Package ‘GISSB’

January 10, 2023

Type Package
Title Network Analysis on the Norwegian Road Network
Version 1.1
Description A collection of GIS (Geographic Information System) functions in R, created for use in Statistics Norway. The functions are primarily related to network analysis on the Norwegian road network.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
RoxygenNote 7.2.1
Imports cppRouting, dplyr, here, httr, igraph, leaflet, magrittr, nabor, purrr, RCurl, reshape2, rlang, sf, stringr, tibble, tidygraph, tidyselect
VignetteBuilder knitr
URL https://statisticsnorway.github.io/GISSB/
Depends R (>= 3.5.0)
NeedsCompilation no
Author Sindre Mikael Haugen [aut, cre]
Maintainer Sindre Mikael Haugen <sindre.haugen@ssb.no>
Repository CRAN
Date/Publication 2023-01-10 18:33:14 UTC

R topics documented:

 address_to_coords .. 2
 coords_to_google .. 3
 coords_to_node ... 3
The function `address_to_coords` can be used to find coordinates to supplied Norwegian addresses. Internet access is required as the function utilizes the Norwegian Mapping Authority’s address API.

Usage

```r
address_to_coords(zip_code, address, format = "sf", crs_out = 25833)
```

Arguments

- **zip_code**: Character vector with zip codes.
- **address**: Character vector with addresses (street name and house number).
- **format**: Format of the returned object. Default value is set to “sf” (which returns an `sf` object). It is also possible set the format to “tibble” or “data.frame”.
- **crs_out**: Numeric vector with the chosen coordinate reference system (CRS). Default value is set to CRS 25833.

Details

If there are no coordinates found for the supplied address it means that it does not exist in Matrikkel - Norway’s official property register. See www.rettikartet.no to search for existing addresses.

Value

Object with coordinates to the supplied addresses.

Examples

```r
address_to_coords(zip_code = "0185", address = "Schweigaards gate 10")
```
coords_to_google

Convert coordinates to Google Maps

Description

The function `coords_to_google` can be used to convert coordinates of an sf object to a format that is easy to copy and paste into Google Maps.

Usage

```r
coords_to_google(coords, crs_out = 25833)
```

Arguments

- `coords` - An sf object with a geometry column that will be converted to CRS 4326.
- `crs_out` - Chosen coordinate reference system (CRS) for the geometry column of the returned sf object.

Value

An sf object with a new column added (`coords_google`), and an additional sf geometry column with the chosen CRS.

Examples

```r
address_to_coords(zip_code = "0185", address = "Schweigaards gate 10") %>%
  coords_to_google()
```

coods_to_node

Connect coordinates to the nearest nodes in the road network

Description

The function `coords_to_node` can be used to find the nearest nodes in the Norwegian road network (in meters) for chosen coordinates.

Usage

```r
coods_to_node(
  coords,
  nodes_object = nodes,
  edges_object = edges,
  direction = "from",
  ID_col = "ID",
  crs_out = 25833,
)```
coords_to_node

```r
coll = 1,
membership = FALSE
```

**Arguments**

- `coords`: An sf object with the coordinates that should be connected to the road network.
- `nodes_object`: An sf object with the nodes of the road network. This can be created with the function `vegnett_to_R()`.
- `edges_object`: A data frame with the edges of the road network. This can be created with the function `vegnett_to_R()`.
- `direction`: Character vector with `from` if the points should be from nodes or `to` if the points should be to nodes.
- `ID_col`: Character vector with the name of the ID column. Default value is set to “ID”.
- `crs_out`: Numeric vector for the chosen coordinate reference system (CRS).
- `knn`: Numeric vector with the chosen number of nodes that should be returned for each of the coordinates. If `knn = 1` only the nearest nodes to the chosen coordinates will be returned. If `knn = 2` the two nearest nodes will be returned etc.
- `membership`: Logical. If `TRUE` the search for nodes is limited to nodes that belong to a road network that is connected either to the from or to nodes (only possible for either from or to). E.g. if you only want to search for from nodes that belong to the same road network as the to nodes, membership is set to `FALSE` in the search for to nodes and `membership = TRUE` for the from nodes (in that order).

**Details**

Before the function can be used, the nodes of the road network must be converted to an sf object that is called nodes (or another name supplied to the nodes_object argument). This can be done with the function `vegnett_to_R()`.

**Value**

An object (data.frame) with the following columns: `from_nodeID/to_nodeID`, `membership_from_node/membership_to_node`, `coords_google_from_node/coords_google_to_node`, `knn_from_node/knn_to_node`, and `ID`.

**Examples**

```r
cords <- address_to_coords(zip_code = "0185", address = "Schweigaards gate 10")
cords_to_node(coords = cords,
 direction = "from",
 nodes_object = nodes_sampledata,
 edges_object = edges_sampledata)
```
edges_sampledata  Sample data (edges)

Description
Sample of the Norwegian Road Network (vegnettRuteplan_FGDB_20210528.gdb) downloaded from Geonorge. Only the first 1000 rows from Oslo county are included.

Usage
data(edges_sampledata)

Format
A data frame

Source
National roads database - road network for routing

Examples
data(edges_sampledata)
class(edges_sampledata)
head(edges_sampledata)

graph_cppRouting_meters_sampledata  Sample data (graph_cppRouting_meters)

Description
Sample of the Norwegian Road Network (vegnettRuteplan_FGDB_20210528.gdb) downloaded from Geonorge. Only the first 1000 rows from Oslo county are included.

Usage
data(graph_cppRouting_meters_sampledata)

Format
A cppRouting object

Source
National roads database - road network for routing
Examples

data(graph_cppRouting_meters_sampledata)
class(graph_cppRouting_meters_sampledata)

---

graph_cppRouting_minutes_sampledata

Sample data (graph_cppRouting_minutes)

---

Description

Sample of the Norwegian Road Network (vegnettRuteplan_FGDB_20210528.gdb) downloaded from Geonorge. Only the first 1000 rows from Oslo county are included.

Usage

data(graph_cppRouting_minutes_sampledata)

Format

A cppRouting object

Source

National roads database - road network for routing

Examples

data(graph_cppRouting_minutes_sampledata)
class(graph_cppRouting_minutes_sampledata)

---

graph_sampledata

Sample data (graph)

---

Description

Sample of the Norwegian Road Network (vegnettRuteplan_FGDB_20210528.gdb) downloaded from Geonorge. Only the first 1000 rows from Oslo county are included.

Usage

data(graph_sampledata)

Format

An igraph object.
nodes_sampledata

Source
National roads database - road network for routing

Examples
data(graph_sampledata)
class(graph_sampledata)

nodes_sampledata  Sample data (nodes)

Description
Sample of the Norwegian Road Network (vegnettRuteplan_FGDB_20210528.gdb) downloaded from Geonorge. Only the first 1000 rows from Oslo county are included.

Usage
data(nodes_sampledata)

Format
An object of class sf.

Source
National roads database - road network for routing

Examples
data(nodes_sampledata)
class(nodes_sampledata)
head(nodes_sampledata)

path_leaflet  Visualize the shortest path with Leaflet

Description
The function path_leaflet visualizes the shortest path (in minutes or meters) that has been calculated with the function shortest_path_igraph() (where path = TRUE). Internet connection is required to load the background tiles.

Usage
path_leaflet(path, graph_object = graph)
shortest_path_cppRouting

Arguments

path Object (list) that has been created with the function `shortest_path_igraph()`, where path = TRUE.

graph_object The road network structured as a tidy graph (tbl_graph object). This can be done with the function `vegnett_to_R()`.

Value

Interactive Leaflet map that shows the shortest path (in minutes or meters) between a chosen from and to node in the road network.

Examples

```r
shortest_path_igraph(from_node_ID = 25,
 to_node_ID = 33,
 unit = "minutes",
 path = TRUE,
 graph_object = graph_sampledata) %>%
path_leaflet(graph_object = graph_sampledata)
```

shortest_path_cppRouting

Description

The function `shortest_path_cppRouting` can be used to calculate the shortest path (either in minutes or meters) between two or more nodes in the Norwegian road network. The function also works with vectors with multiple from and to node ID’s. Before the function can be used, the road network must be converted to a cppRouting object that is called `graph_cppRouting_minutes` or `graph_cppRouting_meters` (or other with other names supplied to the `graph_cppRouting_object` argument). This can be done with the function `vegnett_to_R()`.

Usage

```r
shortest_path_cppRouting(
 from_node_ID,
 to_node_ID,
 unit = "minutes",
 dist = "all",
 graph_cppRouting_object = graph_cppRouting_minutes
)
```
shortest_path_igraph

Arguments

from_node_ID  Numeric vector with one or more from node ID’s.
to_node_ID    Numeric vector with one or more to node ID’s.
unit          Character vector with minutes to calculate the shortest path in minutes or meters for the shortest path in meters.
dist          Character vector that specifies if all the shortest paths between all the supplied from and to nodes are returned (all), or if only the minimum (min) or maximum (max) value for each from node ID is returned.

graph_cppRouting_object The road network structured as a cppRouting graph object. This can be created with the function vegnett_to_R().

Value

Object (data.frame) with how many minutes or meters the shortest path is between the supplied from and to node ID’s.

Examples

shortest_path_cppRouting(from = 25,
                        to = 33,
                        unit = "minutes",
                        graph_cppRouting_object = graph_cppRouting_minutes_sampledata)

shortest_path_cppRouting(from = 25,
                        to = 33,
                        unit = "meters",
                        graph_cppRouting_object = graph_cppRouting_meters_sampledata)

shortest_path_cppRouting(from = 25,
                        to = c(32, 33),
                        unit = "minutes",
                        dist = "min",
                        graph_cppRouting_object = graph_cppRouting_minutes_sampledata)

shortest_path_igraph  Shortest path (igraph)

Description

The function shortest_path_igraph can be used to calculate the shortest path (either in minutes or meters) between nodes in the Norwegian road network. The function can also return the node link, i.e. path, that the shortest path consists of.
shortest_path_igraph

Usage

shortest_path_igraph(
  from_node_ID,
  to_node_ID,
  graph_object = graph,
  unit = "minutes",
  path = FALSE
)

Arguments

from_node_ID  Numeric value with the from node ID (if multiple node ID’s are to be used, see the function shortest_path_cppRouting()).
to_node_ID    Numeric value with the to node ID (if multiple node ID’s are to be used, see the function shortest_path_cppRouting()).
graph_object  The road network structured as a tidy graph (tbl_graph object). This can be created with the function vegnett_to_R().
unit          Character vector with minutes to calculate the shortest path in minutes or meters for the shortest path in meters.
path          Logical. If TRUE the node link with the shortest path is returned.

Details

Before the function can be used, the road network must be converted to a tbl_graph object. This can be done with the function vegnett_to_R()). There objects graph and edges needs to be loaded.

Value

Vector with the shortest path in minutes or meters. If path = TRUE the node link that the shortest path consists of is returned.

Examples

shortest_path_igraph(from_node_ID = 25,
  to_node_ID = 33,
  unit = "minutes",
  graph_object = graph_sampledata)

shortest_path_igraph(from_node_ID = 25,
  to_node_ID = 33,
  unit = "meters",
  graph_object = graph_sampledata)

shortest_path_igraph(from_node_ID = 25,
  to_node_ID = 33,
  unit = "minutes",
  path = TRUE,
  graph_object = graph_sampledata)
vegnett_sampledata

**Description**

Sample of the Norwegian Road Network (vegnettRuteplan_FGDB_20210528.gdb) downloaded from Geonorge. Only the first 1000 rows from Oslo county are included.

**Usage**

data(vegnett_sampledata)

**Format**

An object of class *sf*.

**Source**

National roads database - road network for routing

**Examples**

data(vegnett_sampledata)
class(vegnett_sampledata)
head(vegnett_sampledata)

---

vegnett_to_R

*Convert the Norwegian road network (NVDB Ruteplan nettverks-datasett) into network graphs in R*

**Description**

The function `vegnett_to_R` can be used to convert the Norwegian road network, downloaded from Geonorge, to formats that enable network analysis in R (tbl_graph and cppRouting).
vegnett_to_R(  
vegnett,  
crs_out = 25833,  
year = 2022,  
fromnodeID = "FROMNODE",  
tonodeID = "TONODE",  
FT_minutes = "DRIVETIME_FW",  
TF_minutes = "DRIVETIME_BW",  
meters = "SHAPE_LENGTH",  
turn_restrictions = FALSE,  
ferry = TRUE  
)

Arguments

vegnett
The Norwegian road network as an sf object, downloaded from Geonorge.
crs_out
Numeric vector with the chosen coordinate reference system (CRS). The default
value is set to CRS 25833.
year
Numeric vector with the year the road network is from. Due to changes in the
format of the files between 2021 and 2022, the most important thing is to choose
between the "old" format (-2021) or the new format (2022-). The default value
is set to 2022. Please see the example for the column names for 2021 and earlier.
fromnodeID
Character vector with the name of the column indicating the from node ID. Default
value is set to FROMNODE (column name in 2022).
tonodeID
Character vector with the name of the column indicating the to node ID. Default
value is set to TONODE (column name in 2022).
FT_minutes
Character vector with the name of the column that contains the cost in minutes from
fromnodeID to tonodeID (FT). Default value is set to DRIVETIME_FW (column name in 2022).
TF_minutes
Character vector with the name of the column that contains the cost in minutes from
tonodeID to fromnodeID (TF). Default value is set to DRIVETIME_BW (column name in 2022).
meters
Character vector with the name of the column that contains the cost in meters (equal for FT and TF). Default value is set to SHAPE_LENGTH (column name in 2022).
turn_restrictions
Logical. Default value is FALSE. If TRUE turn restrictions will be added to the
road network. The turn restrictions layer from the road network file has to be
loaded before this can be used (and the object has to be called turnrestrictions_geom). Due
to errors in the turn restrictions file for 2022 it is not recommended to use
this feature for now.
ferry
Logical/numeric vector. Default value is TRUE which means that all edges that
involve ferries are given their original drive time (somewhere between 10 and
13 km/h). If a numeric value is supplied, the cost for all edges involving ferries
will be converted to the supplied value in km/h.
Value

List containing the following elements:
1. graph: the road network structured as a tidy graph (tbl_graph object).
2. nodes: the road network’s nodes (sf object).
3. edges: road network’s edges/node links (data.frame).
4. graph_cppRouting_minutes: the road network structured as a cppRouting graph with the cost of travel in minutes (cppRouting object).
5. graph_cppRouting_meters: the road network structured as a cppRouting graph with the cost of travel in meters (cppRouting object).

Examples

vegnett_sampledata
vegnett_list <- vegnett_to_R(vegnett = vegnett_sampledata,
    year = 2021,
    fromnodeID = "FROMNODEID",
    tonodeID = "TONODEID",
    FT_minutes = "FT_MINUTES",
    TF_minutes = "TF_MINUTES",
    meters = "SHAPE_LENGTH")

graph <- vegnett_list[[1]]
nodes <- vegnett_list[[2]]
edges <- vegnett_list[[3]]
graph_cppRouting_minutes <- vegnett_list[[4]]
graph_cppRouting_meters <- vegnett_list[[5]]

graph
nodes
head(edges)
head(graph_cppRouting_minutes$data)
head(graph_cppRouting_minutes$coords)
head(graph_cppRouting_minutes$dict)
graph_cppRouting_minutes$nbnode

head(graph_cppRouting_meters$data)
head(graph_cppRouting_meters$coords)
head(graph_cppRouting_meters$dict)
graph_cppRouting_meters$nbnode
Index

* datasets
  - edges_sampledata, 5
  - graph_cppRouting_meters_sampledata, 5
  - graph_cppRouting_minutes_sampledata, 6
  - graph_sampledata, 6
  - nodes_sampledata, 7
  - vegnett_sampledata, 11
  - address_to_coords, 2
  - coords_to_google, 3
  - coords_to_node, 3
  - edges_sampledata, 5
  - graph_cppRouting_meters_sampledata, 5
  - graph_cppRouting_minutes_sampledata, 6
  - graph_sampledata, 6
  - nodes_sampledata, 7
  - path_leaflet, 7
  - shortest_path_cppRouting, 8
  - shortest_path_cppRouting(), 10
  - shortest_path_igraph, 9
  - shortest_path_igraph(), 7, 8
  - vegnett_sampledata, 11
  - vegnett_to_R, 11
  - vegnett_to_R(), 4, 8–10