv::ptsd[,1:10]
S <- cor(Y)

# fit model
fit <- GGMncv(S, n = nrow(Y))

# plot
qgraph::qgraph(fit$P)
```

ggm_compare

Compare Gaussian Graphical Models

Description

Compare Gaussian graphical models with the de-sparsified estimator of (Jankova and Van De Geer 2015).

Usage

```r
ggm_compare(object_1, object_2, method = "fdr", alpha = 0.05, ...)
```

Arguments

- **object_1**: An object of class `ggmncv`
- **object_2**: An object of class `ggmncv`
- **alpha**: Numeric. Significance level (defaults to 0.05).
- **...**: Currently ignored.
 - `P_diff` De-sparsified partial correlation matrix differences
• adj Adjacency matrix based on the p-values.
• uncorrected Uncorrected p-values
• corrected Corrected p-values
• method The approach used for multiple comparisons
• alpha Significance level

Examples

data
Y1 <- MASS::mvrnorm(250, rep(0, 10), Sigma = diag(10))
Y2 <- MASS::mvrnorm(250, rep(0, 10), Sigma = diag(10))

fit models
fit1 <- GGMncv(Y1, n = nrow(Y1))
fit2 <- GGMncv(Y2, n = nrow(Y2))

compare
compare_ggms <- ggm_compare(fit1, fit2)

inference

Statistical Inference for Gaussian Graphical Models

Description

Compute p-values for each relation based on the de-sparsified precision matrix (Jankova and Van De Geer 2015).

Usage

inference(object, method = "fdr", alpha = 0.05, ...)

Arguments

object An object of class ggmncv
alpha Numeric. Significance level (defaults to 0.05).
... Currently ignored.

Value

• Theta De-sparsified precision matrix
• adj Adjacency matrix based on the p-values.
• uncorrected Uncorrected p-values
• corrected Corrected p-values
• method The approach used for multiple comparisons
• alpha Significance level
Note

This assumes the Gaussian data.

References

Examples

```r
# data
Y <- GGMncv::ptsd

# fit model
fit <- GGMncv(cor(Y), n = nrow(Y))

# statistical inference
inference(fit)
```

plot.ggmncv

Plot ggmncv Objects

Description

Plot the solution path for the partial correlations, the information criterion solution path, or the variable inclusion 'probabilities'.

Usage

```r
## S3 method for class 'ggmncv'
plot(x, type = "pcor_path", size = 1, alpha = 0.5, color = "black", ...)
```

Arguments

- `x` An object of class `ggmncv`
- `type` Character string. Which type should be plotted? Options included `pcor_path`, `ic_path`, or `vip`.
- `size` Numeric. The size of the points (vip) or lines (pcor_path or ic_path). The default is 1.
- `alpha` Numeric. The transparency of the lines. Only for the solution path options.
- `color` Character string. The color of the points (vip) or lines (pcor_path or ic_path). The default is black.
- `...` Currently ignored.
Value

A ggplot object

Examples

```r
# data
Y <- GGMncv::ptsd[,1:10]

# correlations
S <- cor(Y, method = "spearman")

# fit model
fit <- GGMncv(x = S, n = nrow(Y),
              penalty = "atan",
              vip = TRUE,
              vip_iter = 50)

# plot
plot(fit, size = 4, type = "vip")
```

predict.ggmncv

Predict method for ggmncv Objects

Description

Predicted values based on a ggmncv object

Usage

```r
## S3 method for class 'ggmncv'
predict(object, newdata = NULL, ...)
```

Arguments

- **object**: An object of class ggmncv
- **newdata**: An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
- **...**: Currently ignored

Value

A matrix of predicted values
Examples

```r
# data
Y <- scale(Sachs)

# test data
Ytest <- Y[1:100,]

# training data
Ytrain <- Y[101:nrow(Y),]

fit <- GGMncv(Ytrain, n = nrow(Ytrain))
pred <- predict(fit, 
               newdata = Ytest)

round(apply((pred - Ytest)^2, 2, mean), 2)
```

print.ggmncv

Print ggmncv Objects

Description

Print ggmncv Objects

Usage

```r
## S3 method for class 'ggmncv'
print(x, ...)
```

Arguments

- `x`: An object of class ggmncv
- `...`: Currently ignored

ptsd

Data: Post-Traumatic Stress Disorder

Description

A dataset containing items that measure Post-traumatic stress disorder symptoms (Armour et al. 2017). There are 20 variables \((p) \) and 221 observations \((n) \).

Usage

```r
data("ptsd")
```
Format

A dataframe with 221 rows and 20 variables

Details

- Intrusive Thoughts
- Nightmares
- Flashbacks
- Emotional cue reactivity
- Psychological cue reactivity
- Avoidance of thoughts
- Avoidance of reminders
- Trauma-related amnesia
- Negative beliefs
- Negative trauma-related emotions
- Loss of interest
- Detachment
- Restricted affect
- Irritability/anger
- Self-destructive/reckless behavior
- Hypervigilance
- Exaggerated startle response
- Difficulty concentrating
- Sleep disturbance

References

Sachs

Data: Sachs Network

Description

Protein expression in human immune system cells

Usage

data("Sachs")
Format
A data frame containing 7466 cells (n = 7466) and flow cytometry measurements of 11 (p = 11) phosphorylated proteins and phospholipids (Sachs et al. 2002)

References

Examples
data("Sachs")
Index

* datasets
 ptsd, 13
 Sachs, 14

 coef.ggmncv, 2
 constrained, 3
 desparsify, 4
 ggm_compare, 9
 GGMncv, 5
 inference, 10
 p.adjust, 9, 10
 plot.ggmncv, 11
 predict.ggmncv, 12
 print.ggmncv, 13
 ptsd, 13

 Sachs, 14