Package ‘GIGrvg’

March 22, 2023

Type Package
Title Random Variate Generator for the GIG Distribution
Version 0.8
Date 2023-03-22
Author Josef Leydold and Wolfgang Hormann
Maintainer Josef Leydold <josef.leydold@wu.ac.at>
Description Generator and density function for the Generalized Inverse Gaussian (GIG) distribution.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-03-22 14:00:08 UTC

R topics documented:

GIGrvg-package ... 1
rgig ... 3

Index

GIGrvg-package Generator and density for the Generalized Inverse Gaussian (GIG) distribution

Description

This package provides a generator and the density for the Generalized Inverse Gaussian (GIG) distribution. It uses the parametrization with density proportional to

\[f(x) = \lambda^{-1} e^{-\frac{1}{2}(\chi/x + \psi x)} \]

Details
Package `GIGrvg` provides two routines:

- `rgig` generates GIG distributed random variates. It is especially designed for the varying parameter case, i.e., for sample size \(n=1 \).
- `dgig` computes the density of the GIG distribution.

Note that the parameters of the distribution are assumed to be single values. If a vector is provided then just the first value is used!

For the very fast generation of large samples more efficient algorithms exists. We recommend package `Runuran`.

Author(s)

Josef Leydold <josef.leydold@wu.ac.at> and Wolfgang Hörmann.

References

Examples

```r
## Draw a random sample
grig(n=10, lambda=0.5, chi=0.1, psi=2)

## Evaluate the density
dgig(0.3, lambda=0.5, chi=0.1, psi=2)
```
rgig

Generator and Density of Generalized Inverse Gaussian (GIG) distribution.

Description

Random variate generator for the Generalized Inverse Gaussian (GIG) distribution. The generator is especially designed for the varying parameter case, i.e., for sample size \(n=1 \).

Usage

```r
gig(n=1, lambda, chi, psi)

dgig(x, lambda, chi, psi, log = FALSE)
```

Arguments

- `n` Number of observations
- `lambda` Shape parameter
- `chi` Shape and scale parameter. Must be nonnegative for positive `lambda` and positive else.
- `psi` Shape and scale parameter. Must be nonnegative for negative `lambda` and positive else.
- `x` Argument of pdf
- `log` If `TRUE` the logarithm of the density will be returned.

Details

The package uses a parametrization for the GIG distribution where the density is proportional to

\[
 f(x) = x^{\lambda - 1}e^{-\frac{1}{2}(\chi/x + \psi x)}.
\]

The parameters have to satisfy the conditions

\[
 \lambda > 0, \psi > 0, \chi \geq 0, \quad \text{or}
\]

\[
 \lambda = 0, \psi > 0, \chi > 0, \quad \text{or}
\]

\[
 \lambda < 0, \psi \geq 0, \chi > 0.
\]

The generator is especially designed for the varying parameter case, i.e., for sample size \(n=1 \).

Note that the arguments `n`, `lambda`, `chi`, `psi` for these two R routines are assumed to be single values. If a vector is provided, then just the first value is used!

For the generation of large samples more efficient algorithms exist. We recommend package **Runuran**. The fast numeric inversion function `pinvd.new` is usable for GIG. It is about three times faster than `rgig` for large values of \(n \). However, it requires a slow set-up and is therefore not useful for the varying parameter case. For the usage of the Runuran functions see the last example below.
Routine *rgig* applies three different algorithms depending on the given parameters. When the density is T-concave (roughly spoken when $\lambda \geq 1$ or $\psi \chi \geq 1/4$) two variants of the Ratio-of-Uniforms method due to Lehner (1989) are used. These are quite similar to the widely used algorithm by Dagpunar but have a faster setup. When the density is not T-concave then a new algorithm with a uniformly rejection constant is used. (In the latter case Dagpunar’s algorithm may become extremely slow or may sample from an invalid distribution.)

Value

rgig creates a random sample of size n. In case of invalid arguments the routine simply stops execution.

dgig evaluates the density of the GIG distribution.

Author(s)

Josef Leydold <josef.leydold@wu.ac.at> and Wolfgang Hörmann.

References

Examples

```r
## Draw a random sample
x <- rgig(n=10, lambda=0.5, chi=0.1, psi=2)

## Evaluate the density
x <- dgig(0.3, lambda=0.5, chi=0.1, psi=2)

## Create a random sample and create a histogram
y <- rgig(n=10^5, 0.1, 2, 3)
hist(y, breaks=100, freq=FALSE)
xval <- seq(0, max(y), 0.01) # to add plot the corresponding density
lines(xval, dgig(xval, 0.1, 2, 3))

## Not run:
## Use a fast method from package Runuran for large samples
## (method PINV implements an approximate inversion method)
library("Runuran")
gen <- pinvd.new(udgig(theta=0.2, psi=0.05, chi=0.05))
x <- ur(gen, 10^6)
## End(Not run)
```
Index

* datagen
 GIGrvg-package, 1
 rgig, 3

* distribution
 GIGrvg-package, 1
 rgig, 3

* package
 GIGrvg-package, 1
 rgig, 3

dgig, 2
dgig(rgig), 3

GIGrvg (GIGrvg-package), 1
GIGrvg-package, 1

rgig, 2, 3
Runuran, 2, 3