Package ‘GJRM’

September 7, 2020

Version 0.2-3

Author Giampiero Marra <giampiero.marra@ucl.ac.uk> and Rosalba Radice <rosalba.radice@city.ac.uk>

Maintainer Giampiero Marra <giampiero.marra@ucl.ac.uk>

Title Generalised Joint Regression Modelling

Description Routines for fitting various joint (and univariate) regression models, with several types of covariate effects, in the presence of equations’ errors association, endogeneity, non-random sample selection or partial observability.

Depends R (>= 3.2.1), mgcv

Imports magic, matrixcalc, VGAM, survey, trust, VineCopula, graphics, stats, utils, grDevices, ggplot2, matrixStats, mnormt, gamlss.dist, Rmpfr, scam, survival, psych, copula, distrEx, numDeriv, trustOptim, evd, ismev

Enhances sp

LazyLoad yes

License GPL (>= 2)

URL https://www.ucl.ac.uk/statistics/people/giampieromarra

Repository CRAN

Date/Publication 2020-09-07 18:20:03 UTC

NeedsCompilation no

R topics documented:

GJRM-package ... 3
adjCov ... 6
adjCovSD ... 7
AT ... 8
BCDF ... 10
bcont ... 10
bdiscrcont ... 10
bdiscrdiscr ... 11
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bprobgHs</td>
<td>11</td>
</tr>
<tr>
<td>bprobgHsCont</td>
<td>11</td>
</tr>
<tr>
<td>bprobgHsContSS</td>
<td>12</td>
</tr>
<tr>
<td>bprobgHsContUniv</td>
<td>12</td>
</tr>
<tr>
<td>bprobgHsDiscr1</td>
<td>12</td>
</tr>
<tr>
<td>bprobgHsDiscr1SS</td>
<td>13</td>
</tr>
<tr>
<td>bprobgHsPO</td>
<td>13</td>
</tr>
<tr>
<td>bprobgHsSS</td>
<td>13</td>
</tr>
<tr>
<td>conv.check</td>
<td>14</td>
</tr>
<tr>
<td>copgHs</td>
<td>14</td>
</tr>
<tr>
<td>CopulaCLM</td>
<td>15</td>
</tr>
<tr>
<td>copulaSampleSel</td>
<td>15</td>
</tr>
<tr>
<td>cv.inform</td>
<td>15</td>
</tr>
<tr>
<td>distrHs</td>
<td>16</td>
</tr>
<tr>
<td>Dpens</td>
<td>16</td>
</tr>
<tr>
<td>eta.tr</td>
<td>17</td>
</tr>
<tr>
<td>g.tr</td>
<td>17</td>
</tr>
<tr>
<td>gamlss</td>
<td>18</td>
</tr>
<tr>
<td>gamlssObject</td>
<td>28</td>
</tr>
<tr>
<td>gjmtrust</td>
<td>30</td>
</tr>
<tr>
<td>gjrm</td>
<td>31</td>
</tr>
<tr>
<td>gjrmObject</td>
<td>56</td>
</tr>
<tr>
<td>gt.bpm</td>
<td>58</td>
</tr>
<tr>
<td>H.tri</td>
<td>59</td>
</tr>
<tr>
<td>hazsurv.plot</td>
<td>59</td>
</tr>
<tr>
<td>hiv</td>
<td>61</td>
</tr>
<tr>
<td>imputeCounter</td>
<td>65</td>
</tr>
<tr>
<td>imputeSS</td>
<td>66</td>
</tr>
<tr>
<td>jc.probs</td>
<td>67</td>
</tr>
<tr>
<td>lipsi</td>
<td>68</td>
</tr>
<tr>
<td>LM.bpm</td>
<td>69</td>
</tr>
<tr>
<td>lmc</td>
<td>70</td>
</tr>
<tr>
<td>logLik.SemiParBIV</td>
<td>72</td>
</tr>
<tr>
<td>mb</td>
<td>73</td>
</tr>
<tr>
<td>meps</td>
<td>74</td>
</tr>
<tr>
<td>numgh</td>
<td>77</td>
</tr>
<tr>
<td>OR</td>
<td>77</td>
</tr>
<tr>
<td>PE</td>
<td>79</td>
</tr>
<tr>
<td>pen</td>
<td>80</td>
</tr>
<tr>
<td>plot.SemiParBIV</td>
<td>80</td>
</tr>
<tr>
<td>polys.map</td>
<td>81</td>
</tr>
<tr>
<td>polys.setup</td>
<td>82</td>
</tr>
<tr>
<td>post.check</td>
<td>83</td>
</tr>
<tr>
<td>pred.gp</td>
<td>84</td>
</tr>
<tr>
<td>pred.mvt</td>
<td>85</td>
</tr>
<tr>
<td>predict.CopulaCLM</td>
<td>85</td>
</tr>
<tr>
<td>predict.SemiParBIV</td>
<td>86</td>
</tr>
<tr>
<td>prev</td>
<td>87</td>
</tr>
</tbody>
</table>
Description

This package provides a function for fitting various generalised joint regression models with several types of covariate effects and distributions. Many modelling options are supported and all parameters of the joint distribution can be specified as flexible functions of covariates.

The original name of this package was SemiParBIVProbit which was designed to fit flexible bivariate binary response models. However, since then the package has expanded so much that its
original name no longer gave a clue about all modelling options available. The new name should more closely reflect past, current and future developments.

The main fitting functions are listed below.

`gjrm()` which fits bivariate regression models with binary responses (useful for fitting bivariate binary models in the presence of (i) non-random sample selection or (ii) associated responses/endogeneity or (iii) partial observability), bivariate models with binary/discrete/continuous/survival margins in the presence of associated responses/endogeneity, bivariate sample selection models with continuous/discrete response, trivariate binary models (with and without double sample selection). This function essentially merges all previously available fitting functions, namely `SemiParBIV()`, `SemiParTRIV()`, `copulaReg()` and `copulaSampleSel()`.

`gamlss()` fits flexible univariate regression models where the response can be binary (only the extreme value distribution is allowed for), continuous, discrete and survival. The purpose of this function was only to provide, in some cases, starting values for the above functions, but it has now been made available in the form of a proper function should the user wish to fit univariate models using the general estimation approach of this package.

We are currently working on several multivariate extensions.

Details

GJRM provides functions for fitting general joint models in various situations. The estimation approach is based on a very generic penalized maximum likelihood based framework, where any (parametric) distribution can in principle be employed, and the smoothers (representing several types of covariate effects) are set up using penalised regression splines. Several marginal and copula distributions are available and the numerical routine carries out function minimization using a trust region algorithm in combination with an adaptation of an automatic multiple smoothing parameter estimation procedure for GAMs (see `mgcv` for more details on this last point). The smoothers supported by this package are those available in `mgcv`.

Confidence intervals for smooth components and nonlinear functions of the model parameters are derived using a Bayesian approach. P-values for testing individual smooth terms for equality to the zero function are also provided and based on the approach implemented in `mgcv`. The usual plotting and summary functions are also available. Model/variable selection is also possible via the use of shrinkage smoothers and/or information criteria.

Author(s)

Giampiero Marra (University College London, Department of Statistical Science) and Rosalba Radice (Cass Business School, City, University of London)

with contributions from Panagiota Filippou (specifically on the trivariate binary models), Francesco Donat (on the bivariate models with ordinal and continuous margins), Matteo Fasiolo (for the implementation of the pdf and cdf, and related derivatives, of the Tweedie distribution), and Alessia Eletti (on survival models with mixed censoring and excess hazards).

Thanks to: Bear Braumoeller for suggesting the implementation of bivariate models with partial observability, and Carmen Cadarso for suggesting the inclusion of various modelling extensions.

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Part funded by EPSRC: EP/J006742/1
References

Key methodological references:

For applied case studies see https://www.homepages.ucl.ac.uk/~ucakgm0/pubs.htm
adjCov

Adjustment for the covariance matrix from a fitted gjrm model

Description

adjCov can be used to adjust the covariance matrix of a fitted gjrm object.

Usage

adjCov(x, id)

Arguments

x A fitted gjrm object as produced by the respective fitting function.
id Cluster identifier.

Details

This adjustment can be made when dealing with clustered data and the cluster structure is neglected when fitting the model. The basic idea is that the model is fitted as though observations were independent, and subsequently adjust the covariance matrix of the parameter estimates. Using the terminology of Liang and Zeger (1986), this would correspond to using an independence structure within the context of generalized estimating equations. The parameter estimators are still consistent but are inefficient as compared to a model which accounts for the correct cluster dependence structure. The covariance matrix of the independence estimators can be adjusted as described in Liang and Zeger (1986, Section 2).

Value

This function returns a fitted object which is identical to that supplied in adjCov but with adjusted covariance matrix.

WARNINGS

This correction may not be appropriate for models fitted using penalties.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
adjCovSD

References

See Also
GJRM-package, gjrm

| adjCovSD | Adjustment for the covariance matrix from a gjrm model fitted to complex survey data. |

Description
adjCovSD can be used to adjust the covariance matrix of a fitted gjrm object.

Usage

adjCovSD(x, design)

Arguments

- x: A fitted gjrm object as produced by the respective fitting function.
- design: A svydesign object as produced by svydesign() from the survey package.

Details
This function has been extracted from the survey package and adapted to the class of this package’s models. It computes the sandwich variance estimator for a copula model fitted to data from a complex sample survey (Lumley, 2004).

Value
This function returns a fitted object which is identical to that supplied in adjCovSD but with adjusted covariance matrix.

WARNINGS
This correction may not be appropriate for models fitted using penalties.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
References

See Also

GJRM-package.gjrm

AT

Average treatment effect of a binary/continuous/discrete endogenous variable

Description

AT can be used to calculate the treatment effect of a binary/continuous/discrete endogenous predictor/treatment, with corresponding interval obtained using posterior simulation.

Usage

```r
AT(x, nm.end, eq = NULL, E = TRUE, treat = TRUE, type = "joint", ind = NULL, n.sim = 100, prob.lev = 0.05, length.out = NULL, hd.plot = FALSE, te.plot = FALSE, main = "Histogram and Kernel Density of Simulated Average Effects", xlab = "Simulated Average Effects", ...)```

**Arguments**

- **x**: A fitted *gjrm* object as produced by the respective fitting function.
- **nm.end**: Name of the endogenous variable.
- **eq**: Number of equation containing the endogenous variable. This is only used for trivariate models.
- **E**: If TRUE then AT calculates the sample ATE. If FALSE then it calculates the sample AT for the treated individuals only.
- **treat**: If TRUE then AT calculates the AT using the treated only. If FALSE then it calculates the effect on the control group. This only makes sense if E = FALSE.
- **type**: This argument can take three values: "naive" (the effect is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the effect is obtained from the univariate model which neglects the presence of unobserved confounders) and "joint" (the effect is obtained from the simultaneous model which accounts for observed and unobserved confounders).
- **ind**: Binary logical variable. It can be used to calculate the AT for a subset of the data. Note that it does not make sense to use ind when some observations are excluded from the AT calculation (e.g., when using E = FALSE).
n.sim  Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when delta = FALSE. It may be increased if more precision is required.

prob.lev  Overall probability of the left and right tails of the AT distribution used for interval calculations.

length.out  Desired length of the sequence to be used when calculating the effect that a continuous/discrete treatment has on a binary outcome.

hd.plot  If TRUE then a plot of the histogram and kernel density estimate of the simulated average effects is produced. This can only be produced when when binary responses are used.

te.plot  For the case of continuous/discrete endogenous variable and binary outcome, if TRUE then a plot showing the treatment effects that the binary outcome is equal to 1 for each incremental value of the endogenous variable and respective intervals is produced.

main  Title for the plot.

xlab  Title for the x axis.

...  Other graphics parameters to pass on to plotting commands. These are used only when hd.plot = TRUE.

Details

AT measures the average difference in outcomes under treatment (the binary predictor or treatment assumes value 1) and under control (the binary treatment assumes value 0). Posterior simulation is used to obtain a confidence/credible interval. See the references below for details.

AT can also calculate the effect that a continuous/discrete endogenous variable has on a binary outcome. In this case the effect will depend on the unit increment chosen (as shown by the plot produced).

Value

res  It returns three values: lower confidence interval limit, estimated AT and upper interval limit.

prob.lev  Probability level used.

sim.AT  It returns a vector containing simulated values of the average treatment effect. This is used to calculate intervals.

Effects  For the case of continuous/discrete endogenous variable and binary outcome, it returns a matrix made up of three columns containing the effects for each incremental value in the endogenous variable and respective intervals.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

GJRM-package, gjrm

---

**BCDF**

*Internal Function*

**Description**

It evaluates the cdf of several copulae.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**bcont**

*Internal Function*

**Description**

This and other similar internal functions provide the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with continuous margins are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**bdiscrcont**

*Internal Function*

**Description**

This and other similar internal functions provide the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with discrete and continuous margins are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
**bdiscrdiscr**

*Internal Function*

**Description**

This and other similar internal functions provide the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with discrete margins are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**bprobgHs**

*Internal Function*

**Description**

It provides the log-likelihood, gradient and observed/Fisher information matrix for penalized/unpenalized maximum likelihood optimization when copula models with binary outcomes are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**bprobgHsCont**

*Internal Function*

**Description**

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with binary and continuous margins are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
\begin{itemize}
    \item \textbf{bprobgHsContSS} \textit{Internal Function}

\textbf{Description}

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula sample selection models with continuous margins are employed.

\textbf{Author(s)}

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

\item \textbf{bprobgHsContUniv} \textit{Internal Function}

\textbf{Description}

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when fitting univariate models with discrete/continuous response.

\textbf{Author(s)}

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

\item \textbf{bprobgHsDiscr1} \textit{Internal Function}

\textbf{Description}

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with binary and discrete margins are employed.

\textbf{Author(s)}

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
\end{itemize}
**bprobgHsDiscr1SS Internal Function**

**Description**

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula sample selection models with discrete margins are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**bprobgHsP0 Internal Function**

**Description**

It provides the log-likelihood, gradient and observed or expected information matrix for penalized/unpenalized maximum likelihood optimization when bivariate probit models with partial observability are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**bprobgHsSS Internal Function**

**Description**

It provides the log-likelihood, gradient and observed/Fisher information matrix for penalized/unpenalized maximum likelihood optimization when copula sample selection models with binary outcomes are employed.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
conv.check Some convergence diagnostics

Description
It takes a fitted model object and produces some diagnostic information about the fitting procedure.

Usage
conv.check(x)

Arguments
x gjrm object.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also
gamlss, gjrm

copgHs Internal Function

Description
This and other similar internal functions evaluate the first and second derivatives with respect to the margins and association parameter of several copulae.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
**Description**

Internal fitting and set up function.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

**copulaSampleSel**

**Internal fitting function**

**Description**

Internal fitting and set up function.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

**cv.inform**

Cross validation for informative censoring univariate survival models

**Description**

cv.inform carries out cross validation to help choosing the set of informative covariates.

**Usage**

cv.inform(x, K = 5, data, informative = "yes")

**Arguments**

- **x**: A fitted gamlss object as produced by the respective fitting function.
- **K**: No. of folds.
- **data**: Data.
- **informative**: If no then cv is carried out for the case of no informative censoring. This is useful for comparison purposes.
Details

cv.inform carries out cross validation to help choosing the set of informative covariates.

Value

s1 Overall sum of predicted likelihood contributions.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

GJRM-package, gamlss

distrHs

Description

This and other similar internal functions evaluate the margins’ derivatives needed in the likelihood function for the binary, discrete and continuous cases.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Dpens

Differentiable penalties

Description

work in progress, temp function

Usage

Dpens(params, type = "lasso", lambda = 1, w.lasso = NULL, 
gamma = 1, a = 3.7, eps = 1e-08)
**Arguments**

- **params**: coefficients.
- **type**: lasso, alasso or scad.
- **lambda**: smoothing parameter.
- **w.lasso**: for alasso.
- **gamma**: default 1.
- **a**: for scad.
- **eps**: tolerance.

**Details**

work in progress.

**Value**

The function returns a penalty.

---

**Description**

This and other similar internal functions map certain key quantities into a feasible parameter space.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**Description**

This and other similar internal functions calculate the score for trivariate binary models.

**Author(s)**

Author: Panagiota Filippou
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>


**Description**

gamlss fits flexible univariate regression models with several continuous and discrete distributions, and types of covariate effects. The purpose of this function was only to provide, in some cases, starting values for the simultaneous models in the package, but it has now been made available in the form of a proper function should the user wish to fit univariate models using the general estimation approach of this package. The distributions implemented here have been parametrised according to Rigby and Stasinopoulos (2005).

**Usage**

gamlss(formula, data = list(), weights = NULL, subset = NULL, margin = "N", surv = FALSE, cens = NULL, type.cens = "R", upperB = NULL, robust = FALSE, rc = 3, IB = NULL, uB = NULL, infl.fac = 1, rinit = 1, rmax = 100, iterlimsp = 50, tolsp = 1e-07, gc.l = FALSE, parscale, extra.regI = "t", gev.par = -0.25, chunk.size = 10000, k.tvc = 0, knots = NULL, informative = "no", inform.cov = NULL, margin2 = "PH", fp = FALSE, sp = NULL, drop.unused.levels = TRUE, siginit = NULL, shinit = NULL, sp.method = "perf", hrate = NULL, d.lchraten = NULL, d.rchraten = NULL, d.lchraten.td = NULL, d.rchraten.td = NULL, truncation.time = NULL, min.dn = 1e-40, min.pr = 1e-16, max.pr = 0.9999999, ygrid.tol = 1e-08)

**Arguments**

- **formula**: List of equations. This should contain one or more equations.
- **data**: An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which gamlss is called.
- **weights**: Optional vector of prior weights to be used in fitting.
- **subset**: Optional vector specifying a subset of observations to be used in the fitting process.
- **margin**: Possible distributions are normal ("N"), log-normal ("LN"), Gumbel ("GU"), reverse Gumbel ("rGU"), generalised Pareto ("GP"), generalised Pareto II ("GPII") where the shape parameter is forced to be > -0.5, generalised Pareto (with orthogonal parameterisation) ("GPo") where the shape parameter is forced to be > -0.5, discrete generalised Pareto ("DGP"), discrete generalised Pareto II ("DGPII") where the shape parameter is forced to be positive, logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK", also known as log-logistic distribution), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NBI"), negative binomial - type II ("NBII"), Poisson inverse Gaussian...
("PIG"), generalised extreme value link function ("GEVlink", this is used for binary responses and is more stable and faster than the R package bgeva).

surv
If TRUE then a survival model is fitted. Here margin can be "PH" (generalised proportional hazards), "PO" (generalised proportional odds), "probit" (generalised probit).

cens
This is required when surv = TRUE. When type.cens is different from mixed, this variable can be equal to 1 if the event occurred and 0 otherwise. If type.cens = "mixed" then cens is a mixed factor variable (made up of four possible categories: I for interval, L for left, R for right, and U for uncensored).

type.cens
Type of censoring mechanism. This can be "R", "L", "I" or "mixed".

upperB
Variable name of right/upper bound when type.cens = "I" or type.cens = "mixed" and interval censoring is present.

robust
If TRUE then the robust version of the model is fitted.

rc
Robust constant.

lb, ub
Bounds for integral in robust case.

infl.fac
Inflation factor for the model degrees of freedom in the approximate AIC. Smoother models can be obtained setting this parameter to a value greater than 1.

rinit
Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds.

rmax
Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.

iterlimsp
A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.

tolsp
Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter estimation is used.

gc.l
This is relevant when working with big datasets. If TRUE then the garbage collector is called more often than it is usually done. This keeps the memory footprint down but it will slow down the routine.

parscale
The algorithm will operate as if optimizing objfun(x / parscale, ...) where parscale is a scalar. If missing then no rescaling is done. See the documentation of trust for more details.

extra.regI
If "t" then regularization as from trust is applied to the information matrix if needed. If different from "t" then extra regularization is applied via the options "pC" (pivoted Choleski - this will only work when the information matrix is semi-positive or positive definite) and "sED" (symmetric eigen-decomposition).

gev.par
GEV link parameter.

chunk.size
This is used for discrete robust models.

k.tvc
Only used for tvc ps smoothers when using survival models.

knots
Optional list containing user specified knot values to be used for basis construction.

informative
If "yes" then informative censoring is assumed when using a survival model.

inform.cov
If above is "yes" then a set of informative covariates must be provided.
In the informative survival case, the margin for the censored equation can be different from that of the survival equation.

If TRUE then a fully parametric model with unpenalised regression splines if fitted.

A vector of smoothing parameters can be provided here. Smoothing parameters must be supplied in the order that the smooth terms appear in the model equation(s).

By default unused levels are dropped from factors before fitting. For some smooths involving factor variables this may have to be turned off (only use if you know what you are doing).

For the GP and DGP distributions, initial values for sigma and shape may be provided.

Multiple smoothing automatic parameter selection is perf. efs is an alternative and only sensible option for robust models.

Vector of population hazard rates computed at time of death of each uncensored patient. The length of hrate should be equal to the number of uncensored observations in the dataset. Needed in the context of excess hazard modelling when uncensored observations are present. Note that this includes left truncated uncensored observations as well.

Vector of differences of population cumulative excess hazards computed at the age of the patient when the left censoring occurred and at the initial age of the patient. The length of d.lhrate should be equal to the number of left and/or interval censored observations in the dataset. Needed in the context of excess hazard modelling if left censored and/or interval censored observations are present. In the latter case, d.rchrate also need be provided.

Vector of differences of population cumulative excess hazards computed at the age of the patient when the at the right interval censoring time and at the initial age of the patient. The length of d.rchrate should be equal to the number of right censored and/or interval censored observations in the dataset. Needed in the context of excess hazard modelling if right censored and/or interval censored observations are present. In the latter case, d.lhrate also need be provided.

Vector of differences of population cumulative excess hazards computed at the age of the patient when the left censoring occurred and at the age of the patient when the truncation occurred. The length of d.lchr ate .td should be equal to the number of left truncated left censored and/or left truncated interval censored observations in the dataset. Needed in the context of excess hazard modelling if left truncated left censored and/or left truncated interval censored observations are present. In the latter case, d.rchrate .td also need be provided.

Vector of differences of population cumulative excess hazards computed at the age of the patient when the right censoring occurred and at the age of the patient when the truncation occurred. The length of d.rchrate .td should be equal to the number of left truncated right censored and/or left truncated interval censored observations in the dataset. Needed in the context of excess hazard modelling if left truncated right censored and/or left truncated interval censored observations are present. In the latter case, d.lchr ate .td also need be provided.
observations are present. In the latter case, d.lchrate.td also need be provided.

**truncation.time**

Variable name of truncation time.

**min.dn, min.pr, max.pr**

These values are used to set, depending on the model used for modelling, the minimum and maximum allowed for the densities and probabilities. These parameters are employed to avoid potential overflows/underflows in the calculations and the default values seem to offer a good compromise. Function `conv.check()` provides some relevant diagnostic information which can be used, for example, to check whether the lower bounds of min.dn and min.pr have been reached. So based on this or if the user wishes to do some sensitivity analysis then this can be easily carried out using these three arguments. However, the user has to be cautious. For instance, it would not make much sense to choose for min.dn and min.pr values bigger than the default ones. Bear in mind that the bounds can be reached for ill-defined models. For certain distributions/models, if convergence failure occurs and the bounds have been reached then the user can try a sensitivity analysis as mentioned above.

**ygrid.tol**

Tolerance used to choose grid of response values for robust discrete models. Values smaller than 1e-160 are not allowed for.

**Details**

The underlying algorithm is described in ?gjrm.

There are many continuous/discrete/survival distributions to choose from and we plan to include more options. Get in touch if you are interested in a particular distribution.

The "GEVlink" option is used for binary response additive models and is more stable and faster than the R package bgeva. This model has been incorporated into this package to take advantage of the richer set of smoother choices, and of the estimation approach. Details on the model can be found in Calabrese, Marra and Osmetti (2016).

**Value**

The function returns an object of class `gamlss` as described in `gamlssObject`.

**WARNINGS**

Convergence can be checked using `conv.check` which provides some information about the score and information matrix associated with the fitted model. The former should be close to 0 and the latter positive definite. `gamlss()` will produce some warnings if there is a convergence issue.

Convergence failure may sometimes occur. This is not necessarily a bad thing as it may indicate specific problems with a fitted model. In such a situation, the user may use some extra regularisation (see `extra.regI`) and/or rescaling (see `parscale`). However, the user should especially consider re-specifying/simplifying the model, and/or checking that the chosen distribution fits the response well. In our experience, we found that convergence failure typically occurs when the model has been misspecified and/or the sample size is low compared to the complexity of the model. It is also worth bearing in mind that the use of three parameter distributions requires the data to be more informative than a situation in which two parameter distributions are used instead.
Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References


See Also

`GJRM-package`, `gamlssObject`, `conv.check`, `summary.gamlss`

Examples

```r
Not run:
library(GJRM)
set.seed(0)
n <- 400
x1 <- round(runif(n))
x2 <- runif(n)
x3 <- runif(n)
f1 <- function(x) cos(pi*2*x) + sin(pi*x)
y1 <- -1.55 + 2*x1 + f1(x2) + rnorm(n)
dataSim <- data.frame(y1, x1, x2, x3)
resp.check(y1, "N")
eq.mu <- y1 ~ x1 + s(x2) + s(x3)
eq.s <- ~ s(x3)
fl <- list(eq.mu, eq.s)
out <- gamlss(fl, data = dataSim)
conv.check(out)
post.check(out)
plot(out, eq = 1, scale = 0, pages = 1, seWithMean = TRUE)
```
plot(out, eq = 2, seWithMean = TRUE)

summary(out)

AIC(out)
BIC(out)

# Robust example

eq.mu <- y1 ~ x1 + x2 + x3
def <- list(eq.mu)

out <- gamlss(fl, data = dataSim, margin = "N", robust = TRUE,
             rc = 3, LB = -Inf, UB = Inf)

cov.check(out)
summary(out)
rob.const(out, 100)

##
eq.s <- ~ x3
def <- list(eq.mu, eq.s)

out <- gamlss(fl, data = dataSim, margin = "N", robust = TRUE)

cov.check(out)
summary(out)

##
eq.mu <- y1 ~ x1 + s(x2) + s(x3)
eq.s <- ~ s(x3)
def <- list(eq.mu, eq.s)

out1 <- gamlss(fl, data = dataSim, margin = "N", robust = TRUE,
               sp.method = "efs")

cov.check(out1)
summary(out1)
AIC(out, out1)

plot(out1, eq = 1, all.terms = TRUE, pages = 1, seWithMean = TRUE)
plot(out1, eq = 2, seWithMean = TRUE)

# GEV link binary example
# this incorporates the bgeva
# model implemented in the bgeva package
# however this implementation is more general
# stable and efficient

```r
set.seed(0)

n <- 400

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x+exp(-30*(x-0.5)^2)

y <- ifelse(-3.55 + 2*x1 + f1(x2) + rnorm(n) > 0, 1, 0)
dataSim <- data.frame(y, x1, x2, x3)

out1 <- gamlss(list(y ~ x1 + x2 + x3), margin = "GEVlink", data = dataSim)
out2 <- gamlss(list(y ~ x1 + s(x2) + s(x3)), margin = "GEVlink", data = dataSim)

conv.check(out1)
conv.check(out2)
summary(out1)
summary(out2)
AIC(out1, out2)
BIC(out1, out2)

plot(out2, eq = 1, all.terms = TRUE, pages = 1, seWithMean = TRUE)
```

# prediction of Pr

```r
Calculate eta (that is, X*model.coef)
For a new data set the argument newdata should be used

etas <- predict(out2, eq = 1, type = "link")

extract gev tail parameter

tail.par <- out2$gev.par

multiply gev tail parameter by eta

tailpar <- tail.par*etas

establish for which values the model is defined

tailparIND <- ifelse(tailpar < -1, FALSE, TRUE)
tailpar <- tailpar[tailparIND]

estimate probabilities

pr <- exp(-(1 + tailpar)^(-1/tail.par))
```
library(GJRMM)

set.seed(0)
n <- 2000
c <- runif(n, 3, 8)
u <- runif(n, 0, 1)
z1 <- rbinom(n, 1, 0.5)
z2 <- runif(n, 0, 1)
t <- rep(NA, n)

beta_0 <- -0.2357
beta_1 <- 1

f <- function(t, beta_0, beta_1, u, z1, z2){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  exp(-exp(log(-log(S_0))+beta_0*z1 + beta_1*z2))-u
}

for (i in 1:n){
  t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5,
                  beta_0 = beta_0, beta_1 = beta_1, u = u[i],
                  z1 = z1[i], z2 = z2[i], extendInt = "yes" )$root
}

delta <- ifelse(t < c, 1, 0)
u <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(u, delta, z1, z2)

# log(u) helps obtaining smoother hazards
out <- gamlss(list(u ~ s(log(u), bs = "mpi") + z1 + s(z2) ), data = dataSim,
              surv = TRUE, margin = "PH", cens = delta)
post.check(out)
summary(out)
AIC(out)
BIC(out)

plot(out, eq = 1, scale = 0, pages = 1)
hazsurv.plot(out, newdata = data.frame(z1 = 0, z2 = 0), shade = TRUE,
n.sim = 1000, baseline = TRUE)
hazsurv.plot(out, type = "hazard", newdata = data.frame(z1 = 0, z2 = 0),
             shade = TRUE, n.sim = 1000, baseline = TRUE)

out1 <- gam(u ~ z1 + s(z2), family = cox.ph(),
            data = dataSim, surv = TRUE, margin = "PH", cens = delta)
summary(out1)
# estimates of z1 and s(z2) are
# nearly identical between out and out1

# note that the Weibull is implemented as AFT
# as using the PH parametrisation makes
# computation unstable
out2 <- gamlss(list(u ~ z1 + s(z2) ), data = dataSim, surv = TRUE, 
               margin = "WEI", cens = delta)

set.seed(0)

n <- 2000
c <- runif(n, 4, 8)
u <- runif(n, 0, 1)
z <- rbinom(n, 1, 0.5)
beta_0 <- -1.05
t <- rep(NA, n)

f <- function(t, beta_0, u, z){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  1/(1 + exp(log((1-S_0)/S_0)+beta_0*z))-u
}

for (i in 1:n){
  t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5, 
                  beta_0 = beta_0, u = u[i], z = z[i],
                  extendInt="yes")$root
}

delta <- ifelse(t < c, 1, 0)
u <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(u, delta, z)
1-mean(delta) # average censoring rate

out <- gamlss(list(u - s(log(u), bs = "mpi") + z ), data = dataSim, surv = TRUE, 
              margin = "PO", cens = delta)
post.check(out)
summary(out)
AIC(out)
BIC(out)
plot(out, eq = 1, scale = 0)
hazsurv.plot(out, newdata = data.frame(z = 0), shade = TRUE, n.sim = 1000,
             baseline = TRUE)
hazsurv.plot(out, type = "hazard", newdata = data.frame(z = 0),
             shade = TRUE, n.sim = 1000)
f1 <- function(t, u, z1, z2, z3, z4, s1, s2){
  S_0 <- 0.7 * exp(-0.03*t^1.8) + 0.3*exp(-0.3*t^2.5)
  exp(-exp(log(-log(S_0)) + 1.3*z1 + 0.5*z2 + s1(z3) + s2(z4)) - u)
}

datagen <- function(n, z1, z2, z3, z4, s1, s2, f1){
  u <- runif(n, 0, 1)
  t <- rep(NA, n)
  for (i in 1:n) t[i] <- uniroot(f1, c(0, 100), tol = .Machine$double.eps^0.5, u = u[i], s1 = s1, s2 = s2, z1 = z1[i], z2 = z2[i], z3 = z3[i], z4 = z4[i], extendInt = "yes")$root
  c1 <- runif(n, 0, 2)
  c2 <- c1 + runif(n, 0, 6)
  df <- data.frame(u1 = t, u2 = t, cens = character(n), stringsAsFactors = FALSE)
  for (i in 1:n){
    if(t[i] <= c1[i]) {
      df[i, 1] <- c1[i]
      df[i, 2] <- NA
      df[i, 3] <- "L"
    }else if(c1[i] < t[i] && t[i] <= c2[i]){ 
      df[i, 1] <- c1[i]
      df[i, 2] <- c2[i]
      df[i, 3] <- "I"
    }else if(t[i] > c2[i]){ 
      df[i, 1] <- c2[i]
      df[i, 2] <- NA
      df[i, 3] <- "R"
    }
  }
  uncens <- (df[, 3] %in% c("L", "I")) + (rbinom(n, 1, 0.2) == 1) == 2
  df[uncens, 1] <- t[uncens]
  df[uncens, 2] <- NA
  df[uncens, 3] <- "U"
dataSim <- data.frame(u1 = df$u1, u2 = df$u2, cens = as.factor(df$cens), z1, z2, z3, z4, t)
dataSim
}

set.seed(0)
n <- 1000
SigmaC <- matrix(0.5, 4, 4); diag(SigmaC) <- 1
cov <- rmVN(n, rep(0,4), SigmaC)
cov <- pnorm(cov)
z1 <- round(cov[, 1])
z2 <- round(cov[, 2])
z3 <- cov[, 3]
z4 <- cov[, 4]
s1 <- function(x) -0.075*exp(3.2 * x)
s2 <- function(x) sin(2*pi*x)
eq1 <- u1 ~ s(log(u1), bs = "mpi") + z1 + z2 + s(z3) + s(z4)
dataSim <- datagen(n, z1, z2, z3, z4, s1, s2, f1)
out <- gamlss(list(eq1), data = dataSim, surv = TRUE, margin = "PH",
cens = cens, type.cen = "mixed", upperB = "u2")
conv.check(out)
summary(out)
plot(out, eq = 1, scale = 0, pages = 1)

ndf <- data.frame(z1 = 1, z2 = 0, z3 = 0.2, z4 = 0.5)
hazsurv.plot(out, eq = 1, newdata = ndf, type = "surv")
hazsurv.plot(out, eq = 1, newdata = ndf, type = "hazard", n.sim = 1000)
## End(Not run)

gamlssObject

---

### gamlssObject

**Fitted gamlssObject object**

#### Description

A fitted gamlss object returned by function `gamlss` and of class "gamlss" and "SemiParBIV".

#### Value

- **fit**
  List of values and diagnostics extracted from the output of the algorithm.
- **gam1, gam2, gam3**
  Univariate starting values' fits.
coefficients  The coefficients of the fitted model.
weights  Prior weights used during model fitting.
sp  Estimated smoothing parameters of the smooth components.
iter.sp  Number of iterations performed for the smoothing parameter estimation step.
iter.if  Number of iterations performed in the initial step of the algorithm.
iter.inner  Number of iterations performed within the smoothing parameter estimation step.
n  Sample size.
X1, X2, X3, ...  Design matrices associated with the linear predictors.
X1.d2, X2.d2, X3.d2, ...  Number of columns of X1, X2, X3, etc.
l.sp1, l.sp2, l.sp3, ...  Number of smooth components in the equations.
He  Penalized -hessian/Fisher. This is the same as HeSh for unpenalized models.
HeSh  Unpenalized -hessian/Fisher.
Vb  Inverse of He. This corresponds to the Bayesian variance-covariance matrix used for confidence/credible interval calculations.
F  This is obtained multiplying Vb by HeSh.
t.edf  Total degrees of freedom of the estimated bivariate model. It is calculated as sum(diag(F)).
edf1, edf2, edf3, ...  Degrees of freedom for the model’s equations.
wor.c  Working model quantities.
eta1, eta2, eta3, ...  Estimated linear predictors.
y1  Response.
logLik  Value of the (unpenalized) log-likelihood evaluated at the (penalized or unpenalized) parameter estimates.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gamlss, summary.gamlss
Description

penalised network, work in progress.

Usage

```r
ggmtrust(s, n, data = NULL, lambda = 1, pen = "lasso", params = NULL, method = "BHHH", w.alasso = NULL, gamma = 1, a = 3.7)
```

Arguments

- `s` Sample covariance matrix.
- `n` Sample size.
- `data` Data.
- `lambda` Regularisation parameter.
- `pen` Either "lasso" or "ridge".
- `params` If different from null then these are taken as the starting values.
- `method` Either "H" or "BHHH".
- `w.alasso` Weight for alasso.
- `gamma` Alasso param.
- `a` Scad param.

Details

penalised network, work in progress.

Value

The function returns an object of class `ggmtrust`. 
**Description**

gjrm fits flexible joint models with binary/continuous/discrete/survival margins, with several types of covariate effects, copula and marginal distributions.

**Usage**

gjrm(formula, data = list(), weights = NULL, subset = NULL,
BivD = "N", margins, Model, dof = 3, ordinal = FALSE,
surv = FALSE, cens1 = NULL, cens2 = NULL, cens3 = NULL, dep.cens = FALSE,
gamlssfit = FALSE, fp = FALSE, infl.fac = 1,
rint = 1, rmax = 100,
iterlimsp = 50, tolsp = 1e-07,
gc.l = FALSE, parscale, extra.regI = "t",
k1.tvc = 0, k2.tvc = 0, knots = NULL,
penCor = "unpen", sp.penCor = 3,
Chol = FALSE, gamma = 1, w.lasso = NULL,
drop.unused.levels = TRUE, ind.ord = FALSE,
min.dn = 1e-40, min.pr = 1e-16, max.pr = 0.999999)

**Arguments**

- **formula**: In the basic setup this will be a list of two (or three) formulas, one for equation 1, the other for equation 2 and another one for equation 3 if a trivariate model is fitted to the data. Otherwise, more equations can be used depending on the number of distributional parameters. `s` terms are used to specify smooth functions of predictors; see the documentation of mgcv for further details on formula specifications. Note that if a selection model is employed (that is, Model = "BSS" or Model = "TSS") then the first formula (and the second as well for trivariate models) MUST refer to the selection equation(s). When one outcome is binary and the other continuous/discrete then the first equation should refer to the binary outcome whereas the second to the continuous/discrete one. When one outcome is discrete and the other continuous then the first equation has to be the discrete one.

- **data**: An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which gjrm is called.

- **weights**: Optional vector of prior weights to be used in fitting.

- **subset**: Optional vector specifying a subset of observations to be used in the fitting process.
margins

It indicates the distributions used for the two or three margins. Possible distributions are normal ("N"), log-normal ("LN"), Gumbel ("GU"), reverse Gumbel ("rGU"), generalised Pareto ("GP"), generalised Pareto II ("GPII") where the shape parameter is forced to be > -0.5, generalised Pareto (with orthogonal parametrisation) ("GPo") where the shape parameter is forced to be > -0.5, discrete generalised Pareto ("DGP"), discrete generalised Pareto II ("DGPII") where the shape parameter is forced to be positive, logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK", also known as log-logistic distribution), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NB1"), negative binomial - type II ("NBII"), Poisson inverse Gaussian ("PIG"). If the responses are binary then possible link functions are "probit", "logit", "cloglog". For survival models, the margins can be proportional hazards ("PH"), odds ("PO") or "probit".

Model

Possible values are "B" (bivariate model), "T" (trivariate model) "BSS" (bivariate model with non-random sample selection), "TSS" (trivariate model with double non-random sample selection), "TESS" (trivariate model with endogeneity and non-random sample selection), "BPO" (bivariate model with partial observability) and "BPO0" (bivariate model with partial observability and zero correlation). Options "T", "TESS" and "TSS" are currently for trivariate binary models only. "BPO" and "BPO0" are for bivariate binary models only.

dof

If BivD = "T" then the degrees of freedom can be set to a value greater than 2 and smaller than 249. Only for continuous margins, this will be taken as a starting value and the dof estimated from the data.

ordinal

If TRUE then the ordinal model is employed.

surv

If TRUE then a bivariate survival model is fitted.

cens1

Binary censoring indicator 1. This is required when surv = TRUE. This variable has to be equal to 1 if the event occurred and 0 otherwise.

cens2

Binary censoring indicator 2. This is required when surv = TRUE.

cens3

Binary censoring indicator employed only when surv = TRUE, dep. cens = TRUE and administrative censoring is present.

dep. cens

If TRUE then the dependence censored model is employed.

gamlssfit

If gamlssfit = TRUE then gamlss univariate models are also fitted. This is useful for obtaining starting values, for instance.

BivD

Type of bivariate error distribution employed. Possible choices are "N", "C0", "C90", "C180", "C270", "J0", "J90", "J180", "J270", "G0", "G90", "G180", "G270", "F", "AMH", "FGM", "T", "PL", "HO" which stand for bivariate normal, Clayton, rotated Clayton (90 degrees), survival Clayton, rotated Clayton (270 degrees), Joe, rotated Joe (90 degrees), survival Joe, rotated Joe (270 degrees), Gumbel, rotated Gumbel (90 degrees), survival Gumbel, rotated Gumbel (270 degrees), Frank, Ali-Mikhail-Haq, Farlie-Gumbel-Morgenstern, Student-t with dof, Plackett, Hougaard. Each of the Clayton, Joe and Gumbel copulae is allowed to be mixed with a rotated version of the same family. The options are: "COC90", "COC270", "C180C90", "C180C270", "G0G90", "G0G270", "G180G90", "G180G270", "J0J90", "J0J270", "J180J90" and "J180J270". This allows the user to model negative and positive tail dependencies.
fp

If TRUE then a fully parametric model with unpenalised regression splines if fitted. See the Example 2 below.

inf1.fac

Inflation factor for the model degrees of freedom in the approximate AIC. Smoother models can be obtained setting this parameter to a value greater than 1.

rinit

Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds. See the documentation of \texttt{trust} for further details.

rmax

Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.

iterlimsp

A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.

tolsp

Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter estimation is used.

gc.l

This is relevant when working with big datasets. If TRUE then the garbage collector is called more often than it is usually done. This keeps the memory footprint down but it will slow down the routine.

parscale

The algorithm will operate as if optimizing objfun(x / parscale, ...) where parscale is a scalar. If missing then no rescaling is done. See the documentation of \texttt{trust} for more details.

extra.regI

If "t" then regularization as from \texttt{trust} is applied to the information matrix if needed. If different from "t" then extra regularization is applied via the options "pC" (pivoted Choleski - this will only work when the information matrix is semi-positive or positive definite) and "sED" (symmetric eigen-decomposition).

k1.tvc, k2.tvc

Only used for tvc ps smoothers when using survival models.

knots

Optional list containing user specified knot values to be used for basis construction.

penCor

This and the arguments below are only for trivariate binary models. Type of penalty for correlation coefficients. Possible values are "unpen", "lasso", "ridge", "alasso".

sp.penCor

Starting value for smoothing parameter of \texttt{penCor}.

Chol

If TRUE then the Cholesky method instead of the eigenvalue method is employed for the correlation matrix.

gamma

Inflation factor used only for the alasso penalty.

w.alasso

When using the alasso penalty a weight vector made up of three values must be provided.

drop.unused.levels

By default unused levels are dropped from factors before fitting. For some smooths involving factor variables this may have to be turned off (only use if you know what you are doing).

ind.ord

Joint ordinal model under independence.

min.dn, min.pr, max.pr

These values are used to set, depending on the model used for modelling, the minimum and maximum allowed for the densities and probabilities; recall that the margins of copula models have to be in the range (0,1). These parameters
are employed to avoid potential overflows/underflows in the calculations and the default values seem to offer a good compromise. Function `conv.check()` provides some relevant diagnostic information which can be used, for example, to check whether the lower bounds of `min.dn` and `min.pr` have been reached. So based on this or if the user wishes to do some sensitivity analysis then this can be easily carried out using these three arguments. However, the user has to be cautious. For instance, it would not make much sense to choose for `min.dn` and `min.pr` values bigger than the default ones. Bear in mind that the bounds can be reached for ill-defined models. For certain distributions/models, if convergence failure occurs and the bounds have been reached then the user can try a sensitivity analysis as mentioned above.

Details

The joint models considered by this function consist of two or three model equations which depend on flexible linear predictors and whose dependence between the responses is modelled through one or more parameters of a chosen multivariate distribution. The additive predictors of the equations are flexibly specified using parametric components and smooth functions of covariates. The same can be done for the dependence parameter(s) if it makes sense. Estimation is achieved within a penalized likelihood framework with integrated automatic multiple smoothing parameter selection. The use of penalty matrices allows for the suppression of that part of smooth term complexity which has no support from the data. The trade-off between smoothness and fitness is controlled by smoothing parameters associated with the penalty matrices. Smoothing parameters are chosen to minimise an approximate AIC.

For sample selection models, if there are factors in the model then before fitting the user has to ensure that the numbers of factor variables’ levels in the selected sample are the same as those in the complete dataset. Even if a model could be fitted in such a situation, the model may produce fits which are not coherent with the nature of the correction sought. As an example consider the situation in which the complete dataset contains a factor variable with five levels and that only three of them appear in the selected sample. For the outcome equation (which is the one of interest) only three levels of such variable exist in the population, but their effects will be corrected for non-random selection using a selection equation in which five levels exist instead. Having differing numbers of factors’ levels between complete and selected samples will also make prediction not feasible (an aspect which may be particularly important for selection models); clearly it is not possible to predict the response of interest for the missing entries using a dataset that contains all levels of a factor variable but using an outcome model estimated using a subset of these levels.

There are many continuous/discrete/survival distributions and copula functions to choose from and we plan to include more options. Get in touch if you are interested in a particular distribution.

Value

The function returns an object of class `gjrm` as described in `gjrmObject`.

WARNINGS

Convergence can be checked using `conv.check()` which provides some information about the score and information matrix associated with the fitted model. The former should be close to 0 and the latter positive definite. `gjrm()` will produce some warnings if there is a convergence issue.
Convergence failure may sometimes occur. This is not necessarily a bad thing as it may indicate specific problems with a fitted model. In such a situation, the user may use some extra regularisation (see `extra.regI`) and/or rescaling (see `parscale`). Using `gamlssfit = TRUE` is typically more effective than the first two options as this will provide better calibrated starting values as compared to those obtained from the default starting value procedure. The default option is, however, `gamlssfit = FALSE` only because it tends to be computationally cheaper and because the default procedure has typically been found to do a satisfactory job in most cases. (The results obtained when using `gamlssfit = FALSE` and `gamlssfit = TRUE` could also be compared to check if starting values make any difference.)

The above suggestions may help, especially the latter option. However, the user should also consider re-specifying/simplifying the model, and/or using a different dependence structure and/or checking that the chosen marginal distributions fit the responses well. In our experience, we found that convergence failure typically occurs when the model has been misspecified and/or the sample size is low compared to the complexity of the model. Examples of misspecification include using a Clayton copula rotated by 90 degrees when a positive association between the margins is present instead, using marginal distributions that do not fit the responses, and employing a copula which does not accommodate the type and/or strength of the dependence between the margins (e.g., using AMH when the association between the margins is strong). When using smooth functions, if the covariate’s values are too sparse then convergence may be affected by this. It is also worth bearing in mind that the use of three parameter marginal distributions requires the data to be more informative than a situation in which two parameter distributions are used instead.

In the contexts of endogeneity and non-random sample selection, extra attention is required when specifying the dependence parameter as a function of covariates. This is because in these situations the dependence parameter mainly models the association between the unobserved confounders in the two equations. Therefore, this option would make sense when it is believed that the strength of the association between the unobservables in the two equations varies based on some grouping factor or across geographical areas, for instance. In any case, a clear rationale is typically needed in such cases.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

**References**

See help("GJRM-package").

**See Also**

`adjCov`, `VuongClarke`, `GJRM-package`, `gjrmObject`, `conv.check`, `summary.gjrm`

**Examples**

```r
library(GJRM)
```
# JOINT MODELS WITH BINARY MARGINS #
#******************************************************************************
#******************************************************************************
#******************************************************************************

### Example 1 ###

```r
set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x+exp(-30*(x-0.5)^2)

y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2, x3)

CLASSIC BIVARIATE PROBIT

out <- gjrm(list(y1 ~ x1 + x2 + x3,
 y2 ~ x1 + x2 + x3),
 data = dataSim,
 margins = c("probit", "probit"),
 Model = "B")

conv.check(out)
summary(out)
AIC(out)
BIC(out)

Not run:

BIVARIATE PROBIT with Splines

out <- gjrm(list(y1 ~ x1 + s(x2) + s(x3),
 y2 ~ x1 + s(x2) + s(x3)),
 data = dataSim,
 margins = c("probit", "probit"),
 Model = "B")

conv.check(out)
summary(out)
AIC(out)
```
## Estimated Smooth Function Plots - Red Lines are True Curves

\[
x_2 <- \text{sort}(x_2)
\]
\[
f_1.x_2 <- f_1(x_2)[\text{order}(x_2)] - \text{mean}(f_1(x_2))
\]
\[
f_2.x_2 <- f_2(x_2)[\text{order}(x_2)] - \text{mean}(f_2(x_2))
\]
\[
f_3.x_3 <- \text{rep}(0, \text{length}(x_3))
\]

\begin{verbatim}
par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq = 1, select = 1, seWithMean = TRUE, scale = 0)
lines(x_2, f_1.x_2, col = "red")
plot(out, eq = 1, select = 2, seWithMean = TRUE, scale = 0)
lines(x_3, f_3.x_3, col = "red")
plot(out, eq = 2, select = 1, seWithMean = TRUE, scale = 0)
lines(x_2, f_2.x_2, col = "red")
plot(out, eq = 2, select = 2, seWithMean = TRUE, scale = 0)
lines(x_3, f_3.x_3, col = "red")
\end{verbatim}

## Bivariate Probit with Splines and Varying Dependence Parameter

\[
eq_\mu.1 <- y_1 - x_1 + s(x_2)
\]
\[
eq_\mu.2 <- y_2 - x_1 + s(x_2)
\]
\[
eq_\theta <- - x_1 + s(x_2)
\]

\[
f <- \text{list}(eq_\mu.1, eq_\mu.2, eq_\theta)
\]

\[
\text{outD} \leftarrow \text{gjrm}(f, \text{data} = \text{dataSim},
\text{margins} = \text{c("probit", "probit")},
\text{Model} = "B")
\]

\[
\text{conv.check(outD)}
\]
\[
\text{summary(outD)}
\]
\[
\text{outD}_\theta
\]

\[
\text{plot(outD, eq = 1, seWithMean = TRUE)}
\]
\[
\text{plot(outD, eq = 2, seWithMean = TRUE)}
\]
\[
\text{plot(outD, eq = 3, seWithMean = TRUE)}
\]
\[
\text{graphics.off()}
\]

#### Example 2

#### Generate Data with One Endogenous Variable and Exclusion Restriction

\[
\text{set.seed(0)}
\]
\[
n \leftarrow 400
\]
\[
\text{Sigma} \leftarrow \text{matrix}(0.5, 2, 2); \text{diag(Sigma)} \leftarrow 1
\]
\[
u \leftarrow \text{rMVN(n, rep(0, 2), Sigma)}
\]
cov <- rMVN(n, rep(0,2), Sigma)
cov <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x+exp(-30*(x-0.5)^2)

y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*y1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

# Testing the hypothesis of absence of endogeneity...

LM.bpm(list(y1 ~ x1 + s(x2), y2 ~ y1 + s(x2)), dataSim, Model = "B")

## CLASSIC RECURSIVE BIVARIATE PROBIT

out <- gjrm(list(y1 ~ x1 + x2,
    y2 ~ y1 + x2),
    data = dataSim,
    margins = c("probit", "probit"),
    Model = "B")

conv.check(out)
summary(out)
AIC(out); BIC(out)

## FLEXIBLE RECURSIVE BIVARIATE PROBIT

out <- gjrm(list(y1 ~ x1 + s(x2),
    y2 ~ y1 + s(x2)),
    data = dataSim,
    margins = c("probit", "probit"),
    Model = "B")

conv.check(out)
summary(out)
AIC(out); BIC(out)

# Testing the hypothesis of absence of endogeneity post estimation...

gt.bpm(out)

# treatment effect, risk ratio and odds ratio with CIs

mb(y1, y2, Model = "B")
AT(out, nm.end = "y1", hd.plot = TRUE)
RR(out, nm.end = "y1")
OR(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")
re.imp <- imputeCounter(out, m = 10, "y1")
re.imp$AT

## try a Clayton copula model...

outC <- gjrm(list(y1 ~ x1 + s(x2),
                 y2 ~ y1 + s(x2)),
             data = dataSim, BivD = "C0",
             margins = c("probit", "probit"),
             Model = "B")
conv.check(outC)
summary(outC)
AT(outC, nm.end = "y1")
re.imp <- imputeCounter(outC, m = 10, "y1")
re.imp$AT

## try a Joe copula model...

outJ <- gjrm(list(y1 ~ x1 + s(x2),
                 y2 ~ y1 + s(x2)),
             data = dataSim, BivD = "J0",
             margins = c("probit", "probit"),
             Model = "B")
conv.check(outJ)
summary(outJ)
AT(outJ, "y1")
re.imp <- imputeCounter(outJ, m = 10, "y1")
re.imp$AT

VuongClarke(out, outJ)

#
## recursive bivariate probit modelling with unpenalized splines
## can be achieved as follows

outFP <- gjrm(list(y1 ~ x1 + s(x2, bs = "cr", k = 5),
                   y2 ~ y1 + s(x2, bs = "cr", k = 6)),
               fp = TRUE, data = dataSim,
               margins = c("probit", "probit"),
               Model = "B")
conv.check(outFP)
summary(outFP)

# in the above examples a third equation could be introduced
# as illustrated in Example 1
## Example 3

### Generate data with a non-random sample selection mechanism and exclusion restriction

```r
set.seed(0)

n <- 2000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0,2), Sigma)

SigmaC <- matrix(0.5, 3, 3); diag(SigmaC) <- 1
cov <- rMVN(n, rep(0,3), SigmaC)
cov <- pnorm(cov)
b1 <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]

f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*(-0.3 - 1.6*x + sin(5*x))
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x))

ys <- 0.58 + 2.5*b1 + f11(x1) + f12(x2) + u[, 1] > 0
y <- -0.68 - 1.5*b1 + f21(x1) + u[, 2] > 0
yo <- y*(ys > 0)

dataSim <- data.frame(y, ys, yo, b1, x1, x2)
```

## Testing the hypothesis of absence of non-random sample selection...

```r
LM.bpm(list(ys ~ b1 + s(x1) + s(x2), yo ~ b1 + s(x1)), dataSim, Model = "BSS")
```

# p-value suggests presence of sample selection, hence fit a bivariate model

## SEMIPARAMETRIC SAMPLE SELECTION BIVARIATE PROBIT

### the first equation MUST be the selection equation

```r
out <- gjrm(list(ys ~ b1 + s(x1) + s(x2),
 yo ~ b1 + s(x1)),
 data = dataSim, Model = "BSS",
 margins = c("probit", "probit"))
```

## compare the two summary outputs

```r
summary(out)
summary(out$gam2)
```

# corrected predicted probability that 'yo' is equal to 1
mb(ys, yo, Model = "BSS")
prev(out, hd.plot = TRUE)
prev(out, type = "univariate", hd.plot = TRUE)

## estimated smooth function plots
## the red line is the true curve
## the blue line is the univariate model curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)]-mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1.65,0.95)); lines(x1.s, f21.x1, col="red")
par(new = TRUE)
plot(out$gam2, se = FALSE, col = "blue", ylim = c(-1.65,0.95),
     ylab = "", rug = FALSE)

# #
## try a Clayton copula model...

outC <- gjrm(list(ys ~ bi + s(x1) + s(x2),
                yo ~ bi + s(x1)),
             data = dataSim, Model = "BSS", BivD = "C0",
             margins = c("probit", "probit"))
conv.check(outC)
summary(outC)
prev(outC)

#############################
# Impute using Mice
#############################

library(mice)
ys <- dataSim$ys
dataSim$yo[dataSim$ys == FALSE] <- NA
dataSim <- dataSim[, -c(1:2)]

imp <- mice(dataSim, m = 1, method = c("copulaSS", "", ",", ","),
mice.formula = outC$mice.formula, margins = outC$margins,
             BivD = outC$BivD, maxit = 1)

comp.yo <- dataSim$yo
comp.yo[ys == 0] <- imp$imp$yo[[1]]
mean(comp.yo)

# #
## See also ?hiv
# #
### Example 4
#### Generate data with partial observability

```r
define seed(0)

define n = 10000

define Sigma = matrix(0.5, 2, 2); define diag(Sigma) = 1

define u = rMVN(n, rep(0, 2), Sigma)

define x1 = round(runif(n)); define x2 = runif(n); define x3 = runif(n)

define y1 = ifelse(-1.55 + 2 * x1 + x2 + u[,1] > 0, 1, 0)

define y2 = ifelse(0.45 - x3 + u[,2] > 0, 1, 0)

define y = y1*y2

define dataSim = data.frame(y, x1, x2, x3)
```

#### BIVARIATE PROBIT with Partial Observability

```r
out <- gjrm(list(y ~ x1 + x2),
 y ~ x3),
 data = dataSim, Model = "BPO",
 margins = c("probit", "probit"))

conv.check(out)

summary(out)

first ten estimated probabilities for the four events from object out

cbind(out$p11, out$p10, out$p00, out$p01)[1:10,]

case with smooth function
(more computationally intensive)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)

define y1 = ifelse(-1.55 + 2 * x1 + f1(x2) + u[,1] > 0, 1, 0)

define y2 = ifelse(0.45 - x3 + u[,2] > 0, 1, 0)

define y = y1*y2

define dataSim = data.frame(y, x1, x2, x3)

out <- gjrm(list(y ~ x1 + s(x2),
 y ~ x3),
 data = dataSim, Model = "BPO",
 margins = c("probit", "probit"))

conv.check(out)
```
summary(out)

# plot estimated and true functions
x2 <- sort(x2); f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
plot(out, eq = 1, scale = 0); lines(x2, f1.x2, col = "red")

#
########################
## See also ?war
########################

## End(Not run)
## Not run:

###########################################################
###########################################################
# JOINT MODELS WITH BINARY AND/OR CONTINUOUS MARGINS #
###########################################################
###########################################################
###########################################################
library(GJRM)

###########
## Example 5
## Generate data
## Correlation between the two equations 0.5 - Sample size 400

set.seed(0)
n <- 400
Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)
f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x+exp(-30*(x-0.5)^2)

y1 <- -1.55 + 2*x1 + f1(x2) + u[,1]
y2 <- -0.25 - 1.25*x1 + f2(x2) + u[,2]

dataSim <- data.frame(y1, y2, x1, x2, x3)

resp.check(y1, "N")
resp.check(y2, "N")

eq.mu.1 <- y1 - x1 + s(x2) + s(x3)
eq.mu.2  <- y2 ~ x1 + s(x2) + s(x3)  
eq.sigma1 <- ~ 1  
eq.sigma2 <- ~ 1  
eq.theta  <- ~ x1  
fl <- list(eq.mu.1, eq.mu.2, eq.sigma1, eq.sigma2, eq.theta)  
  
# the order above is the one to follow when  
# using more than two equations  
out  <- gjrm(fl, data = dataSim, margins = c("N", "N"),  
Model = "B")  

conv.check(out)  
post.check(out)  
summary(out)  
AIC(out)  
BIC(out)  
jc.probs(out, 1.4, 2.3, intervals = TRUE)[1:4,]  

############  
## Example 6  
############  
## Generate data with one endogenous binary variable  
## and continuous outcome  
set.seed(0)  
n <- 1000  
Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1  
u  <- rMVN(n, rep(0,2), Sigma)  
cov  <- rMVN(n, rep(0,2), Sigma)  
cov  <- pnorm(cov)  
x1  <- round(cov[,1]); x2  <- cov[,2]  
f1  <- function(x) cos(pi*2*x) + sin(pi*x)  
f2  <- function(x) x+exp(-30*(x-0.5)^2)  
y1  <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)  
y2  <- -0.25 - 1.25*y1 + f2(x2) + u[,2]  
dataSim  <- data.frame(y1, y2, x1, x2)  

## RECURSIVE Model  
rc  <- resp.check(y2, margin = "N", print.par = TRUE, loglik = TRUE)  
AIC(rc); BIC(rc)  
out  <- gjrm(list(y1 ~ x1 + x2,  
y2 ~ y1 + x2),  
Model = "B")
```r
SEMIPARAMETRIC RECURSIVE Model

eq.mu.1 <- y1 ~ x1 + s(x2)
eq.mu.2 <- y2 ~ y1 + s(x2)
eq.sigma <- ~ 1
eq.theta <- ~ 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma, eq.theta)

out <- gjrm(fl, data = dataSim,
 margins = c("probit","N"),
 gamlssfit = TRUE,
 Model = "B")

conv.check(out)
summary(out)
post.check(out)

Example 7
Generate data with one endogenous continuous exposure
and binary outcome

set.seed(0)
n <- 1000
Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0,2), Sigma)
cov <- rMVN(n, rep(0,2), Sigma)
cov <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]
f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x+exp(-30*(x-0.5)^2)
y1 <- -0.25 - 2*x1 + f2(x2) + u[,2]
y2 <- ifelse(-0.25 - 0.25*y1 + f1(x2) + u[,1] > 0, 1, 0)
dataSim <- data.frame(y1, y2, x1, x2)
```
eq.mu.1 <- y2 - y1 + s(x2)
eq.mu.2 <- y1 - x1 + s(x2)
eq.sigma <- - 1
eq.theta <- - 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma, eq.theta)

out <- gjrm(fl, data = dataSim,
          margins = c("probit", "N"),
          Model = "B")
conv.check(out)
summary(out)
post.check(out)
AT(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")
RR(out, nm.end = "y1", rr.plot = TRUE)
RR(out, nm.end = "y1", type = "univariate")
OR(out, nm.end = "y1", or.plot = TRUE)
OR(out, nm.end = "y1", type = "univariate")
#
#
############
## Example 8
############
## Survival models
############

set.seed(0)

n <- 2000
c <- runif(n, 3, 8)
u <- runif(n, 0, 1)
z1 <- rbinom(n, 1, 0.5)
z2 <- runif(n, 0, 1)
t <- rep(NA, n)
beta_0 <- -0.2357
beta_1 <- 1

f <- function(t, beta_0, beta_1, u, z1, z2){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  exp(-exp(log(-log(S_0))+beta_0*z1 + beta_1*z2))-u
}

for (i in 1:n){
t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5,
             beta_0 = beta_0, beta_1 = beta_1, u = u[i],
             z1 = z1[i], z2 = z2[i], extendint = "yes")$root}
delta1 <- ifelse(t < c, 1, 0)
u1 <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(u1, delta1, z1, z2)

c <- runif(n, 4, 8)
u <- runif(n, 0, 1)
z <- rbinom(n, 1, 0.5)
beta_0 <- -1.05
t <- rep(NA, n)

f <- function(t, beta_0, u, z){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  1/(1 + exp(log((1-S_0)/S_0)+beta_0*z))-u
}

for (i in 1:n){
  t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5,
    beta_0 = beta_0, u = u[i], z = z[i],
    extendInt="yes")$root
}

delta2 <- ifelse(t < c, 1, 0)
u2 <- apply(cbind(t, c), 1, min)
dataSim$delta2 <- delta2
dataSim$u2 <- u2
dataSim$z <- z

eq1 <- u1 ~ s(log(u1), bs = "mpi") + z1 + s(z2)
eq2 <- u2 ~ s(log(u2), bs = "mpi") + z

out <- gjrm(list(eq1, eq2), data = dataSim, surv = TRUE,
  margins = c("PH", "PO"),
  cens1 = delta1, cens2 = delta2, Model = "B")

# PH margin fit can also be compared with cox.ph from mgcv

conv.check(out)
res <- post.check(out)

# martingale residuals
mr1 <- out$cens1 - res$qr1
mr2 <- out$cens2 - res$qr2

# can be plotted against covariates
# obs index, survival time, rank order of
# surviv times
# to determine func form, one may use
# res from null model against covariate

# to test for PH, use:
# library(survival)
# fit <- coxph(Surv(u1, delta1) ~ z1 + z2, data = dataSim)
# temp <- cox.zph(fit)
# print(temp)
# plot(temp, resid = FALSE)

summary(out)
AIC(out); BIC(out)
plot(out, eq = 1, scale = 0, pages = 1)
plot(out, eq = 2, scale = 0, pages = 1)

hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0),
              shade = TRUE, n.sim = 100, baseline = TRUE)

hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0),
              shade = TRUE, n.sim = 100, type = "hazard", baseline = TRUE,
              intervals = FALSE)

hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0),
              shade = FALSE, n.sim = 100, baseline = TRUE)

hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0),
              shade = TRUE, n.sim = 100, type = "hazard", baseline = TRUE)

jc.probs(out, type = "joint", intervals = TRUE)[1:5,]

newd0 <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1),
                             z2 = mean(dataSim$z2),
                             u1 = mean(dataSim$u1) + 1,
                             u2 = mean(dataSim$u2) + 1)

newd1$z <- 1

jc.probs(out, type = "joint", newdata = newd0, intervals = TRUE)
jc.probs(out, type = "joint", newdata = newd1, intervals = TRUE)

out1 <- gjrm(list(eq1, eq2, eq3), data = dataSim, surv = TRUE,
              margins = c("PH", "PO"),
              cens1 = delta1, cens2 = delta2, gamlssfit = TRUE,
              Model = "B")

# eq1 <- u1 ~ z1 + s(z2)
# eq2 <- u2 ~ z
# eq3 <- ~ s(z2)
# note that Weibull is implemented as AFT model (test case)
# out2 <- gjrm(list(eq1, eq2, ~ 1, ~ 1, eq3), data = dataSim, surv = TRUE,
#               margins = c("WEI", "WEI"),
#               cens1 = delta1, cens2 = delta2,
#               Model = "B")

########################################################################
## Joint continuous and survival outcomes

#########################################
# work in progress
#
# eq1 <- z2 ~ z1
# eq2 <- u2 ~ s(u2, bs = "mpi") + z
# eq3 <- ~ s(z2)
# eq4 <- ~ s(z2)
#
# f.l <- list(eq1, eq2, eq3, eq4)
#
# out3 <- gjrm(f.l, data = dataSim, surv = TRUE,
#        margins = c("N", "PO"),
#        cens1 = NULL, cens2 = delta2,
#        gamlssfit = TRUE, Model = "B")
#
# conv.check(out3)
# post.check(out3)
# summary(out3)
# AIC(out3); BIC(out3)
# plot(out3, eq = 2, scale = 0, pages = 1)
# plot(out3, eq = 3, scale = 0, pages = 1)
# plot(out3, eq = 4, scale = 0, pages = 1)
#
# newd <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1),
#                     z2 = mean(dataSim$z2),
#                     u2 = mean(dataSim$u2) + 1)
#
# jc.probs(out3, y1 = 0.6, type = "joint", newdata = newd, intervals = TRUE)
## End(Not run)

## Not run:

#########################################
#########################################
# JOINT MODELS WITH THREE BINARY MARGS #
############################################
#########################################

library(GJRM)

###########
# Example 9
###########

## Generate data
## Correlation between the two equations 0.5 - Sample size 400

set.seed(0)

n <- 400
Sigma <- matrix(0.5, 3, 3); diag(Sigma) <- 1
u <- rMVN(n, rep(0,3), Sigma)
x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x+exp(-30*(x-0.5)^2)

y1 <- ifelse(-1.55 + 2*x1 - f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)
y3 <- ifelse(-0.75 + 0.25*x1 + u[,3] > 0, 1, 0)

dataSim <- data.frame(y1, y2, y3, x1, x2)

f.l <- list(y1 ~ x1 + s(x2),
            y2 ~ x1 + s(x2),
            y3 ~ x1)

t <- gjrm(f.l, data = dataSim, Model = "T",
          margins = c("probit", "probit", "probit"))
t1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T",
          margins = c("probit", "probit", "probit"))

conv.check(t)
summary(t)
plot(t, eq = 1)
plot(t, eq = 2)
AIC(t)
BIC(t)

out1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T",
             margins = c("probit", "logit", "cloglog"))

conv.check(out1)
summary(out1)
plot(out1, eq = 1)
plot(out1, eq = 2)
AIC(out1)
BIC(out1)

f.l <- list(y1 ~ x1 + s(x2),
            y2 ~ x1 + s(x2),
            y3 ~ x1,
            ~ 1, ~ 1, ~ 1)

t1 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T",
            margins = c("probit", "probit", "probit"))
gjrm

out2 <- gjrm(f.l, data = dataSim, Chol = TRUE, Model = "T", margins = c("probit", "probit", "probit"))

f.l <- list(y1 ~ x1 + s(x2),
            y2 ~ x1 + s(x2),
            y3 ~ x1,
            ~ x1 ~ s(x2), ~ x1 + s(x2))

type = "joint", cond = 0,
intervals = TRUE, n.sim = 100)

nw <- data.frame(x1 = 0, x2 = seq(0, 1, length.out = 100))

jcre2 <- jc.probs(out2, 1, 1, 1, newdata = nw, type = "joint",
cond = 0, intervals = TRUE, n.sim = 100)

set.seed(0)
n <- 5000
Sigma <- matrix(c(1, 0.5, 0.4, 0.5, 1, 0.6, 0.4, 0.6, 1), 3, 3)

u <- rMVN(n, rep(0, 3), Sigma)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x+exp(-30*(x-0.5)^2)

x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
x4 <- runif(n)

y1 <- 1 + 1.5*x1 - x2 + 0.8*x3 - f1(x4) + u[, 1] > 0
y2 <- 1 - 2.5*x1 + 1.2*x2 + x3 + u[, 2] > 0
y3 <- 1.58 + 1.5*x1 - f2(x2) + u[, 3] > 0

dataSim <- data.frame(y1, y2, y3, x1, x2, x3, x4)

f.l <- list(y1 ~ x1 + x2 + x3 + s(x4), y2 ~ x1 + x2 + x3, y3 ~ x1 + s(x2))

out <- gjrm(f.l, data = dataSim, Model = "TSS", margins = c("probit", "probit", "probit"))
conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 3)
prev(out)
prev(out, type = "univariate")
prev(out, type = "naive")

## End(Not run)

## Not run:

# JOINT MODELS WITH BINARY AND CONTINUOUS MARGINS #
# WITH SAMPLE SELECTION #

library(GJRM)

# JOINT MODELS WITH BINARY AND CONTINUOUS MARGINS #
# WITH SAMPLE SELECTION #

library(GJRM)
## Generate data
## Correlation between the two equations and covariate correlation 0.5
## Sample size 2000

```r
set.seed(0)

n <- 2000
rh <- 0.5

sigmau <- matrix(c(1, rh, rh, 1), 2, 2)
u <- rMVN(n, rep(0,2), sigmau)

sigmac <- matrix(rh, 3, 3); diag(sigmac) <- 1
cov <- rMVN(n, rep(0,3), sigmac)
cov <- pnorm(cov)

bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]

f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*(-0.3 - 1.6*x + sin(5*x))
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x))

ys <- 0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y <- -0.68 - 1.5*bi + f21(x1) + u[, 2]
yo <- y*(ys > 0)

dataSim <- data.frame(ys, yo, bi, x1, x2)
```

## CLASSIC SAMPLE SELECTION MODEL
## the first equation MUST be the selection equation

```r
resp.check(yo[ys > 0], "N")

out <- gjrm(list(ys ~ bi + x1 + x2,
 yo ~ bi + x1),
 data = dataSim, Model = "BSS",
 margins = c("probit", "N"))
conv.check(out)
post.check(out)
summary(out)

AIC(out)
BIC(out)
```

## SEMIPARAMETRIC SAMPLE SELECTION MODEL

```r
out <- gjrm(list(ys ~ bi + s(x1) + s(x2),
 yo ~ bi + s(x1)),
 data = dataSim, Model = "BSS",
 margins = c("probit", "N"))
```
data = dataSim, Model = "BSS",
margins = c("probit", "N"))
conv.check(out)
p myst. check(out)
AIC(out)

## compare the two summary outputs
## the second output produces a summary of the results obtained when only
## the outcome equation is fitted, i.e. selection bias is not accounted for
summary(out)
summary(out$gam2)

## estimated smooth function plots
## the red line is the true curve
## the blue line is the naive curve not accounting for selection bias
x1.s <- sort(x1[dataSim$ys > 0])
f21.x1 <- f21(x1.s)[order(x1.s)] - mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1, 0.8)); lines(x1.s, f21.x1, col = "red")
par(new = TRUE)
plot(out$gam2, se = FALSE, lty = 3, lwd = 2, ylim = c(-1, 0.8),
     ylab = "", rug = FALSE)

## IMPUTE MISSING VALUES
n.m <- 10
res <- imputeSS(out, n.m)
bet <- NA

for(i in 1:n.m){
  dataSim$yo[dataSim$ys == 0] <- res[[i]]
  outg <- gamlss(list(yo ~ bi + s(x1)), data = dataSim)
  bet[i] <- coef(outg)["bi"]
  print(i)
}

mean(bet)

##

## SEMIPARAMETRIC SAMPLE SELECTION MODEL with association
## and dispersion parameters
## depending on covariates as well

eq.mu.1 <- ys ~ bi + s(x1) + s(x2)
eq.mu.2 <- yo ~ bi + s(x1)
eq.sigma <- ~ bi
eq.theta <- ~ bi + x1
fl <- list(eq.mu.1, eq.mu.2, eq.sigma, eq.theta)
out <- gjrm(fl, data = dataSim, Model = "BSS",
margins = c("probit", "N"))
conv.check(out)
post.check(out)
summary(out)
out$sigma
out$theta

jc.probs(out, 0, 0.3, intervals = TRUE)[1:4,]
outC0 <- gjrm(fl, data = dataSim, BivD = "C0", Model = "BSS",
margins = c("probit", "N"))
conv.check(outC0)
post.check(outC0)
AIC(out, outC0)
BIC(out, outC0)

## IMPUTE MISSING VALUES
n.m <- 10
res <- imputeSS(outC0, n.m)

library(mice)
ys <- dataSim$ys
dataSim$yo[dataSim$ys == FALSE] <- NA
dataSim <- dataSim[, -1]
imp <- mice(dataSim, m = 1, method = c("copulaSS", "", "", ""),
mice.formula = outC0$mice.formula, margins = outC0$margins,
BivD = outC0$BivD, maxit = 1)
comp.yo <- dataSim$yo
comp.yo[ys == 0] <- imp$imp$yo[[1]]
mean(comp.yo)

#
#
##################################################################################
## example using Gumbel copula and normal-gamma margins
##################################################################################

## Example 12
set.seed(1)

y <- exp(-0.68 - 1.5*bi + f21(x1) + u[, 2])
yo <- y*(ys > 0)

dataSim <- data.frame(ys, yo, bi, x1, x2)

out <- gjrm(list(ys ~ bi + s(x1) + s(x2),
                yo ~ bi + s(x1)),
                data = dataSim, BivD = "G0",
                margins = c("probit", "GA"),
                Model = "BSS")

conv.check(out)
post.check(out)
summary(out)

ATE <- NA
n.m <- 10
res <- imputeSS(out, n.m)

for(i in 1:n.m){
  dataSim$yo[dataSim$ys == 0] <- res[[i]]
  outg <- gamlss(list(yo ~ bi + s(x1)), margin = "GA", data = dataSim)
  out$gamlss <- outg
  ATE[i] <- AT(out, nm.end = "bi", type = "univariate")$res[2]
  print(i)
}

AT(out, nm.end = "bi")
mean(ATE)

## End(Not run)

gjrmObject

---

**Description**

A fitted joint model returned by function `gjrm` and of class "gjrm", "SemiParBIV", "SemiParTRIV", etc.
Value

- **fit**: List of values and diagnostics extracted from the output of the algorithm.
- **gam1**: Univariate fit for equation 1. See the documentation of `mgcv` for full details.
- **gam2, gam3, ...**: Univariate fit for equation 2, equation 3, etc.
- **coefficients**: The coefficients of the fitted model.
- **weights**: Prior weights used during model fitting.
- **sp**: Estimated smoothing parameters of the smooth components.
- **iter.sp**: Number of iterations performed for the smoothing parameter estimation step.
- **iter.if**: Number of iterations performed in the initial step of the algorithm.
- **iter.inner**: Number of iterations performed within the smoothing parameter estimation step.
- **theta**: Estimated dependence parameter linking the two equations.
- **n**: Sample size.
- **X1, X2, X3, ...**: Design matrices associated with the linear predictors.
- **X1.d2, X2.d2, X3.d2, ...**: Number of columns of X1, X2, X3, etc.
- **l.sp1, l.sp2, l.sp3, ...**: Number of smooth components in the equations.
- **He**: Penalized -hessian/Fisher. This is the same as `HeSh` for unpenalized models.
- **HeSh**: Unpenalized -hessian/Fisher.
- **Vb**: Inverse of He. This corresponds to the Bayesian variance-covariance matrix used for confidence/credible interval calculations.
- **F**: This is obtained multiplying Vb by HeSh.
- **t.edf**: Total degrees of freedom of the estimated bivariate model. It is calculated as `sum(diag(F))`.
- **edf1, edf2, edf3, ...**: Degrees of freedom for the two equations of the fitted bivariate model (and for the third and fourth equations if present). They are calculated when splines are used.
- **bs.mgfit**: List of values and diagnostics extracted from `magic` in `mgcv`.
- **conv.sp**: If `TRUE` then the smoothing parameter selection algorithm stopped before reaching the maximum number of iterations allowed.
- **wor.c**: Working model quantities.
- **eta1, eta2, eta3, ...**: Estimated linear predictors for the two equations (as well as the third and fourth equations if present).
- **y1, y2**: Responses of the two equations.
- **logLik**: Value of the (unpenalized) log-likelihood evaluated at the (penalized or unpenalized) parameter estimates.
- **respvec**: List containing response vectors.
Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm, summary.gjrm

---

gt.bpm Gradient test

Description

gt.bpm can be used to test the hypothesis of absence of endogeneity, correlated model equations/errors or non-random sample selection in binary bivariate probit models.

Usage

```r
gt.bpm(x)
```

Arguments

- `x` A fitted `gjrm` object.

Details

The gradient test was first proposed by Terrell (2002) and it is based on classic likelihood theory. See Marra et al. (in press) for full details.

Value

It returns a numeric p-value corresponding to the null hypothesis that the correlation, $\theta$, is equal to 0.

WARNINGS

This test’s implementation is only valid for bivariate binary probit models with normal errors.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References


Examples

```r
see examples for gjrm
```

---

### H.tri

**Internal Function**

**Description**

This and other similar internal functions calculate the Hessian for trivariate binary models.

**Author(s)**

Author: Panagiota Filippou
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

### hazsurv.plot

**Hazard and survival plots**

**Description**

This function produces either a survival or hazard plot.

**Usage**

```r
hazsurv.plot(x, eq, newdata, type = "surv", t.range = NULL, intervals = TRUE,
n.sim = 100, prob.lev = 0.05,
shade = FALSE, ylim, ylab, xlab, ls = 100, baseline = FALSE,
pop.name = NULL, pop.min = NULL, pop.max = NULL, pop.bin = NULL,
pop.build = FALSE, pop.grid = 200,
min.dn = 1e-200, min.pr = 1e-200, max.pr = 1, ...)
```

**Arguments**

- `x` A fitted `gamlss/gjrm` object.
- `eq` Equation number. This can be ignored for univariate models.
- `newdata` A data frame or list containing the values of the model covariates at which predictions are required. This must have one row and must be provided.
- `type` The plot to produce, either "surv", "hazard" or "cumhaz".
- `t.range` Time variable range to be considered for plotting. If NULL then it is determined automatically based on the observed data.
intervals
  If TRUE then intervals are also produced.

n.sim
  Number of simulated coefficient vectors from the posterior distribution of the
  estimated model parameters. This is used for interval calculations.

prob.lev
  Overall probability of the left and right tails of the probabilities’ distributions
  used for interval calculations.

shade
  If TRUE then it produces shaded regions as confidence bands.

ylim, ylab, xlab
  Usual plot arguments.

ls
  Length of sequence to use for time variable.

baseline
  If baseline is desired; this will set all covariate/smooth effects to zero.

pop.name
  Variable name with respect to which you want to stratify.

pop.min
  Min. value of interval for the stratification variable. If you would like to use an
  open interval then do not specify a value for pop.max; in this case you would
  have pop.name > pop.min.

pop.max
  Max. value of interval for the stratification variable. For an open interval do not
  specify pop.min (pop.name < pop.max).

pop.bin
  Either 0 or 1. This means pop.name is a binary variable and you want to stratify
  wrt either 0 or 1. Note that in this case pop.min and pop.max need not be used
  as the choice of 0 or 1 takes the place of the range of values in a binary setting.

pop.build
  The default is FALSE, which is the setting in which the user provides the data.
  When TRUE we are assuming a setting in which the user provides a fixed set
  of features and would like the average net survival for an individual with
  pop.name in a certain range. Note that pop.bin can not be used in this set-
  ting as it would not make sense to do so (we would just have an individual net
  survival since it does not make sense to build a range of values for a binary
  variable).

pop.grid
  Default values is 200 and it is only used if pop.build == TRUE. It represents the
  number of rows of the (internally built) dataset. In other terms it is the number
  of elements forming the sequence of extremities pop.min and pop.max.

min.dn, min.pr, max.pr
  Allowed minimum and maximum for estimated probabilities and densities for
  survival, hazard and cumulative hazard calculations.

... Other arguments to pass to plot.

Value

It produces a plot or set of plots.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
**hiv**

**HIV Zambian data**

**Description**

HIV Zambian data by region, together with polygons describing the regions’ shapes.

**Usage**

```r
data(hiv)
data(hiv.polys)
```

**Format**

hiv is a 6416 row data frame with the following columns

- **hivconsent** binary variable indicating consent to test for HIV.
- **hiv** binary variable indicating whether an individual is HIV positive.
- **age** age in years.
- **education** years of education.
- **region** code identifying region, and matching `names(hiv.polys)`. It can take nine possible values: 1 central, 2 copperbelt, 3 eastern, 4 luapula, 5 lusaka, 6 northwestern, 7 northern, 8 southern, 9 western.
- **marital** never married, currently married, formerly married.
- **std** had a sexually transmitted disease.
- **highhiv** had high risk sex.
- **condom** used condom during last intercourse.
- **aidscare** equal to 1 if would care for an HIV-infected relative.
- **knowsdiedofaids** equal to 1 if know someone who died of HIV.
- **evertestedHIV** equal to 1 if previously tested for HIV.
- **smoke** smoker.
- **ethnicity** bemba, lunda (luapula), lala, ushi, lamba, tonga, luvale, lunda (northwestern), mbunda, kaonde, lozi, chewa, nsenga, ngoni, mambwe, namwanga, tumbuka, other.
- **language** English, Bemba, Lozi, Nyanja, Tonga, other.
- **interviewerID** interviewer identifier.
- **sw** survey weights.

hiv.polys contains the polygons defining the areas in the format described below.

**Details**

The data frame hiv relates to the regions whose boundaries are coded in hiv.polys. hiv.polys[[i]] is a 2 column matrix, containing the vertices of the polygons defining the boundary of the ith region. `names(hiv.polys)` matches hiv$region (order unimportant).
Source
The data have been produced as described in:

References

Examples

## Not run:

#########################################################
#########################################################
library("GJRM")
data("hiv", package = "GJRM")
data("hiv.polys", package = "GJRM")

#########################################################
#########################################################
## The stuff below is useful if the user wishes to employ
## a Markov Random Field (MRF) smoother. It provides
## the instructions to set up polygons automatically
## and the dataset variable needed to fit a model with
## MRF.
#########################################################
#########################################################
#
## hiv.polys was already created and
## made available via the call
## data("hiv.polys", package = "GJRM")
## hiv.polys was created using the code below
#
# obj <- readRDS("ZMB_adm1.rds")
# RDS Zambian Level 1 file obtained from
#
# pol <- polys.setup(obj)
#
# hiv.polys <- pol$polys
# name <- cbind(names(hiv.polys), pol$names1)
# name
#
## last step was to create a factor variable with range
## range(name[,1]) where the numerical values were linked
## to the regions in name[,2]. This is what was done in
## the hiv dataset; see hiv$region. Specifically,
## the procedure used was
##
## # reg <- NULL
##
## # for(i in 1:dim(hiv)[1]){
##
## # if(hiv$region[i] == "Central")  reg[i] <- 1
## # if(hiv$region[i] == "Copperbelt") reg[i] <- 2
## # if(hiv$region[i] == "Eastern")  reg[i] <- 3
## # if(hiv$region[i] == "Luapula")  reg[i] <- 4
## # if(hiv$region[i] == "Lusaka")   reg[i] <- 5
## # if(hiv$region[i] == "North-Western")  reg[i] <- 6
## # if(hiv$region[i] == "Northern")  reg[i] <- 7
## # if(hiv$region[i] == "Southern")  reg[i] <- 8
## # if(hiv$region[i] == "Western")   reg[i] <- 9
##
## # }
##
## # hiv$region <- as.factor(reg)
##
## xt <- list(polys = hiv.polys)
##
## # neighbourhood structure info for MRF
## # to use in model specification
##
## # Bivariate brobit model with non-random sample selection
##
## sel.eq <- hivconsent ~ s(age) + s(education) + s(wealth) +
## s(region, bs = "mrf", xt = xt, k = 7) +
## marital + std + ageseex_cat + highhiv +
## partner + condom + aidsare +
## knowsdiedofaids + evertestedHIV +
## smoke + religion + ethnicity +
## language + s(interviewerID, bs = "re")
##
## out.eq <- hiv ~ s(age) + s(education) + s(wealth) +
## s(region, bs = "mrf", xt = xt, k = 7) +
## marital + std + ageseex_cat + highhiv +
## partner + condom + aidsare +
## knowsdiedofaids + evertestedHIV +
## smoke + religion + ethnicity +
## language
##
## theta.eq <- ~ s(region, bs = "mrf", xt = xt, k = 7)
f1 <- list(sel.eq, out.eq, theta.eq)

# the above model specification is fairly
# complex and it serves to illustrate the
# flexibility of the modelling approach

bss <- gjrm(f1, data = hiv, BivD = "J90", Model = "BSS",
            margins = c("probit", "probit"))

conv.check(bss)

set.seed(1)
sb <- summary(bss)
sb

plot(bss, eq = 1, seWithMean = TRUE, scheme = 1,
     scale = 0, pages = 1, jit = TRUE)

plot(bss, eq = 2, seWithMean = TRUE, scheme = 1,
     scale = 0, pages = 1, jit = TRUE)

prev(bss, sw = hiv$sw, type = "naive")

set.seed(1)
prev(bss, sw = hiv$sw, type = "univariate")

prev(bss, sw = hiv$sw)

lr <- length(hiv.polys)
prevBYreg <- matrix(NA, lr, 2)
thetaBYreg <- NA

for(i in 1:lr) {
  prevBYreg[i,1] <- prev(bss, sw = hiv$sw, ind = hiv$region==i,
                          type = "univariate")$res[2]
  prevBYreg[i,2] <- prev(bss, sw = hiv$sw, ind = hiv$region==i)$res[2]
  thetaBYreg[i] <- bss$theta[hiv$region==i][1]
}

zlim <- range(prevBYreg)  # to establish a common prevalence range

par(mfrow = c(1, 3), cex.axis = 1.3)

polys.map(hiv.polys, prevBYreg[,1], zlim = zlim, lab = "",
          cex.lab = 1.5, cex.main = 1.5,
          main = "HIV - Imputation Model")

polys.map(hiv.polys, prevBYreg[,2], zlim = zlim, cex.main = 1.5,
          main = "HIV - Selection Model")
**imputeCounter**

*Imputation of Counterfactual*

**Description**

*imputeCounter* imputes counterfactual missing values for a *gjrm* model object.

**Usage**

```r
imputeCounter(x, m = 10, nm.end)
```

**Arguments**

- `x` A fitted *gjrm* object.
- `m` Number of imputed response vectors.
- `nm.end` Name endogenous variable.

**Details**

This function generates *m* sets of imputed values for the outcome of interest under a fitted joint causal model. The algorithm draws parameters from the posterior distribution of the model which are then used to obtain simulated responses (from the posterior predictive distribution of the missing values) via a rejection algorithm. The bound for acceptance/rejection is obtained via a trust region optimisation.

The imputed values are used to create *m* complete imputed datasets and perform complete data analysis and inference about the parameters of interest using any summary statistics.

**Value**

It returns a list containing *m* imputed response vectors.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
imputeSS

Missing values' imputation

Description

imputeSS imputes missing values for a gjrm model object.

Usage

imputeSS(x, m = 10)

Arguments

x A fitted gjrm object.
m Number of imputed response vectors.

Details

This function generates m sets of imputed values for the outcome of interest under a fitted copulaSampleSel model. The algorithm draws parameters from the posterior distribution of copulaSampleSel which are then used to obtain simulated responses (from the posterior predictive distribution of the missing values) via a rejection algorithm. The bound for acceptance/rejection is obtained via a trust region optimisation.

The imputed values are used to create m complete imputed datasets and perform complete data analysis and inference about the parameters of interest using function gamlss() within this package.

Value

It returns a list containing m imputed response vectors.
Author(s)

Authors: Jose Camarena, Giampiero Marra and Rosalba Radice
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References


See Also

gjrm

Examples

## see examples for gjrm

jc.probs

Joint or conditional probabilities from a fitted joint model

Description

cjc.probs can be used to calculate the joint or conditional probabilities from a fitted joint model
with intervals obtained using posterior simulation.

Usage

jc.probs(x, y1, y2, y3 = NULL, newdata, type = "joint", cond = 0,
intervals = FALSE, n.sim = 100, prob.lev = 0.05, min.pr = 1e-323, max.pr = 1,
cumul = "no")

Arguments

x
A fitted gjrm object as produced by the respective fitting function.
y1
Value of response for first margin.
y2
Value of response for second margin.
y3
Value of response for third margin if a trivariate model is employed.
newdata
A data frame or list containing the values of the model covariates at which pre-
dictions are required. If not provided then predictions corresponding to the original data are returned. When newdata is provided, it should contain all the variables needed for prediction.
type
This argument can take two: "joint" (the probabilities are calculated from the fitted joint model) and "independence" (the calculation is done from univariate fits).
cond
There are three possible values: 0 (joint probabilities are delivered), 1 (conditional probabilities are delivered and conditioning is with the respect to the first margin), 2 (as before but conditioning is with the respect to the second margin).

intervals
If TRUE then intervals for the probabilities are also produced.

n.sim
Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used for interval calculations.

prob.lev
Overall probability of the left and right tails of the probabilities’ distributions used for interval calculations.

min.pr, max.pr
Allowed minimum and maximum for estimated probabilities.

cumul
Only used for discrete and continuous margins’ case.

Details
This function calculates joint or conditional probabilities from a fitted joint model or a model assuming independence, with intervals obtained using posterior simulation.

Value
res
It returns several values including: estimated probabilities ($p_{12}$), with lower and upper interval limits (CIpr) if intervals = TRUE, and $p_1$, $p_2$ and $p_3$ (the marginal probabilities).

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also
GJRM-package, gjrm

llpsi

Description
Log-logistic robust function.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
**Description**

Before fitting a bivariate probit model, `LM.bpm` can be used to test the hypothesis of absence of endogeneity, correlated model equations/errors or non-random sample selection.

**Usage**

```r
LM.bpm(formula, data = list(), weights = NULL, subset = NULL, Model,
 hess = TRUE)
```

**Arguments**

- **formula**: A list of two formulas, one for equation 1 and the other for equation 2. s terms are used to specify smooth smooth functions of predictors. Note that if `Model` = "BSS" then the first formula MUST refer to the selection equation.
- **data**: An optional data frame, list or environment containing the variables in the model. If not found in `data`, the variables are taken from `environment(formula)`.
- **weights**: Optional vector of prior weights to be used in fitting.
- **subset**: Optional vector specifying a subset of observations to be used in the fitting process.
- **Model**: It indicates the type of model to be used in the analysis. Possible values are "B" (bivariate model) and "BSS" (bivariate model with sample selection). The two marginal equations have probit links.
- **hess**: If FALSE then the expected (rather than observed) information matrix is employed.

**Details**

This Lagrange multiplier test (also known as score test) is used here for testing the null hypothesis that $\theta$ is equal to 0 (i.e. no endogeneity, non-random sample selection or correlated model equations/errors, depending on the model being fitted). Its main advantage is that it does not require an estimate of the model parameter vector under the alternative hypothesis. Asymptotically, it takes a Chi-squared distribution with one degree of freedom. Full details can be found in Marra et al. (2014) and Marra et al. (2017).

**Value**

It returns a numeric p-value corresponding to the null hypothesis that the correlation, $\theta$, is equal to 0.
WARNINGS

This test's implementation is ONLY valid for bivariate binary probit models with normal errors.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References


See Also

`gjrm`

Examples

```r
see examples for gjrm

lmc(y, X, start.v = NULL, lambda = 1, pen = "none", gamma = 1, a = 3.7)
```

Description

Linear model fitting with positivity and sum-to-one constraints on the model's coefficients.

Usage

```r
lmc(y, X, start.v = NULL, lambda = 1, pen = "none", gamma = 1, a = 3.7)
```

Arguments

- `y`: Response vector.
- `X`: Design matrix.
- `start.v`: Starting values.
- `lambda`: Tuning parameter.
- `pen`: Type of penalty. Choices are: none, ridge, lasso, alasso, scad.
- `gamma`: Power parameter of adaptive lasso.
- `a`: Scad parameter.
Details

Linear model fitting with positivity and sum-to-one constraints on the model’s coefficients.

Value

The function returns an object of class lmc.

Examples

```r
Not run:
library(GJRM)
set.seed(1)

n <- 1000
beta <- c(0.07, 0.08, 0.21, 0.12, 0.15, 0.17, 0.2)
l <- length(beta)
X <- matrix(runif(n*l), n, l)
y <- X%*%beta + rnorm(n)
out <- lmc(y, X)
conv.check(out)
out1 <- lmc(y, X, start.v = beta)
conv.check(out1)

coef(out) # estimated coefficients
round(out$c.coefficients, 3) # constrained coefficients
sum(out$c.coefficients)
round(out1$c.coefficients, 3)
sum(out1$c.coefficients)

penalised estimation
out1 <- lmc(y, X, pen = "alasso", lambda = 0.02)
conv.check(out1)

coef(out1)
round(out1$c.coefficients, 3)
sum(out1$c.coefficients)

AIC(out, out1)
BIC(out, out1)

round(cbind(out$c.coefficients, out1$c.coefficients), 3)
```
# scad

```r
n <- 10000
beta <- c(0.2, 0, 0, 0.02, 0.01, 0.01, 0.01, 0.08, 0.21, 0.12, 0.15, 0.17, 0.02)
l <- length(beta)
X <- matrix(runif(n*l), n, l)
y <- X%*%beta + rnorm(n)
out1 <- lmc(y, X, pen = "scad", lambda = 0.01)
conv.check(out1)
coef(out1)
sum(out1$c.coefficients)
round(cbind(beta, out1$c.coefficients), 2)
```

```r
End(Not run)
```

---

**logLik.SemiParBIV**

Extract the log likelihood for a fitted copula model

### Description

It extracts the log-likelihood for a fitted `gjrm` model.

### Usage

```r
S3 method for class 'SemiParBIV'
logLik(object, ...)
```

### Arguments

- `object` A fitted `gjrm` object.
- `...` Un-used for this function.

### Details

Modification of the classic `logLik` which accounts for the estimated degrees of freedom used in `gjrm`. This function is provided so that information criteria work correctly by using the correct number of degrees of freedom.

### Value

Standard `logLik` object.
mb

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also
AIC, BIC

mb can be used to calculate the (worst-case and IV) Manski’s bounds and confidence interval covering the true effect of interest with a fixed probability.

Usage
mb(treat, outc, IV = NULL, Model, B = 100, sig.lev = 0.05)

Arguments
treat Binary treatment/selection variable.
outc Binary outcome variable.
IV An instrumental binary variable can be used if available.
Model Possible values are "B" (model with endogenous variable) and "BSS" (model with non-random sample selection).
B Number of bootstrap replicates. This is used to obtain some components needed for confidence interval calculations.
sig.lev Significance level.

Details
Based on Manski (1990), this function returns the nonparametric lower and upper (worst-case) Manski’s bounds for the average treatment effect (ATE) when Model = "B" or prevalence when Model = "BSS". When an IV is employed the function returns IV Manski bounds.

For comparison, it also returns the estimated effect assuming random assignment (i.e., the treatment received or selection relies on the assumption of ignorable observed and unobserved selection). Note that this is equivalent to what provided by AT or prev when type = "naive", and is different from what obtained by AT or prev when type = "univariate" as observed confounders are accounted for and the assumption here is of ignorable unobserved selection.

A confidence interval covering the true ATE/prevalence with a fixed probability is also provided. This is based on the approach described in Imbens and Manski (2004). NOTE that this interval is typically very close (if not identical) to the lower and upper bounds.
The ATE can be at most 1 (or 100 in percentage) and the worst-case Manski’s bounds have width 1. This means that 0 is always included within the possibilities of these bounds. Nevertheless, this may be useful to check whether the effect from a bivariate recursive model is included within the possibilities of the bounds.

When estimating a prevalence the worst-case Manski’s bounds have width equal to the non-response probability, which provides a measure of the uncertainty about the prevalence caused by non-response. Again, this may be useful to check whether the prevalence from a bivariate non-random sample selection model is included within the possibilities of the bounds.

See gjrm for some examples.

Value

LB, UP	Lower and upper bounds for the true effect of interest.
CI	Confidence interval covering the true effect of interest with a fixed probability.
ate.ra	Estimated effect of interest assuming random assignment.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References


See Also

gjrm

Examples

```r
see examples for gjrm
```

meps

Description

2008 MEPS data.

Usage

data(meps)
meps

Format

meps is a 18592 row data frame with the following columns

bmi  body mass index.
age  age in years.
gender equal to 1 if male.
race  levels: 2 white, 3 black, 4 native American, 5 others.
education years of education.
health levels: 5 excellent, 6 very good, 7 good, 8 fair, 9 poor.
limitation equal to 1 if health limits physical activity.
region levels: 2 northeast, 3 mid-west, 4 south, 5 west.
private equal to 1 if individual has private health insurance.
visits.hosp equal to 1 if at least one visit to hospital outpatient departments.
diabetes equal to 1 if diabetic.
hypertension equal to 1 if hypertensive.
hyperlipidemia equal to 1 if hyperlipidemic.
income income (000’s).

Source

The data have been obtained from http://www.meps.ahrq.gov/.

Examples

## Not run:

# Bivariate brobit models with endogenous treatment

treat.eq <- private ~ s(bmi) + s(income) + s(age) + s(education) +
          as.factor(health) + as.factor(race) +
          as.factor(limitation) + as.factor(region) +
          gender + hypertension + hyperlipidemia + diabetes

out.eq <- visits.hosp ~ private + s(bmi) + s(income) + s(age) +
         s(education) + as.factor(health) +
         as.factor(race) + as.factor(limitation) +
         as.factor(region) + gender + hypertension +
         hyperlipidemia + diabetes
meps

```r
define the data and models
f.list <- list(treat.eq, out.eq)
mr <- c("probit", "probit")
bpN <- gjrm(f.list, data = meps, margins = mr, Model = "B")
bpF <- gjrm(f.list, data = meps, margins = mr, BivD = "F", Model = "B")
bpC0 <- gjrm(f.list, data = meps, margins = mr, BivD = "C0", Model = "B")
bpC180 <- gjrm(f.list, data = meps, margins = mr, BivD = "C180", Model = "B")
bpJ0 <- gjrm(f.list, data = meps, margins = mr, BivD = "J0", Model = "B")
bpJ180 <- gjrm(f.list, data = meps, margins = mr, BivD = "J180", Model = "B")
bpG0 <- gjrm(f.list, data = meps, margins = mr, BivD = "G0", Model = "B")
bpG180 <- gjrm(f.list, data = meps, margins = mr, BivD = "G180", Model = "B")

conv.check(bpJ0)

AIC(bpN, bpF, bpC0, bpC180, bpJ0, bpJ180, bpG0, bpG180)

set.seed(1)
summary(bpJ0, cex.axis = 1.6,
 cex.lab = 1.6, cex.main = 1.7)

dev.copy(postscript, "contplot.eps")
dev.off()

par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
 cex.axis = 1.6, cex.lab = 1.6)
plot(bpJ0, eq = 1, seWithMean = TRUE, scale = 0, shade = TRUE,
 pages = 1, jit = TRUE)

dev.copy(postscript, "spline1.eps")
dev.off()

par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
 cex.axis = 1.6, cex.lab = 1.6)
plot(bpJ0, eq = 2, seWithMean = TRUE, scale = 0, shade = TRUE,
 pages = 1, jit = TRUE)

dev.copy(postscript, "spline2.eps")
dev.off()

set.seed(1)
AT(bpJ0, nm.end = "private", hd.plot = TRUE, cex.axis = 1.5,
 cex.lab = 1.5, cex.main = 1.6)

dev.copy(postscript, "hd.plotAT.eps")
dev.off()

AT(bpJ0, nm.end = "private", type = "univariate")
AT(bpJ0, nm.end = "private", type = "naive")

End(Not run)
```
numgh

#

---

numgh  

**Internal Function**

**Description**

This and other similar internal functions calculate numerical derivatives.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**OR**  

*Causal odds ratio of a binary/continuous/discrete endogenous variable*

**Description**

OR can be used to calculate the causal odds ratio of a binary/continuous/discrete endogenous predictor/treatment, with corresponding interval obtained using posterior simulation.

**Usage**

```r
OR(x, nm.end, E = TRUE, treat = TRUE, type = "joint", ind = NULL, n.sim = 100, prob.lev = 0.05, length.out = NULL, hd.plot = FALSE, or.plot = FALSE, main = "Histogram and Kernel Density of Simulated Odds Ratios", xlab = "Simulated Odds Ratios", ...)
```

**Arguments**

- `x`: A fitted `gjrm` object.
- `nm.end`: Name of the endogenous variable.
- `E`: If TRUE then OR calculates the sample OR. If FALSE then it calculates the sample OR for the treated individuals only.
- `treat`: If TRUE then OR calculates the OR using the treated only. If FALSE then it calculates the ratio using the control group. This only makes sense if `E = FALSE`.
- `type`: This argument can take three values: "naive" (the effect is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the effect is obtained from the univariate model which neglects the presence of unobserved confounders) and "joint" (the effect is obtained from the bivariate model which accounts for observed and unobserved confounders).
ind Binary logical variable. It can be used to calculate the OR for a subset of the data. Note that it does not make sense to use ind when some observations are excluded from the OR calculation (e.g., when using \( E = \text{FALSE} \)).

n.sim Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when \( \text{delta} = \text{FALSE} \). It may be increased if more precision is required.

prob.lev Overall probability of the left and right tails of the OR distribution used for interval calculations.

length.out Desired length of the sequence to be used when calculating the effect that a continuous/discrete treatment has on a binary outcome.

hd.plot If TRUE then a plot of the histogram and kernel density estimate of the simulated odds ratios is produced. This can only be produced when binary responses are used.

or.plot For the case of continuous/discrete endogenous variable and binary outcome, if TRUE then a plot (on the log scale) showing the odd ratios that the binary outcome is equal to 1 for each incremental value of the endogenous variable and respective intervals is produced.

main Title for the plot.

xlab Title for the x axis.

... Other graphics parameters to pass on to plotting commands. These are used only when \( \text{hd.plot} = \text{TRUE} \).

Details

OR calculates the causal odds ratio for a binary/continuous/discrete treatment. Posterior simulation is used to obtain a confidence/credible interval.

Value

prob.lev Probability level used.

sim.OR It returns a vector containing simulated values of the average OR. This is used to calculate intervals.

Ratios For the case of continuous/discrete endogenous treatment and binary outcome, it returns a matrix made up of three columns containing the odds ratios for each incremental value in the endogenous variable and respective intervals.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

GJRM-package, gjrm
Description

PE can be used to calculate the sample treatment effect from a binary bivariate model, with corresponding interval obtained using posterior simulation.

Usage

```r
PE(x1, idx, n.sim = 100, prob.lev = 0.05,
 hd.plot = FALSE,
 main = "Histogram and Kernel Density of Simulated Average Effects",
 xlab = "Simulated Average Effects", ...)
```

Arguments

- `x1`: A fitted `gjrm` object.
- `idx`: This is useful to pick a particular individual and must be provided.
- `n.sim`: Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when `delta = FALSE`. It may be increased if more precision is required.
- `prob.lev`: Overall probability of the left and right tails of the AT distribution used for interval calculations.
- `hd.plot`: If TRUE then a plot of the histogram and kernel density estimate of the simulated average effects is produced.
- `main`: Title for the plot.
- `xlab`: Title for the x axis.
- `...`: Other graphics parameters to pass on to plotting commands. These are used only when `hd.plot = TRUE`.

Details

PE measures the sample average effect from a binary bivariate model when a binary response (associated with a continuous outcome) takes values 0 and 1. Posterior simulation is used to obtain a confidence/credible interval.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

- `GJRM-package`
- `gjrm`
pen

**Internal Function**

**Description**

It provides an overall penalty matrix in a format suitable for estimation conditional on smoothing parameters.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**plot.SemiParBIV**

**Plotting function**

**Description**

It takes a fitted `gjrm` object produced by `gjrm()` and plots the estimated smooth functions on the scale of the linear predictors. This function is a wrapper of `plot.gam()` in `mgcv`. Please see the documentation of `plot.gam()` for full details.

**Usage**

```r
S3 method for class 'SemiParBIV'
plot(x, eq, ...)
```

**Arguments**

- `x` A fitted `gjrm` object.
- `eq` The equation from which smooth terms should be considered for printing.
- `...` Other graphics parameters to pass on to plotting commands, as described for `plot.gam()` in `mgcv`.

**Details**

This function produces plots showing the smooth terms of a fitted semiparametric bivariate probit model. In the case of 1-D smooths, the x axis of each plot is labelled using the name of the regressor, while the y axis is labelled as \( s(\text{regr}, \text{edf}) \) where `regr` is the regressor’s name, and `edf` the effective degrees of freedom of the smooth. For 2-D smooths, perspective plots are produced with the x axes labelled with the first and second variable names and the y axis is labelled as \( s(\text{var1}, \text{var2}, \text{edf}) \), which indicates the variables of which the term is a function and the `edf` for the term.

If `seWithMean = TRUE` then the intervals include the uncertainty about the overall mean. Note that the smooths are still shown centred. The theoretical arguments and simulation study of Marra and Wood (2012) suggest that `seWithMean = TRUE` results in intervals with close to nominal frequentist coverage probabilities.
Value

The function generates plots.

WARNING

The function can not deal with smooths of more than 2 variables.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References


See Also

gjrm

Description

This function produces a map with geographic regions defined by polygons. It is essentially the same function as polys.plot() in mgcv but with added arguments zlim and rev.col and a wider set of choices for scheme.

Usage

polys.map(lm, z, scheme = "gray", lab = "", zlim, rev.col = TRUE, ...)

Arguments

lm   Named list of matrices where each matrix has two columns. The matrix rows each define the vertex of a boundary polygon.

z    A vector of values associated with each area (item) of lm.

scheme Possible values are "heat", "terrain", "topo", "cm" and "gray", indicating how to fill the polygons in accordance with the value of z.

lab   label for plot.
polys.setup

zlim
If missing then the range of z will be chosen using pretty(z) otherwise the
range provided will be used.

rev.col
If FALSE then coloring scheme is not reversed.

... other arguments to pass to plot.

Details
See help file of polys.plot in mgcv.

Value
It produces a plot.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Description
This function creates geographic polygons in a format suitable for smoothing.

Usage

polys.setup(object)

Arguments


Value
It produces a list with polygons (polys), and various names (names0, names1 - first level of aggre-
gation, names2 - second level of aggregation).

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
Thanks to Guy Harling for suggesting the implementation of this function.
post.check

Examples

?hiv

---

**post.check**

*Diagnostic plots for discrete/continuous response margin*

**Description**

It produces diagnostic plots based on (randomised) quantile residuals.

**Usage**

```r
post.check(x, main = "Histogram and Density Estimate of Residuals",
main2 = "Histogram and Density Estimate of Residuals",
xlab = "Quantile Residuals", xlab2 = "Quantile Residuals",
intervals = FALSE, n.sim = 100, prob.lev = 0.05, ...)
```

**Arguments**

- `x`: A fitted `gjrm` object.
- `main`: Title for the plot.
- `main2`: Title for the plot in the second row. This comes into play only when fitting models with two non-binary margins.
- `xlab`: Title for the x axis.
- `xlab2`: Title for the x axis in the second row. As above.
- `intervals`: If TRUE then intervals for the qqplots are produced.
- `n.sim`: Number of replicate datasets used to simulate quantiles of the residual distribution.
- `prob.lev`: Overall probability of the left and right tails of the probabilities’ distributions used for interval calculations.
- `...`: Other graphics parameters to pass on to plotting commands.

**Details**

If the model fits the response well then the plots should look normally distributed. When fitting models with discrete and/or continuous margins, four plots will be produced. In this case, the arguments `main2` and `xlab2` come into play and allow for different labelling across the plots.
Value

qr It returns the (randomised) quantile residuals for the continuous or discrete margin when fitting a model that involves a binary response.

qr1 As above but for first equation (this applies when fitting models with continuous/discrete margins).

qr2 As above but for second equation.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjirm

gamlss

Description

It takes a fitted gamlss object produced by gamlss() and produces the desired quantities and respective intervals.

Usage

pred.gp(x, p = 0.5, newdata, n.sim = 100, prob.lev = 0.05)

Arguments

x A fitted gamlss object.
p Value of p.
newdata A data frame or list containing the values of the model covariates at which predictions are required. If not provided then predictions corresponding to the original data are returned. When newdata is provided, it should contain all the variables needed for prediction.
n.sim The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals. It may be increased if more precision is required.
prob.lev Probability of the left and right tails of the posterior distribution used for interval calculations.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gamlss
Description

It takes a fitted gjrm object produced by gjrm() and produces predictions and respective intervals.

Usage

pred.mvt(x, eq, fun = "mean", n.sim = 100, prob.lev = 0.05, smooth.no = NULL, ...)

Arguments

x
A fitted gjrm object.

eq
The equation number.

fun
Either mean, variance or tau.

n.sim
The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals. It may be increased if more precision is required.

prob.lev
Probability of the left and right tails of the posterior distribution used for interval calculations.

smooth.no
Smooth number if the interest is in a particular smooth and not the additive predictor(s).

...
Other parameters.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm

predict.CopulaCLM

Prediction function

Description

It takes a fitted gjrm object for the ordinal-continuous case and, for each equation, produces predictions for a new set of values of the model covariates or the original values used for the model fit. Standard errors of predictions can be produced and are based on the posterior distribution of the model coefficients.
Usage

```r
S3 method for class 'CopulaCLM'
predict(object, eq, type = "link", ...)
```

Arguments

- `object`: A fitted `gjrm` object.
- `eq`: The equation to be considered for prediction.
- `type`: Type of prediction.
- `...`: Other arguments as in `predict.gam()` in `mgcv`.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

- `gjrm`

Description

It takes a fitted `gjrm` object and, for each equation, produces predictions for a new set of values of the model covariates or the original values used for the model fit. Standard errors of predictions can be produced and are based on the posterior distribution of the model coefficients. This function is a wrapper for `predict.gam()` in `mgcv`. Please see the documentation of `predict.gam()` for full details.

Usage

```r
S3 method for class 'SemiParBIV'
predict(object, eq, ...)
```

Arguments

- `object`: A fitted `gjrm` object.
- `eq`: The equation to be considered for prediction.
- `...`: Other arguments as in `predict.gam()` in `mgcv`. 
WARNINGS

When type = "response" this function will provide prediction assuming that the identity link function is adopted. This means that type = "link" and type = "response" will produce the same results, which for some distributions is fine. This is because, for internal reasons, the model object used always assumes an identity link. There are other functions in the package which will produce predictions for the response correctly and we are currently working on extending them to all models in the package. For all the other type values the function will produce the correct results.

When predicting based on a new data set, this function can not return correct predictions for models based on a BivD value of "C0C90", "C0C270", "C180C90", "C180C270", "G0G90", "G0G270", "G180G90", "G180G270", "J0J90", "J0J270", "J180J90" or "J180J270".

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm

prev

Estimated overall prevalence from sample selection model

Description

prev can be used to calculate the overall estimated prevalence from a sample selection model with binary outcome, with corresponding interval obtained using the delta method or posterior simulation.

Usage

prev(x, sw = NULL, type = "joint", ind = NULL, delta = FALSE, n.sim = 100, prob.lev = 0.05, hd.plot = FALSE, main = "Histogram and Kernel Density of Simulated Prevalences", xlab = "Simulated Prevalences", ...)

Arguments

x
  A fitted gjrm object.
sw
  Survey weights.
type
  This argument can take three values: "naive" (the prevalence is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the prevalence is obtained from the univariate probit/single imputation model which neglects the presence of unobserved confounders) and "joint" (the prevalence is obtained from the bivariate/trivariate model which accounts for observed and unobserved confounders).
Binary logical variable. It can be used to calculate the prevalence for a subset of the data.

If TRUE then the delta method is used for confidence interval calculations, otherwise Bayesian posterior simulation is employed.

Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when delta = FALSE. It may be increased if more precision is required.

Overall probability of the left and right tails of the prevalence distribution used for interval calculations.

If TRUE then a plot of the histogram and kernel density estimate of the simulated prevalences is produced. This can only be produced when delta = FALSE.

Title for the plot.

Title for the x axis.

Other graphics parameters to pass on to plotting commands. These are used only when hd.plot = TRUE.

prev estimates the overall prevalence of a disease (e.g., HIV) when there are missing values that are not at random. An interval for the estimated prevalence can be obtained using the delta method or posterior simulation.

It returns three values: lower confidence interval limit, estimated prevalence and upper confidence interval limit.

Probability level used.

If delta = FALSE then it returns a vector containing simulated values of the prevalence. This is used to calculate an interval.

Authors: Giampiero Marra, Rosalba Radice, Guy Harling, Mark E McGovern
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>


GJRM-package, gjrm
print.AT

Print an AT object

Description

The print method for an AT object.

Usage

```r
S3 method for class 'AT'
print(x, ...)
```

Arguments

- `x`: AT object produced by `AT()`.
- `...`: Other arguments.

Details

`print.AT` prints the lower confidence interval limit, estimated AT and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

- `AT`

print.copulaSampleSel

Print a copulaSampleSel object

Description

The print method for a copulaSampleSel object.
Usage

```
S3 method for class 'copulaSampleSel'
print(x, ...)
```

Arguments

- **x** 
  copulaSampleSel object.
- **...** 
  Other arguments.

Details

It prints out the family, model equations, total number of observations, estimated association coefficient, etc for the penalized or unpenalized model.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

---

**Description**

The print method for a `gamlss` object.

Usage

```
S3 method for class 'gamlss'
print(x, ...)
```

Arguments

- **x** 
  gamlss object produced by `gamlss()`.
- **...** 
  Other arguments.

Details

`print.gamlss` prints out the family, model equations, total number of observations, etc for the penalized or unpenalized model.
**Description**

The print method for a `gjrm` object.

**Usage**

```r
S3 method for class 'gjrm'
print(x, ...)
```

**Arguments**

- `x`: `gjrm` object produced by `gjrm()`.
- `...`: Other arguments.

**Details**

`print.gjrm` prints out the family, model equations, total number of observations, estimated association coefficient, etc for the penalized or unpenalized model.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

**See Also**

- `gamlss`
- `gjrm`
print.mb

*Print an mb object*

**Description**

The print method for an mb object.

**Usage**

```r
S3 method for class 'mb'
print(x, ...)
```

**Arguments**

- `x`  
  mb object produced by `mb()`.
- `...`  
  Other arguments.

**Details**

`print.mb` prints the lower and upper bounds, confidence interval, and effect assuming random assignment.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

**See Also**

`mb`

---

print.OR

*Print an OR object*

**Description**

The print method for an OR object.
Usage

## S3 method for class 'OR'
print(x, ...)

Arguments

x OR object produced by OR().
...
Other arguments.

Details

print.OR prints the lower confidence interval limit, estimated OR and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

OR

print.PE

Print an PE object

Description

The print method for an PE object.

Usage

## S3 method for class 'PE'
print(x, ...)

Arguments

x PE object produced by PE().
...
Other arguments.
Details

print.PE prints the lower confidence interval limit, estimated PE and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

PE

## S3 method for class 'prev'
print(x, ...)

Arguments

x prev object produced by prev().

... Other arguments.

Details

print.prev prints the lower interval limit, estimated prevalence and upper interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

prev
print.RR

Print an RR object

Description

The print method for an RR object.

Usage

```r
S3 method for class 'RR'
print(x, ...)
```

Arguments

- `x`  
  RR object produced by RR().

- `...`  
  Other arguments.

Details

`print.RR` prints the lower confidence interval limit, estimated RR and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

RR

print.SemiParBIV

Print a SemiParBIV object

Description

The print method for a SemiParBIV object.
print.SemiParTRIV

Usage

## S3 method for class 'SemiParBIV'
print(x, ...)

Arguments

x       SemiParBIV object.
...

Other arguments.

Details

It prints out the family, model equations, total number of observations, estimated association coefficient and total effective degrees of freedom for the penalized or unpenalized model.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Description

The print method for a SemiParTRIV object.

Usage

## S3 method for class 'SemiParTRIV'
print(x, ...)

Arguments

x       SemiParTRIV object.
...

Other arguments.

Details

It prints out the family, model equations, total number of observations, estimated association coefficient and total effective degrees of freedom for the penalized or unpenalized model.
Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Description
Internal fitting function.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Description
It applies one of two regularisations on the information matrix if desired. These are based on the Cholesky and eigen decompositions.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Description
It produces a histogram of the response along with the estimated density from the assumed distribution as well as a normal Q-Q plot for the (randomised) normalised quantile response. It also provides the log-likelihood for AIC calculation, for instance.

Usage

```
resp.check(y, margin = "N", main = "Histogram and Density of Response",
 xlab = "Response", print.par = FALSE, plots = TRUE,
 loglik = FALSE, os = FALSE,
 intervals = FALSE, n.sim = 100, prob.lev = 0.05,
 i.f = FALSE,
 min.dn = 1e-40, min.pr = 1e-16, max.pr = 0.999999, ...)```

resp.check

Arguments

- **y**
 Response.

- **margin**
 The distributions allowed are: normal ("N"), log-normal ("LN"), generalised Pareto ("GP"), discrete generalised Pareto ("DGP"), Gumbel ("GU"), reverse Gumbel ("rGU"), logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK"), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NBI"), negative binomial - type II ("NBII"), Poisson inverse Gaussian ("PIG").

- **main**
 Title for the plot.

- **xlab**
 Title for the x axis.

- **print.par**
 If TRUE then the estimated parameters used to construct the plots are returned.

- **plots**
 If FALSE then no plots are produced and only parameter estimates returned.

- **loglik**
 If TRUE then it returns the logLik.

- **os**
 If TRUE then the estimated parameters are returned on the original scale.

- **intervals**
 If TRUE then intervals for the qqplot are produced.

- **n.sim**
 Number of replicate datasets used to simulate quantiles of the residual distribution.

- **prob.lev**
 Overall probability of the left and right tails of the probabilities’ distribution used for interval calculations.

- **i.f**
 Internal fitting option. This is not for user purposes.

- **min.dn, min.pr, max.pr**
 Allowed minimum and maximum for estimated probabilities and densities for parameter estimation.

- **...**
 Other graphics parameters to pass on to plotting commands.

Details

Prior to fitting a model with discrete and/or continuous margins, the distributions for the responses may be chosen by looking at the histogram of the response along with the estimated density from the assumed distribution, and at the normalised quantile responses. These will provide a rough guide to the adequacy of the chosen distribution. The latter are defined as the quantile standard normal function of the cumulative distribution function of the response with scale and location estimated by MLE. These should behave approximately as normally distributed variables (even though the original observations are not). Therefore, a normal Q-Q plot is appropriate here.

If loglik = TRUE then this function also provides the log-likelihood for AIC calculation, for instance.

The shapiro test can also be performed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm
Description

This function simply generates random multivariate normal variates.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Description

It helps finding the robust constant for a GAMLSS.

Usage

rob.const(x, B = 100)

Arguments

x
A fitted gjrm object.

B
Number of bootstrap replicates.

Details

It helps finding the robust constant for a GAMLSS based on the mean or median.

Value

rc
Robust constant used in fitting.

sw
Sum of weights for each bootstrap replicate.

m1
Mean.

m2
Median.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gamlss
Description

Tool for tuning bounds of integral in robust GAMLSS.

Usage

rob.int(x, rc, l.grid = 1000, tol = 1e-4, var.range = NULL)

Arguments

x A fitted gjrm object, typically from a non-robust fit.
rc Robust tuning constant.
l.grid Length of grid.
tol Tolerance
var.range Range of values, min and max, to use in calculations.

Details

Tool for tuning bounds of integral in robust GAMLSS.

Value

lB, uB Lower and upper bounds.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gamlss
Description

RR can be used to calculate the causal risk ratio of a binary/continuous/discrete endogenous predictor/treatment, with corresponding interval obtained using posterior simulation.

Usage

```r
RR(x, nm.end, E = TRUE, treat = TRUE, type = "joint", ind = NULL,
    n.sim = 100, prob.lev = 0.05, length.out = NULL, hd.plot = FALSE,
    rr.plot = FALSE,
    main = "Histogram and Kernel Density of Simulated Risk Ratios",
    xlab = "Simulated Risk Ratios", ...)
```

Arguments

- **x**: A fitted `gjrm` object.
- **nm.end**: Name of the endogenous variable.
- **E**: If TRUE then RR calculates the sample RR. If FALSE then it calculates the sample RR for the treated individuals only.
- **treat**: If TRUE then RR calculates the RR using the treated only. If FALSE then it calculates the ratio using the control group. This only makes sense if E = FALSE.
- **type**: This argument can take three values: "naive" (the effect is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the effect is obtained from the univariate model which neglects the presence of unobserved confounders) and "joint" (the effect is obtained from the bivariate model which accounts for observed and unobserved confounders).
- **ind**: Binary logical variable. It can be used to calculate the RR for a subset of the data. Note that it does not make sense to use ind when some observations are excluded from the RR calculation (e.g., when using E = FALSE).
- **n.sim**: Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when delta = FALSE. It may be increased if more precision is required.
- **prob.lev**: Overall probability of the left and right tails of the RR distribution used for interval calculations.
- **length.out**: Desired length of the sequence to be used when calculating the effect that a continuous/discrete treatment has on a binary outcome.
- **hd.plot**: If TRUE then a plot of the histogram and kernel density estimate of the simulated risk ratios is produced. This can only be produced when binary responses are used.
rr.plot
For the case of continuous/discrete endogenous variable and binary outcome, if **TRUE** then a plot (on the log scale) showing the risk ratios that the binary outcome is equal to 1 for each incremental value of the endogenous variable and respective intervals is produced.

main
Title for the plot.

xlab
Title for the x axis.

...
Other graphics parameters to pass on to plotting commands. These are used only when **hd.plot = TRUE**.

Details

RR calculates the causal risk ratio of the probabilities of positive outcome under treatment (the binary predictor or treatment assumes value 1) and under control (the binary treatment assumes value 0). Posterior simulation is used to obtain a confidence/credible interval.

RR works also for the case of continuous/discrete endogenous treatment variable.

Value

prob.lev
Probability level used.

sim.RR
It returns a vector containing simulated values of the average RR. This is used to calculate intervals.

Ratios
For the case of continuous/discrete endogenous variable and binary outcome, it returns a matrix made up of three columns containing the risk ratios for each incremental value in the endogenous variable and respective intervals.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

GJRM-package, gjrm

S.m
Internal Function

Description

It provides penalty matrices in a format suitable for automatic multiple smoothing parameter estimation.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
SemiParBIV

Description
Internal fitting set up function.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

SemiParBIV.fit

Description
Wrapper of core algorithm.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

SemiParBIV.fit.post

Description
This and other similar internal functions calculate useful post estimation quantities.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

SemiParTRIV

Description
Internal fitting set up function.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
summary.copulaSampleSel

copulaSampleSel summary

Description

It takes a fitted copulaSampleSel object and produces some summaries from it.

Usage

S3 method for class 'copulaSampleSel'
summary(object, n.sim = 100, prob.lev = 0.05, ...)

S3 method for class 'summary.copulaSampleSel'
print(x, digits = max(3, getOption("digits") - 3),
 signif.stars = getOption("show.signif.stars"), ...)

Arguments

object A fitted copulaSampleSel object.
x summary.copulaSampleSel object produced by summary.copulaSampleSel().
n.sim The number of simulated coefficient vectors from the posterior distribution of
 the estimated model parameters. This is used to calculate intervals for the
 association parameter, dispersion coefficient, for instance It may be increased if
 more precision is required.
prob.lev Probability of the left and right tails of the posterior distribution used for interval
 calculations.
digits Number of digits printed in output.
signif.stars By default significance stars are printed alongside output.
... Other arguments.

Details

print.summary.copulaSampleSel prints model term summaries.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Examples

see examples for gjrm
summary.gamlss
gamlss summary

Description

It takes a fitted gamlss object and produces some summaries from it.

Usage

```r
## S3 method for class 'gamlss'
summary(object, n.sim = 100, prob.lev = 0.05, ...)

## S3 method for class 'summary.gamlss'
print(x, digits = max(3, getOption("digits") - 3),
     signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- `object`
 A fitted gamlss object.
- `x`
 summary.gamlss object produced by summary.gamlss().
- `n.sim`
 The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for various parameters. It may be increased if more precision is required.
- `prob.lev`
 Probability of the left and right tails of the posterior distribution used for interval calculations.
- `digits`
 Number of digits printed in output.
- `signif.stars`
 By default significance stars are printed alongside output.
- `...`
 Other arguments.

Details

print.summary.gamlss prints model term summaries.

Value

- `tableP1`
 Table containing parametric estimates, their standard errors, z-values and p-values for equation 1.
- `tableP2,tableP3`
 As above but for equations 2 and 3 if present.
Table of nonparametric summaries for each smooth component including effective degrees of freedom, estimated rank, approximate Wald statistic for testing the null hypothesis that the smooth term is zero and corresponding p-value, for equation 1.

As above but for equations 2 and 3.

Sample size.

Estimated distribution specific parameters.

Formulas used for the model equations.

Number of smooth components in model equation.

Total degrees of freedom of the estimated bivariate model.

Intervals for distribution specific parameters.

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

see examples for gamlss

It takes a fitted `gjrm` object and produces some summaries from it.

```r
## S3 method for class 'gjrm'
summary(object, n.sim = 100, prob.lev = 0.05, ...)

## S3 method for class 'summary.gjrm'
print(x, digits = max(3, getOption("digits") - 3),
     signif.stars = getOption("show.signif.stars"), ...)
```
Arguments

object A fitted gjrm object.
x summary.gjrm object produced by summary.gjrm().
n.sim The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for the association parameter, dispersion coefficient etc. It may be increased if more precision is required.
prob.lev Probability of the left and right tails of the posterior distribution used for interval calculations.
digits Number of digits printed in output.
signif.stars By default significance stars are printed alongside output.
... Other arguments.

Details

print.summary.gjrm prints model term summaries.

Value

tableP1 Table containing parametric estimates, their standard errors, z-values and p-values for equation 1.
tableP2,tableP3, ... As above but for equation 2 and equations 3 and 4 if present.
tableNP1 Table of nonparametric summaries for each smooth component including effective degrees of freedom, estimated rank, approximate Wald statistic for testing the null hypothesis that the smooth term is zero and corresponding p-value, for equation 1.
tableNP2,tableNP3, ... As above but for equation 2 and equations 3 and 4 if present.
n Sample size.
theta Estimated dependence parameter linking the two equations.
sigma1,sigma2 Estimated distribution specific parameters for equations 1 and 2.
nu1,nu2 Estimated distribution specific parameters for equations 1 and 2.
formula1,formula2,formula3,... Formulas used for the model equations.
l.sp1,l.sp2,l.sp3,... Number of smooth components in model equations.
t.edf Total degrees of freedom of the estimated bivariate model.
CItheta Interval(s) for θ.
CIσ_1,CI$s\sigma_2$,CIν_1,CIν_2 Intervals for distribution specific parameters

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
summary.SemiParBIV
SemiParBIV summary

Description
It takes a fitted SemiParBIV object and produces some summaries from it.

Usage

```r
## S3 method for class 'SemiParBIV'
summary(object, n.sim = 100, prob.lev = 0.05, gm = FALSE, ...)

## S3 method for class 'summary.SemiParBIV'
print(x, digits = max(3, getOption("digits") - 3),
     signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- `object`: A fitted SemiParBIV object.
- `x`: summary.SemiParBIV object produced by summary.SemiParBIV().
- `n.sim`: The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for the association parameter, dispersion coefficient and other measures (e.g., gamma measure). It may be increased if more precision is required.
- `prob.lev`: Probability of the left and right tails of the posterior distribution used for interval calculations.
- `gm`: If TRUE then intervals for the gamma measure and odds ratio are calculated.
- `digits`: Number of digits printed in output.
- `signif.stars`: By default significance stars are printed alongside output.
- `...`: Other arguments.

Details
Using some low level functions in mgcv, based on the results of Marra and Wood (2012), ‘Bayesian p-values’ are returned for the smooth terms. These have better frequentist performance than their frequentist counterpart. See the help file of summary.gam in mgcv for further details. Covariate selection can also be achieved using a single penalty shrinkage approach as shown in Marra and Wood (2011).
Posterior simulation is used to obtain intervals of nonlinear functions of parameters, such as the association and dispersion parameters as well as the odds ratio and gamma measure discussed by Tajar et al. (2001) if gm = TRUE.

print.summary.SemiParBIV prints model term summaries.
Value

- `tableP1` Table containing parametric estimates, their standard errors, z-values and p-values for equation 1.
- `tableP2`, `tableP3`, ...
 - As above but for equation 2 and equations 3 and 4 if present.
- `tableNP1` Table of nonparametric summaries for each smooth component including effective degrees of freedom, estimated rank, approximate Wald statistic for testing the null hypothesis that the smooth term is zero and corresponding p-value, for equation 1.
- `tableNP2`, `tableNP3`, ...
 - As above but for equation 2 and equations 3 and 4 if present.
- `n` Sample size.
- `theta` Estimated dependence parameter linking the two equations.
- `formula1`, `formula2`, `formula3`, ...
 - Formulas used for the model equations.
- `l.sp1`, `l.sp2`, `l.sp3`, ...
 - Number of smooth components in model equations.
- `t.edf` Total degrees of freedom of the estimated bivariate model.
- `CItheta` Interval(s) for θ.
- `n.sel` Number of selected observations in the sample selection case.
- `OR`, `CIor` Odds ratio and related CI. The odds ratio is a measure of association between binary random variables and is defined as $p_{00}p_{11}/p_{10}p_{01}$. In the case of independence this ratio is equal to 1. It can take values in the range (-Inf, Inf) and it does not depend on the marginal probabilities (Tajar et al., 2001). Interval is calculated using posterior simulation.
- `GM`, `CIgm` Gamma measure and related CI. This measure of association was proposed by Goodman and Kruskal (1954). It is defined as $(OR - 1)/(OR + 1)$, can take values in the range (-1, 1) and does not depend on the marginal probabilities. Interval is calculated using posterior simulation.
- `tau`, `CItau` Kendall’s tau and respective intervals.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

`AT.prev`

Description

It takes a fitted `SemiParTRIV` object and produces some summaries from it.

Usage

```r
## S3 method for class 'SemiParTRIV'
summary(object, n.sim = 100, prob.lev = 0.05, ...)

## S3 method for class 'summary.SemiParTRIV'
print(x, digits = max(3, getOption("digits") - 3),
      signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- `object` A fitted `SemiParTRIV` object.
- `x` `summary.SemiParTRIV` object produced by `summary.SemiParTRIV()`.
- `n.sim` The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for the association parameter and other measures. It may be increased if more precision is required.
- `prob.lev` Probability of the left and right tails of the posterior distribution used for interval calculations.
- `digits` Number of digits printed in output.
- `signif.stars` By default significance stars are printed alongside output.
- `...` Other arguments.

Details

`print.summary.SemiParTRIV` prints model term summaries.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Examples

```r
## see examples for gjrm
```
TRIapprox

Internal Function

Description

It approximates the trivariate normal integral.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

triprobgHs

Internal Function

Description

It provides score and Hessian for trivariate binary models.

Author(s)

Author: Panagiota Filippou
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

vis.gjrm

Visualization function

Description

It takes a fitted gjrm object produced by gjrm() and produces perspective or contour plot views of model predictions. This function is a wrapper of vis.gam() in mgcv. Please see the documentation of vis.gam() for full details.

Usage

vis.gjrm(x, eq, fun = NULL, ...)

Arguments

x A fitted gjrm object.
eq The equation number.
fun Either mean or variance. If left as equal to NULL then predictions on the scale of the predictor will be produced.
... Other graphics parameters to pass on to plotting commands, as described for vis.gam() in mgcv.
The function generates plots.

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

\texttt{gjrm}

\begin{Verbatim}
VuongClarke
\end{Verbatim}

\begin{Verbatim}
Vuong and Clarke tests
\end{Verbatim}

Description

The Vuong and Clarke tests are likelihood-ratio-based tests that can be used for choosing between two non-nested models.

Usage

\texttt{VuongClarke(obj1, obj2, sig.lev = 0.05)}

Arguments

\begin{enumerate}
\item \texttt{obj1, obj2} Objects of the two fitted bivariate non-nested models.
\item \texttt{sig.lev} Significance level used for testing.
\end{enumerate}

Details

The Vuong (1989) and Clarke (2007) tests are likelihood-ratio-based tests for model selection that use the Kullback-Leibler information criterion. The implemented tests can be used for choosing between two bivariate models which are non-nested.

In the Vuong test, the null hypothesis is that the two models are equally close to the actual model, whereas the alternative is that one model is closer. The test follows asymptotically a standard normal distribution under the null. Assume that the critical region is \((−c, c)\), where \(c\) is typically set to 1.96. If the value of the test is higher than \(c\) then we reject the null hypothesis that the models are equivalent in favor of model \texttt{obj1}. Vice versa if the value is smaller than \(c\). If the value falls in \([-c, c]\) then we cannot discriminate between the two competing models given the data.

In the Clarke test, if the two models are statistically equivalent then the log-likelihood ratios of the observations should be evenly distributed around zero and around half of the ratios should be larger than zero. The test follows asymptotically a binomial distribution with parameters \(n\) and 0.5. Critical values can be obtained as shown in Clarke (2007). Intuitively, model \texttt{obj1} is preferred over \texttt{obj2} if the value of the test is significantly larger than its expected value under the null hypothesis \((n/2)\), and vice versa. If the value is not significantly different from \(n/2\) then \texttt{obj1} can be thought of as equivalent to \texttt{obj2}.
Value

It returns two decisions based on the tests and criteria discussed above.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

Examples

```r
## see examples for gjrm
```

<table>
<thead>
<tr>
<th>war</th>
<th>Civil war data</th>
</tr>
</thead>
<tbody>
<tr>
<td>onset</td>
<td>civil war started</td>
</tr>
<tr>
<td>instab</td>
<td>unstable government</td>
</tr>
<tr>
<td>oil</td>
<td>oil exporter country</td>
</tr>
<tr>
<td>warl</td>
<td>distinct civil war ongoing</td>
</tr>
<tr>
<td>gdpenl</td>
<td>GDP per capita lagged</td>
</tr>
<tr>
<td>ncontig</td>
<td>non-contiguous state</td>
</tr>
<tr>
<td>nwstate</td>
<td>new state</td>
</tr>
<tr>
<td>lpopl</td>
<td>log(population size)</td>
</tr>
<tr>
<td>lmtnest</td>
<td>log(mountainous)</td>
</tr>
<tr>
<td>ethfrac</td>
<td>ethnic fractionalization</td>
</tr>
<tr>
<td>relfrac</td>
<td>religious fractionalization</td>
</tr>
<tr>
<td>polity2</td>
<td>political democracy lagged</td>
</tr>
</tbody>
</table>

Description

Civil war data from Fearon and Laitin (2003).

Usage

data(war)

Format

war is a 6326 row data frame with the following columns

- onset equal to 1 for all country-years in which a civil war started.
- instab equal to 1 if unstable government.
- oil equal to 1 for oil exporter country.
- warl equal to 1 if the country had a distinct civil war ongoing in the previous year.
- gdpenl GDP per capita (measured as thousands of 1985 U.S. dollars) lagged one year.
- ncontig equal to 1 for non-contiguous state.
- nwstate equal to 1 for new state.
- lpopl log(population size).
- lmtnest log(mountainous).
- ethfrac measure of ethnic fractionalization (calculated as the probability that two randomly drawn individuals from a country are not from the same ethnicity).
- relfrac measure of religious fractionalization.
- polity2 measure of political democracy (ranges from -10 to 10) lagged one year.
Source

Data are from:

Examples

```r
### Not run:

#########################################################################
#########################################################################
library("GJRM")
data("war", package = "GJRM")
#########################################################################
# Bivariate brobit model with partial observability
#########################################################################
reb.eq <- onset ~ instab + oil + warl + lpopl + lmtnest + ethfrac +
polity2l + s(gdpenl) + s(relfrac)
gov.eq <- onset ~ instab + oil + warl + ncontig + nwstate + s(gdpenl)
bpo <- gjrm(list(reb.eq, gov.eq), data = war, Model = "BPO",
            margins = c("probit", "probit"))
conv.check(bpo)
# perhaps model is to complex
set.seed(1)
sbpo <- summary(bpo)
sbpo$theta; sbpo$CItheta
# let's exclude the correlation parameter in fitting
bpo0 <- gjrm(list(reb.eq, gov.eq), data = war, Model = "BPO0",
              margins = c("probit", "probit"))
conv.check(bpo0)
summary(bpo0)

war.eq <- onset ~ instab + oil + warl + ncontig + nwstate + lpopl +
          lmtnest + ethfrac + polity2l + s(gdpenl) + s(relfrac)
Probit <- gam(war.eq, family = binomial(link = "probit"), data = war)
summary(Probit)
coef(Probit)[(which(names(coef(Probit)) == "s(gdpenl).9"))]
```
coef(bpo0)[(which(names(coef(bpo)) == "s(gdpenl).9"))]

probitW <- bpoW <- bpoReb <- bpoGov <- NA
gdp.grid <- seq(0, 8)

median.values <- data.frame(t(apply(war, 2, FUN = median)))

for (i in 1:length(gdp.grid)){
 newd <- median.values; newd$gdpenl <- gdp.grid[i]
 eta1 <- predict(bpo0, eq = 1, newd)
 eta2 <- predict(bpo0, eq = 2, newd)
 probitW[i] <- predict(Probit, newd, type = "response")
 bpoW[i] <- pnorm(eta1)*pnorm(eta2)
 bpoReb[i] <- pnorm(eta1)
 bpoGov[i] <- pnorm(eta2)
}

plot(gdp.grid, probitW, type = "l", ylim = c(0, 0.55), lwd = 2,
 col = "grey", xlab = "GDP per Capita (in thousands)",
 ylab = "Pr(Outcome)", main = "Probabilities for All Outcomes",
 cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.3)
lines(gdp.grid, bpoW, lwd = 2)
lines(gdp.grid, bpoReb, lwd = 2, lty = 2)
lines(gdp.grid, bpoGov, lwd = 2, lty = 3)

#dev.copy(postscript, "probWAR.eps", width = 8)
#dev.off()

End(Not run)

#

working.comp
Internal Function

Description

It efficiently calculates the working model quantities needed to implement the automatic multiple
smoothing parameter estimation procedure by exploiting a result which leads to very fast and stable
calculations.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
Index

* AIC
 logLik.SemiParBIV, 72
* ATE
 AT, 8
 mb, 73
* BIC
 logLik.SemiParBIV, 72
* Clarke test
 VuongClarke, 112
* Manski's bounds
 mb, 73
 print.mb, 92
* Nonparametric bounds
 mb, 73
* OR
 OR, 77
* PE
 PE, 79
* Q-Q plot
 post.check, 83
 resp.check, 97
* RR
 RR, 101
* Vuong test
 VuongClarke, 112
* Worst-case bounds
 mb, 73
* average partial effect
 PE, 79
* average treatment effect
 AT, 8
 mb, 73
* bayesian posterior simulation
 AT, 8
 jc.probs, 67
 OR, 77
 PE, 79
 prev, 87
 RR, 101
* binary bivariate model
 PE, 79
* bivariate model
 AT, 8
* complex survey design
 adjCovSD, 7
* confidence interval
 mb, 73
* copulae
 AT, 8
 PE, 79
* copula
 gjrm, 31
 GJRM-package, 3
 jc.probs, 67
* correlated equations/errors
 LM.bpm, 69
* covariance matrix adjustment
 adjCov, 6
 adjCovSD, 7
* density plot
 post.check, 83
 resp.check, 97
* diagnostics
 conv.check, 14
* distribution
 gamlss, 18
* endogeneity
 gjrm, 31
 GJRM-package, 3
 gt.bpm, 58
 imputeCounter, 65
 LM.bpm, 69
* flexible copula regression modelling
 gjrm, 31
* generalised joint regression modelling
 conv.check, 14
 gjrm, 31
 gt.bpm, 58
INDEX

imputeCounter, 65
imputeSS, 66
jc.probs, 67
OR, 77
post.check, 83
prev, 87
print.AT, 89
print.copulaSampleSel, 89
print.gjrm, 91
print.OR, 92
print.PE, 93
print.prev, 94
print.RR, 95
print.SemiParBIV, 95
print.SemiParTRIV, 96
resp.check, 97
RR, 101
* gradient test
gt.bpm, 58
* histogram
post.check, 83
resp.check, 97
* hplot
hazsurv.plot, 59
plot.SemiParBIV, 80
polys.map, 81
vis.gjrm, 111
* imputation
imputeCounter, 65
imputeSS, 66
* information criteria
summary.copulaSampleSel, 104
summary.gamlss, 105
summary.gjrm, 106
summary.SemiParBIV, 108
summary.SemiParTRIV, 110
* joint regression modelling
LM.bpm, 69
* lagrange multiplier test
LM.bpm, 69
* likelihood ratio test
VuongClarke, 112
* linear model
lmc, 70
* logLik
logLik.SemiParBIV, 72
* marginal distribution
gjrm, 31
jc.probs, 67
* non-random sample selection
gjrm, 31
GJRM-package, 3
gt.bpm, 58
imputeSS, 66
LM.bpm, 69
prev, 87
summary.copulaSampleSel, 104
* odds ratio
OR, 77
* package
GJRM-package, 3
* partial observability
gjrm, 31
GJRM-package, 3
* penalised regression spline
GJRM-package, 3
* positivity constraint
lmc, 70
* prediction
pred.gp, 84
pred.mvt, 85
predict.CopulaCLM, 85
predict.SemiParBIV, 86
* prevalence
mb, 73
prev, 87
* regression modelling
cv.inform, 15
gamlss, 18
print.gamlss, 90
* regression spline
gamlss, 18
gjrm, 31
* regression
GJRM-package, 3
hazsurv.plot, 59
plot.SemiParBIV, 80
polys.map, 81
post.check, 83
resp.check, 97
rob.const, 99
rob.int, 100
summary.copulaSampleSel, 104
summary.gamlss, 105
summary.gjrm, 106
summary.SemiParBIV, 108
INDEX

summary.SemiParTRIV, 110
vis.gjrm, 111
* risk ratio
 RR, 101
* robust
 rob.const, 99
 rob.int, 100
* score test
 LM.bpm, 69
* smooth
 gamlss, 18
gjrm, 31
GJRM-package, 3
hazsurv.plot, 59
plot.SemiParBIV, 80
polys.map, 81
summary.copulaSampleSel, 104
summary.gamlss, 105
summary.gjrm, 106
summary.SemiParBIV, 108
summary.SemiParTRIV, 110
vis.gjrm, 111
* sum-to-one constraint
 lmc, 70
* survival data
 cv.inform, 15
gamlss, 18
gjrm, 31
* trivariate model
 AT, 8
aCov (adjCov), 6
adjCov, 6, 35
adjCovSD, 7
AIC, 73
approx.CLM (eta.tr), 17
ass.dp (eta.tr), 17
ass.ms (SemiParBIV.fit.post), 103
AT, 8, 73, 89, 110
BCDF, 10
bcont, 10
bcont23 (bcont), 10
bcont3 (bcont), 10
bcont32 (bcont), 10
bcontROB (bcont), 10
bcontSurvGunivI_ExcessHazard (bprobgHsContHazard), 12
bcontSurvGunivI (bprobgHsContHazard), 12
bcontSurvGunivI_ExcessHazard (bprobgHsContHazard), 12
bcontSurvGunivIExcessHazard (bprobgHsContHazard), 12
bcontSurvGunivI (bprobgHsContHazard), 12
bcontSurvGunivIExcessHazard (bprobgHsContHazard), 12
bcorrec (eta.tr), 17
bcorrecDiscr (eta.tr), 17
bcorrecFuncs (eta.tr), 17
bdiscrcnt, 10
bdiscrcnt12 (bdiscrcnt), 10
bdiscrcnt13 (bdiscrcnt), 10
bdiscrcnt23 (bdiscrcnt), 10
bdiscrdiscr, 11
bdiscrdiscr11 (bdiscrdiscr), 11
bdiscrdiscr12 (bdiscrdiscr), 11
BIC, 73
BiCDF (BCDF), 10
bprobgHs, 11
bprobgHsCont, 11
bprobgHsCont3 (bprobgHsCont), 11
bprobgHsCont3binTW (bprobgHsCont), 11
bprobgHsCont3SS (bprobgHsContSS), 12
bprobgHsContSS, 12
bprobgHsContUniv, 12
bprobgHsContUniv3 (bprobgHsContUniv), 12
bprobgHsContUnivBIN (bprobgHsContUniv), 12
bprobgHsDiscr1, 12
bprobgHsDiscr1SS, 13
bprobgHsDiscr2 (bprobgHsDiscr1), 12
bprobgHsDiscr2SS (bprobgHsDiscr1SS), 13
bprobgHsPO, 13
bprobgHsPO (bprobgHsPO), 13
bprobgHsSS, 13
bprobgHstwoParC (bprobgHs), 11
conv.check, 14, 21, 22, 34, 35
Cop1Cop2 (eta.tr), 17
copgHs, 14
copgHs2 (copgHs), 14
INDEX

copgHs (copgHs), 14
copgHsAT (copgHs), 14
copgHsCond (copgHs), 14
copgHsCont (copgHs), 14
CopulaCLM, 15
copulaReg.fit.post
 (SemiParBIV.fit.post), 103
copulaSampleSel, 15
copulaSampleSel.fit.post
 (SemiParBIV.fit.post), 103
cov.c (eta.tr), 17
cv.inform, 15
distrHs, 16
distrHsAT (distrHs), 16
distrHsAT1 (distrHs), 16
distrHsATDiscr (distrHs), 16
distrHsATDiscr2 (distrHs), 16
distrHsDiscr (distrHs), 16
dof.tr (eta.tr), 17
Dpens, 16
Dpens2 (eta.tr), 17
edf.loop (SemiParBIV.fit.post), 103
enu.tr (eta.tr), 17
esp.tr (eta.tr), 17
eta.tr, 17
form.check (SemiParBIV.fit.post), 103
form.eq12 (eta.tr), 17
g.tri, 17
g.triESS (g.tri), 17
g.triSS (g.tri), 17
gamlss.ups vs (eta.tr), 17
gamlss, 6, 14, 16, 18, 29, 84, 91, 99, 100
gamlss.fit.post (SemiParBIV.fit.post), 103
gamlssObject, 22, 28
ggm.Deriv (bcont), 10
ggm.DerivOPT1 (eta.tr), 17
ggm.DerivOPT2 (eta.tr), 17
ggmtrust, 30
ggmtrust.path (eta.tr), 17
gjrm, 6–8, 10, 14, 31, 58, 66–68, 70, 74, 78, 79, 81, 84–88, 91, 98, 102, 112
GJRM-package, 3
gjrmObject, 35, 56
gt.bpm, 58
H.tri, 59
H.triESS (H.tri), 59
H.triSS (H.tri), 59
hazsurv.plot, 59
hiv, 61
imputeCounter, 65
imputeSS, 66
inform.setup (eta.tr), 17
int.postcheck (post.check), 83
intB (eta.tr), 17
jc.probs, 67
jc.probs1 (jc.probs), 67
jc.probs2 (jc.probs), 67
jc.probs3 (jc.probs), 67
jc.probs4 (jc.probs), 67
jc.probs5 (jc.probs), 67
jc.probs6 (jc.probs), 67
jc.probs7 (jc.probs), 67
llpsi, 68
LM.bpm, 69
lmc, 70
logLik, 72
logLik.ggmtrust (logLik.SemiParBIV), 72
logLik.lmc (logLik.SemiParBIV), 72
logLik.SemiParBIV, 72
mb, 73, 92
meps, 74
mice.impute.copulaSS (eta.tr), 17
mm (numgh), 77
mmf (eta.tr), 17
numch (numgh), 77
numgh, 77
OR, 77, 93
overall.sv (eta.tr), 17
overall.svG (eta.tr), 17
PDef (eta.tr), 17
PE, 79, 94
pen, 80
penCor (pen), 80
plot.SemiParBIV, 80
polys.map, 81
polys.setup, 82
PosDefCor (eta.tr), 17
post.check, 83
postVb (SemiParBIV.fit.post), 103
pp (eta.tr), 17
pred.gp, 84
pred.mvt, 85
pred.var (SemiParBIV.fit.post), 103
predict.CopulaCLM, 85
predict.SemiParBIV, 86
prev, 73, 87, 94, 110
print.AT, 89
print.copulaSampleSel, 89
print.gamlss, 90
print.gjrm, 91
print.mb, 92
print.OR, 92
print.PE, 93
print.prev, 94
print.RR, 95
print.SemiParBIV, 95
print.SemiParTRIV, 96
print.summary.copulaSampleSel
 (summary.copulaSampleSel), 104
print.summary.gamlss (summary.gamlss), 105
print.summary.gjrm (summary.gjrm), 106
print.summary.SemiParBIV
 (summary.SemiParBIV), 108
print.summary.SemiParTRIV
 (summary.SemiParTRIV), 110
probm, 97
probmS (eta.tr), 17
pscr (eta.tr), 17
pscr0 (eta.tr), 17
pTweed (eta.tr), 17
r.resp (eta.tr), 17
Reg2Copost (eta.tr), 17
regH, 97
resp.check, 97
resp.CLM (eta.tr), 17
rIC (eta.tr), 17
rMVN, 99
rob.const, 99
rob.int, 100
RR, 95, 101
S.m, 102
SemiParBIV, 103
SemiParBIV.fit, 103
SemiParBIV.fit.post, 103
SemiParTRIV, 103
SemiParTRIV.fit post
 (SemiParBIV.fit.post), 103
sim.resp (eta.tr), 17
SS (eta.tr), 17
startsn (eta.tr), 17
summary.copulaSampleSel, 104
summary.gamlss, 22, 29, 105
summary.gjrm, 35, 58, 106
summary.SemiParBIV, 108
summary.SemiParTRIV, 110
survExcInd (eta.tr), 17
susu (eta.tr), 17
susutsn (eta.tr), 17
teta.tr (eta.tr), 17
TRIapprox, 111
triprobgHs, 111
triprobgHsESS (triprobgHs), 111
triprobgHsSS (triprobgHs), 111
vis.gam2 (eta.tr), 17
vis.gjrm, 111
VuongClarke, 35, 112
war, 113
working.comp, 115
Xdpred (eta.tr), 17