R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bdiscrdiscr</td>
<td>12</td>
</tr>
<tr>
<td>bprobgHs</td>
<td>12</td>
</tr>
<tr>
<td>bprobgHsCont</td>
<td>13</td>
</tr>
<tr>
<td>bprobgHsContSS</td>
<td>13</td>
</tr>
<tr>
<td>bprobgHsContUniv</td>
<td>13</td>
</tr>
<tr>
<td>bprobgHsDiscr1</td>
<td>14</td>
</tr>
<tr>
<td>bprobgHsDiscr1SS</td>
<td>14</td>
</tr>
<tr>
<td>bprobgHsPO</td>
<td>14</td>
</tr>
<tr>
<td>bprobgHsSS</td>
<td>14</td>
</tr>
<tr>
<td>conv.check</td>
<td>15</td>
</tr>
<tr>
<td>copgHs</td>
<td>15</td>
</tr>
<tr>
<td>CopulaCLM</td>
<td>16</td>
</tr>
<tr>
<td>copulaSampleSel</td>
<td>16</td>
</tr>
<tr>
<td>cv.inform</td>
<td>16</td>
</tr>
<tr>
<td>distrHs</td>
<td>17</td>
</tr>
<tr>
<td>eta.tr</td>
<td>17</td>
</tr>
<tr>
<td>g.tr</td>
<td>18</td>
</tr>
<tr>
<td>gamlss</td>
<td>18</td>
</tr>
<tr>
<td>gamlssObject</td>
<td>26</td>
</tr>
<tr>
<td>ggmtrust</td>
<td>27</td>
</tr>
<tr>
<td>gjrm</td>
<td>28</td>
</tr>
<tr>
<td>gjrmObject</td>
<td>53</td>
</tr>
<tr>
<td>gt.bpm</td>
<td>54</td>
</tr>
<tr>
<td>H.tri</td>
<td>55</td>
</tr>
<tr>
<td>hazsurv.plot</td>
<td>56</td>
</tr>
<tr>
<td>hiv</td>
<td>57</td>
</tr>
<tr>
<td>imputeCounter</td>
<td>61</td>
</tr>
<tr>
<td>imputeSS</td>
<td>62</td>
</tr>
<tr>
<td>jc.probs</td>
<td>63</td>
</tr>
<tr>
<td>lipsi</td>
<td>64</td>
</tr>
<tr>
<td>LM.bpm</td>
<td>65</td>
</tr>
<tr>
<td>logLik.SemiParBIV</td>
<td>66</td>
</tr>
<tr>
<td>mb</td>
<td>67</td>
</tr>
<tr>
<td>meps</td>
<td>69</td>
</tr>
<tr>
<td>numgh</td>
<td>71</td>
</tr>
<tr>
<td>OR</td>
<td>71</td>
</tr>
<tr>
<td>pen</td>
<td>73</td>
</tr>
<tr>
<td>plot.SemiParBIV</td>
<td>73</td>
</tr>
<tr>
<td>polys.map</td>
<td>74</td>
</tr>
<tr>
<td>polys.setup</td>
<td>75</td>
</tr>
<tr>
<td>post.check</td>
<td>76</td>
</tr>
<tr>
<td>pred.mvt</td>
<td>77</td>
</tr>
<tr>
<td>predict.SemiParBIV</td>
<td>78</td>
</tr>
<tr>
<td>prev</td>
<td>79</td>
</tr>
<tr>
<td>print.AT</td>
<td>81</td>
</tr>
<tr>
<td>print.AT2</td>
<td>81</td>
</tr>
<tr>
<td>print.copulaSampleSel</td>
<td>82</td>
</tr>
<tr>
<td>print.gamlss</td>
<td>83</td>
</tr>
</tbody>
</table>
GJRM-package

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>print.gjrm</td>
<td>84</td>
</tr>
<tr>
<td>print.mb</td>
<td>84</td>
</tr>
<tr>
<td>print.OR</td>
<td>85</td>
</tr>
<tr>
<td>print.prev</td>
<td>86</td>
</tr>
<tr>
<td>print.RR</td>
<td>87</td>
</tr>
<tr>
<td>print.SemiParBIV</td>
<td>87</td>
</tr>
<tr>
<td>print.SemiParTRIV</td>
<td>88</td>
</tr>
<tr>
<td>probm</td>
<td>89</td>
</tr>
<tr>
<td>regH</td>
<td>89</td>
</tr>
<tr>
<td>resp.check</td>
<td>89</td>
</tr>
<tr>
<td>rMVN</td>
<td>91</td>
</tr>
<tr>
<td>rob.const</td>
<td>91</td>
</tr>
<tr>
<td>rob.int</td>
<td>92</td>
</tr>
<tr>
<td>RR</td>
<td>93</td>
</tr>
<tr>
<td>S.m</td>
<td>94</td>
</tr>
<tr>
<td>SemiParBIV</td>
<td>95</td>
</tr>
<tr>
<td>SemiParBIV.fit</td>
<td>95</td>
</tr>
<tr>
<td>SemiParBIV.fit.post</td>
<td>95</td>
</tr>
<tr>
<td>SemiParTRIV</td>
<td>95</td>
</tr>
<tr>
<td>summary.copulaSampleSel</td>
<td>96</td>
</tr>
<tr>
<td>summary.gamlss</td>
<td>97</td>
</tr>
<tr>
<td>summary.gjrm</td>
<td>98</td>
</tr>
<tr>
<td>summary.SemiParBIV</td>
<td>100</td>
</tr>
<tr>
<td>summary.SemiParTRIV</td>
<td>102</td>
</tr>
<tr>
<td>TRIapprox</td>
<td>103</td>
</tr>
<tr>
<td>triprobgHs</td>
<td>103</td>
</tr>
<tr>
<td>vis.gjrm</td>
<td>103</td>
</tr>
<tr>
<td>VuongClarke</td>
<td>104</td>
</tr>
<tr>
<td>war</td>
<td>105</td>
</tr>
<tr>
<td>working.comp</td>
<td>107</td>
</tr>
</tbody>
</table>

Index 108

Description

This package provides a function for fitting various generalised joint regression models with several types of covariate effects and distributions. Many modelling options are supported and all parameters of the joint distribution can be specified as flexible functions of covariates.

The original name of this package was SemiParBIVProbit which was designed to fit flexible bivariate binary response models. However, since then the package has expanded so much that its original name no longer gave a clue about all modelling options available. The new name should more closely reflect past, current and future developments.

The main fitting functions are listed below.
gjrm() which fits bivariate regression models with binary responses (useful for fitting bivariate binary models in the presence of (i) non-random sample selection or (ii) associated responses/endogeneity or (iii) partial observability), bivariate models with binary/discrete/continuous/survival margins in the presence of associated responses/endogeneity, bivariate sample selection models with continuous/discrete response, trivariate binary models (with and without double sample selection). This function essentially merges all previously available fitting functions, namely SemiParBIV(), SemiParTRIV(), copulaReg() and copulaSampleSel().

gamlss() fits flexible univariate regression models where the response can be binary (only the extreme value distribution is allowed for), continuous, discrete and survival. The purpose of this function was only to provide, in some cases, starting values for the above functions, but it has now been made available in the form of a proper function should the user wish to fit univariate models using the general estimation approach of this package.

We are currently working on several multivariate extensions.

Details

GJRM provides functions for fitting general joint models in various situations. The estimation approach is based on a very generic penalized maximum likelihood based framework, where any (parametric) distribution can in principle be employed, and the smoothers (representing several types of covariate effects) are set up using penalised regression splines. Several marginal and copula distributions are available and the numerical routine carries out function minimization using a trust region algorithm in combination with an adaptation of an automatic multiple smoothing parameter estimation procedure for GAMs (see mgcv for more details on this last point). The smoothers supported by this package are those available in mgcv.

Confidence intervals for smooth components and nonlinear functions of the model parameters are derived using a Bayesian approach. P-values for testing individual smooth terms for equality to the zero function are also provided and based on the approach implemented in mgcv. The usual plotting and summary functions are also available. Model/variable selection is also possible via the use of shrinkage smoothers and/or information criteria.

Author(s)

Giampiero Marra (University College London, Department of Statistical Science) and Rosalba Radice (Birkbeck, University of London, Department of Economics, Mathematics and Statistics) with contributions from Panagiota Filippou (specifically on the trivariate binary models) and Francesco Donat (on the bivariate models with ordinal and continuous margins).

Thanks to Bear Braumoeller (Department of Political Science, The Ohio State University) for suggesting the implementation of bivariate models with partial observability.

Thanks also to Carmen Cadarso and Francisco Gude for suggesting various modelling extensions and improvements, and for sharing their vision for joint modelling.

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Part funded by EPSRC: EP/J006742/1

References

Key methodological references:

For applied case studies see http://www.homepages.ucl.ac.uk/~ucakgm0/pubs.htm.

See Also

`gjrm`, `gamlss`
adjCov

Adjustment for the covariance matrix from a fitted gjrm model

Description

adjCov can be used to adjust the covariance matrix of a fitted gjrm object.

Usage

adjCov(x, id)

Arguments

x

A fitted gjrm object as produced by the respective fitting function.

id

Cluster identifier.

Details

This adjustment can be made when dealing with clustered data and the cluster structure is neglected when fitting the model. The basic idea is that the model is fitted as though observations were independent, and subsequently adjust the covariance matrix of the parameter estimates. Using the terminology of Liang and Zeger (1986), this would correspond to using an independence structure within the context of generalized estimating equations. The parameter estimators are still consistent but are inefficient as compared to a model which accounts for the correct cluster dependence structure. The covariance matrix of the independence estimators can be adjusted as described in Liang and Zeger (1986, Section 2).

Value

This function returns a fitted object which is identical to that supplied in adjCov but with adjusted covariance matrix.

WARNINGS

This correction may not be appropriate for models fitted using penalties.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

adjCovSD

See Also

GJRM-package, gjrm

adjCovSD
Adjustment for the covariance matrix from a gjrm model fitted to complex survey data.

Description

adjCovSD can be used to adjust the covariance matrix of a fitted gjrm object.

Usage

adjCovSD(x, design)

Arguments

x
A fitted gjrm object as produced by the respective fitting function.

design
A svydesign object as produced by svydesign() from the survey package.

Details

This function has been extracted from the survey package and adapted to the class of this package’s models. It computes the sandwich variance estimator for a copula model fitted to data from a complex sample survey (Lumley, 2004).

Value

This function returns a fitted object which is identical to that supplied in adjCovSD but with adjusted covariance matrix.

WARNINGS

This correction may not be appropriate for models fitted using penalties.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

GJRM-package, gjrm
AT

Average treatment effect of a binary/continuous/discrete endogenous variable

Description

AT can be used to calculate the treatment effect of a binary/continuous/discrete endogenous predictor/treatment, with corresponding interval obtained using posterior simulation.

Usage

AT(x, nm.end, eq = NULL, E = TRUE, treat = TRUE, type = "joint", ind = NULL, n.sim = 100, prob.lev = 0.05, length.out = NULL, hd.plot = FALSE, te.plot = FALSE, main = "Histogram and Kernel Density of Simulated Average Effects", xlab = "Simulated Average Effects", ...)

Arguments

- **x**: A fitted `gjrm` object as produced by the respective fitting function.
- **nm.end**: Name of the endogenous variable.
- **eq**: Number of equation containing the endogenous variable. This is only used for trivariate models.
- **E**: If TRUE then AT calculates the sample ATE. If FALSE then it calculates the sample AT for the treated individuals only.
- **treat**: If TRUE then AT calculates the AT using the treated only. If FALSE then it calculates the effect on the control group. This only makes sense if E = FALSE.
- **type**: This argument can take three values: "naive" (the effect is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the effect is obtained from the univariate model which neglects the presence of unobserved confounders) and "joint" (the effect is obtained from the simultaneous model which accounts for observed and unobserved confounders).
- **ind**: Binary logical variable. It can be used to calculate the AT for a subset of the data. Note that it does not make sense to use ind when some observations are excluded from the AT calculation (e.g., when using E = FALSE).
- **n.sim**: Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when delta = FALSE. It may be increased if more precision is required.
- **prob.lev**: Overall probability of the left and right tails of the AT distribution used for interval calculations.
- **length.out**: Desired length of the sequence to be used when calculating the effect that a continuous/discrete treatment has on a binary outcome.
hd.plot If TRUE then a plot of the histogram and kernel density estimate of the simulated average effects is produced. This can only be produced when when binary responses are used.

te.plot For the case of continuous/discrete endogenous variable and binary outcome, if TRUE then a plot showing the treatment effects that the binary outcome is equal to 1 for each incremental value of the endogenous variable and respective intervals is produced.

main Title for the plot.
xlab Title for the x axis.
... Other graphics parameters to pass on to plotting commands. These are used only when hd.plot = TRUE.

Details

AT measures the average difference in outcomes under treatment (the binary predictor or treatment assumes value 1) and under control (the binary treatment assumes value 0). Posterior simulation is used to obtain a confidence/credible interval. See the references below for details.

AT can also calculate the effect that a continuous/discrete endogenous variable has on a binary outcome. In this case the effect will depend on the unit increment chosen (as shown by the plot produced).

Value

tes It returns three values: lower confidence interval limit, estimated AT and upper interval limit.

prob.lev Probability level used.

sim.AT It returns a vector containing simulated values of the average treatment effect. This is used to calculate intervals.

Effects For the case of continuous/discrete endogenous variable and binary outcome, it returns a matrix made up of three columns containing the effects for each incremental value in the endogenous variable and respective intervals.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

GJRM-package, gjrm
AT2

Average treatment effect from a two-part model

Description

AT2 can be used to calculate the sample average treatment effect from a two-part model, with corresponding interval obtained using posterior simulation.

Usage

```r
AT2(x1, x2, index1, index2, n.sim = 100, prob.lev = 0.05,
    hd.plot = FALSE,
    main = "Histogram and Kernel Density of Simulated Average Effects",
    xlab = "Simulated Average Effects", ...)
```

Arguments

- `x1`: A fitted `gjrm` object.
- `x2`: A fitted `gjrm` object.
- `index1`: This is useful to pick a particular individual.
- `index2`: As above.
- `n.sim`: Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when `delta = FALSE`. It may be increased if more precision is required.
- `prob.lev`: Overall probability of the left and right tails of the AT distribution used for interval calculations.
- `hd.plot`: If `TRUE` then a plot of the histogram and kernel density estimate of the simulated average effects is produced.
- `main`: Title for the plot.
- `xlab`: Title for the x axis.
- `...`: Other graphics parameters to pass on to plotting commands. These are used only when `hd.plot = TRUE`.

Details

AT measures the sample average effect from a two-part model when a binary response (associated with a continuous outcome) takes values 0 and 1. Posterior simulation is used to obtain a confidence/credible interval.

WARNINGS

This function is only suitable for binary models.
BCDF

Internal Function

Description

It evaluates the cdf of several copulae.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bcont

Internal Function

Description

This and other similar internal functions provide the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with continuous margins are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bdiscrcont

Internal Function

Description

This and other similar internal functions provide the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with discrete and continuous margins are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
bdiscrdiscr
Internal Function

Description

This and other similar internal functions provide the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with discrete margins are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bprobghs
Internal Function

Description

It provides the log-likelihood, gradient and observed/Fisher information matrix for penalized/unpenalized maximum likelihood optimization when copula models with binary outcomes are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bprobghsCont
Internal Function

Description

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with binary and continuous margins are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
bprobgHsContSS

Internal Function

Description

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula sample selection models with continuous margins are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bprobgHsContUniv

Internal Function

Description

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when fitting univariate models with discrete/continuous response.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bprobgHsDiscr1

Internal Function

Description

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula models with binary and discrete margins are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
bprobgHsDiscrSS
Internal Function

Description

It provides the log-likelihood, gradient and observed information matrix for penalized/unpenalized maximum likelihood optimization when copula sample selection models with discrete margins are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bprobgHsPO
Internal Function

Description

It provides the log-likelihood, gradient and observed or expected information matrix for penalized/unpenalized maximum likelihood optimization when bivariate probit models with partial observability are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

bprobgHsSS
Internal Function

Description

It provides the log-likelihood, gradient and observed/Fisher information matrix for penalized/unpenalized maximum likelihood optimization when copula sample selection models with binary outcomes are employed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
conv.check

Some convergence diagnostics

Description

It takes a fitted model object and produces some diagnostic information about the fitting procedure.

Usage

conv.check(x)

Arguments

x gjrm object.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gamlss, gjrm

copgHs

Internal Function

Description

This and other similar internal functions evaluate the first and second derivatives with respect to the margins and association parameter of several copulae.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
CopulaCLM

Description

Internal fitting and set up function.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

copulaSampleSel

Description

Internal fitting and set up function.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

cv.inform

Description

cv.inform carries out cross validation to help choosing the set of informative covariates.

Usage

```
cv.inform(x, K = 5, data, informative = "yes")
```

Arguments

- `x`: A fitted gamlss object as produced by the respective fitting function.
- `K`: No. of folds.
- `data`: Data.
- `informative`: If no then cv is carried out for the case of no informative censoring. This is useful for comparison purposes.
Details

cv.inform carries out cross validation to help choosing the set of informative covariates.

Value

s1 Overall sum of predicted likelihood contributions.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

GJRM-package.gamlss

distrHs
Internal Function

Description

This and other similar internal functions evaluate the margins’ derivatives needed in the likelihood function for the binary, discrete and continuous cases.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

eta.tr
Internal Function

Description

This and other similar internal functions map certain key quantities into a feasible parameter space.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
g.tri

Internal Function

Description

This and other similar internal functions calculate the score for trivariate binary models.

Author(s)

Author: Panagiota Filippou
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

gamlss

Generalised Additive Models for Location, Scale and Shape

Description

gamlss fits flexible univariate regression models with several continuous and discrete distributions, and types of covariate effects. The purpose of this function was only to provide, in some cases, starting values for the simultaneous models in the package, but it has now been made available in the form of a proper function should the user wish to fit univariate models using the general estimation approach of this package. The distributions implemented here have been parametrised according to Rigby and Stasinopoulos (2005).

Usage

```r
gamlss(formula, data = list(), weights = NULL, subset = NULL, margin = "N", surv = FALSE, cens = NULL, robust = FALSE, rc = 3, IB = NULL, uB = NULL, infl.fac = 1, rinit = 1, rmax = 100, iterlimsp = 50, tolsp = 1e-07, gc.l = FALSE, parscale, extra.regI = "t", gev.par = -0.25, chunk.size = 10000, k.tvc = 0, knots = NULL, informative = "no", inform.cov = NULL, margin2 = "PH", fp = FALSE, sp = NULL, drop.unused.levels = TRUE)
```

Arguments

- **formula**: List of equations. This should contain one or more equations.
- **data**: An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `gamlss` is called.
- **weights**: Optional vector of prior weights to be used in fitting.
subset

Optional vector specifying a subset of observations to be used in the fitting process.

margin

Possible distributions are normal ("N"), normal where sigma2 corresponds to the standard deviation instead of the variance ("N2"), log-normal ("LN"), Gumbel ("GU"), reverse Gumbel ("rGU"), logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK", also known as log-logistic distribution), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NBI"), negative binomial - type II ("NBII"), Poisson inverse Gaussian ("PIG"), generalised extreme value link function ("GEVlink", this is used for binary responses and is more stable and faster than the R package bgeva).

surv

If TRUE then a survival model is fitted. Here margin can be "PH" (generalised proportional hazards), "PO" (generalised proportional odds), "probit" (generalised probit).

cens

Binary censoring indicator. This is required when surv = TRUE. This variable has to be equal to 1 if the event occurred and 0 otherwise.

robust

If TRUE then the robust version of the model is fitted.

rc

Robust constant.

lb, ub

Bounds for integral in robust case.

infl.fac

Inflation factor for the model degrees of freedom in the approximate AIC. Smoother models can be obtained setting this parameter to a value greater than 1.

rinit

Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds.

rmax

Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.

iterlimsp

A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.

tolsp

Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter estimation is used.

gc.1

This is relevant when working with big datasets. If TRUE then the garbage collector is called more often than it is usually done. This keeps the memory footprint down but it will slow down the routine.

parscale

The algorithm will operate as if optimizing objfun(x / parscale, ...) where parscale is a scalar. If missing then no rescaling is done. See the documentation of trust for more details.

extra.regI

If "t" then regularization as from trust is applied to the information matrix if needed. If different from "t" then extra regularization is applied via the options "pC" (pivoted Choleski - this will only work when the information matrix is semi-positive or positive definite) and "sED" (symmetric eigen-decomposition).

gev.par

GEV link parameter.

chunk.size

This is used for discrete robust models.

k.tvc

Only used for tvc ps smoothers when using survival models.

knots

Optional list containing user specified knot values to be used for basis construction.
informative If "yes" then informative censoring is assumed when using a survival model.
inform.cov If above is "yes" then a set of informative covariates must be provided.
margin2 In the informative survival case, the margin for the censored equation can be different from that of the survival equation.
fp If TRUE then a fully parametric model with unpenalised regression splines if fitted.
sp A vector of smoothing parameters can be provided here. Smoothing parameters must be supplied in the order that the smooth terms appear in the model equation(s).
drop.unused.levels By default unused levels are dropped from factors before fitting. For some smooths involving factor variables this may have to be turned off (only use if you know what you are doing).

Details

The underlying algorithm is described in ?gjrm.

There are many continuous/discrete distributions to choose from and we plan to include more options. Get in touch if you are interested in a particular distribution.

The "GEYlink" option is used for binary response additive models and is more stable and faster than the R package bgeva. This model has been incorporated into this package to take advantage of the richer set of smoother choices, and of the estimation approach. Details on the model can be found in Calabrese, Marra and Osmetti (2016).

Value

The function returns an object of class gamlss as described in gamlssObject.

WARNINGS

Convergence can be checked using conv.check which provides some information about the score and information matrix associated with the fitted model. The former should be close to 0 and the latter positive definite. gamlss() will produce some warnings if there is a convergence issue.

Convergence failure may sometimes occur. This is not necessarily a bad thing as it may indicate specific problems with a fitted model. In such a situation, the user may use some extra regularisation (see extra.reg1) and/or rescaling (see parscale). However, the user should especially consider re-specifying/simplifying the model, and/or checking that the chosen distribution fits the response well. In our experience, we found that convergence failure typically occurs when the model has been misspecified and/or the sample size is low compared to the complexity of the model. It is also worth bearing in mind that the use of three parameter distributions requires the data to be more informative than a situation in which two parameter distributions are used instead.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
References

See Also

`gjrm`-package, `gamlss`-object, `conv.check`, `summary.gamlss`

Examples

```r
## Not run:
library(gJRM)
set.seed(0)
n <- 400
x1 <- round(runif(n))
x2 <- runif(n)
x3 <- runif(n)
f1 <- function(x) cos(pi*x) + sin(pi*x)
y1 <- -1.55 + 2*x1 + f1(x2) + rnorm(n)
dataSim <- data.frame(y1, x1, x2, x3)
resp.check(y1, "N")

eq.mu <- y1 ~ x1 + s(x2) + s(x3)
eq.s2 <- ~ s(x3)
fl <- list(eq.mu, eq.s2)
out <- gamlss(fl, data = dataSim)
conv.check(out)
post.check(out)
plot(out, eq = 1, scale = 0, pages = 1, seWithMean = TRUE)
plot(out, eq = 2, seWithMean = TRUE)
summary(out)
```
AIC(out)
BIC(out)

########################
Robust example
########################

eq.mu <- y1 ~ x1 + x2 + x3
fl <- list(eq.mu)
out <- gamlss(fl, data = dataSim, margin = "N", robust = TRUE,
rc = 3, lB = -Inf, uB = Inf)

conv.check(out)
summary(out)
rob.const(out, 100)

#

eq.s2 <- ~ x3
fl <- list(eq.mu, eq.s2)
out <- gamlss(fl, data = dataSim, margin = "N", robust = TRUE)

conv.check(out)
summary(out)

#

eq.mu <- y1 ~ x1 + s(x2) + s(x3)
eq.s2 <- ~ s(x3)
fl <- list(eq.mu, eq.s2)
out1 <- gamlss(fl, data = dataSim, margin = "N", robust = TRUE)

conv.check(out1)
summary(out1)
AIC(out, out1)

plot(out1, eq = 1, all.terms = TRUE, pages = 1, seWithMean = TRUE)
plot(out1, eq = 2, seWithMean = TRUE)

##
GEV link binary example
##
this incorporates the bgeva
model implemented in the bgeva package
however this implementation is more general
stable and efficient

set.seed(0)

n <- 400
x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x*exp(-30*(x-0.5)^2)

y <- ifelse(-3.55 + 2*x1 + f1(x2) + rnorm(n) > 0, 1, 0)

dataSim <- data.frame(y, x1, x2, x3)

out1 <- gamlss(list(y ~ x1 + x2 + x3), margin = "GEVlink", data = dataSim)
out2 <- gamlss(list(y ~ x1 + s(x2) + s(x3)), margin = "GEVlink", data = dataSim)

conv.check(out1)
conv.check(out2)
summary(out1)
summary(out2)
AIC(out1, out2)
BIC(out1, out2)

plot(out2, eq = 1, all.terms = TRUE, pages = 1, seWithMean = TRUE)

##
prediction of Pr
##

Calculate eta (that is, X*model.coef)
For a new data set the argument newdata should be used

eta <- predict(out2, eq = 1, type = "link")

extract gev tail parameter

gev.par <- out2$gev.par

multiply gev tail parameter by eta

gevpeta <- gev.par*eta

establish for which values the model is defined

gevpetaIND <- ifelse(gevpeta < -1, FALSE, TRUE)
gevpeta <- gevpara[gevpetaIND]

estimate probabilities

pr <- exp(-(1 + gevpara)^(-1/gev.par))

###
Flexible survival model example
###

library(GJRM)
Simulate proportional hazards data#

```r
set.seed(0)
n <- 2000
c <- runif(n, 3, 8)
U <- runif(n, 0, 1)
z1 <- rbinom(n, 1, 0.5)
z2 <- runif(n, 0, 1)
t <- rep(NA, n)

beta_0 <- -0.2357
beta_1 <- 1

f <- function(t, beta_0, beta_1, U, z1, z2){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  exp(-exp(log(-log(S_0)+beta_0*z1 + beta_1*z2)) - U)
}

for (i in 1:n){
  t[i] <- unirou(f(c(0, 8), tol = .Machine$double.eps*0.5,
              beta_0 = beta_0, beta_1 = beta_1, u = U[i],
              z1 = z1[i], z2 = z2[i], extendInt = "yes")$root
}

delta <- ifelse(t < c, 1, 0)
U <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(U, delta, z1, z2)
1-mean(delta) # average censoring rate

out <- gamlss(list(u ~ s(u, bs = "mpf") + z1 + s(z2)), data = dataSim,
              surv = TRUE, margin = "PH", cens = delta)
post.check(out)
summary(out)
AIC(out)
BIC(out)
plot(out, eq = 1, scale = 0, pages = 1)
hazsurv.plot(out, newdata = data.frame(z1 = 0, z2 = 0), shade = TRUE, n.sim = 1000)
hazsurv.plot(out, type = "hazard", newdata = data.frame(z1 = 0, z2 = 0),
              shade = TRUE, n.sim = 1000)

out1 <- gam(u ~ z1 + s(z2), family = cox.ph(),
           data = dataSim, weights = delta)
summary(out1)
# estimates of z1 and s(z2) are
# nearly identical between out and out1

# note that the Weibull is implemented as AFT
# as using the PH parametrisation makes
# computation unstable
```
```r
out2 <- gamlss(list(u - z1 + s(z2) ), data = dataSim, surv = TRUE,
              margin = "WEI", cens = delta)

# Simulate proportional odds data

set.seed(0)

n <- 2000
c <- runif(n, 4, 8)
u <- runif(n, 0, 1)
z <- rbinom(n, 1, 0.5)
beta_0 <- -1.05
t <- rep(NA, n)

f <- function(t, beta_0, u, z){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  1/(1 + exp(log((1-S_0)/S_0)+beta_0*z)) - u
}

for (i in 1:n){
  t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5,
                 beta_0 = beta_0, u = u[i], z = z[i],
                 extendInt="yes")$root
}

delta <- ifelse(t < c, 1, 0)
u <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(u, delta, z)
1-mean(delta) # average censoring rate

out <- gamlss(list(u ~ s(u, bs = "mpi") + z ), data = dataSim, surv = TRUE,
              margin = "PO", cens = delta)
post.check(out)
summary(out)
AIC(out)
BIC(out)
plot(out, eq = 1, scale = 0)
hazsurv.plot(out, newdata = data.frame(z =0), shade = TRUE, n.sim = 1000)
hazsurv.plot(out, type = "hazard", newdata = data.frame(z = 0),
              shade = TRUE, n.sim = 1000)

# note that the Fisk is implemented as AFT
# as using the PH parametrisation makes
# computation unstable
out1 <- gamlss(list(u - z), data = dataSim, surv = TRUE,
               margin = "FISK", cens = delta)

## End(Not run)
```
gamlssObject

Fitted gamlssObject object

Description

A fitted gamlss object returned by function `gamlss` and of class "gamlss" and "SemiParBIV".

Value

- **fit**
 List of values and diagnostics extracted from the output of the algorithm.

 - `gam1`, `gam2`, `gam3`
 Univariate starting values' fits.

- **coefficients**
 The coefficients of the fitted model.

- **weights**
 Prior weights used during model fitting.

- **sp**
 Estimated smoothing parameters of the smooth components.

- **iter.sp**
 Number of iterations performed for the smoothing parameter estimation step.

- **iter.if**
 Number of iterations performed in the initial step of the algorithm.

- **iter.inner**
 Number of iterations performed within the smoothing parameter estimation step.

- **n**
 Sample size.

- **X1**, **X2**, **X3**, ...
 Design matrices associated with the linear predictors.

- **X1.d2**, **X2.d2**, **X3.d2**, ...
 Number of columns of `X1`, `X2`, `X3`, etc.

- **l.sp1**, **l.sp2**, **l.sp3**, ...
 Number of smooth components in the equations.

- **He**
 Penalized -hessian/Fisher. This is the same as `HeSh` for unpenalized models.

- **HeSh**
 Unpenalized -hessian/Fisher.

- **Vb**
 Inverse of He. This corresponds to the Bayesian variance-covariance matrix used for confidence/credible interval calculations.

- **F**
 This is obtained multiplying `Vb` by `HeSh`.

- **t.edf**
 Total degrees of freedom of the estimated bivariate model. It is calculated as `sum(diag(F))`.

- **edf1**, **edf2**, **edf3**, ...
 Degrees of freedom for the model's equations.

- **wor.c**
 Working model quantities.

- **eta1**, **eta2**, **eta3**, ...
 Estimated linear predictors.

- **y1**
 Response.

- **logLik**
 Value of the (unpenalized) log-likelihood evaluated at the (penalized or unpenalized) parameter estimates.
Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gamlss, summary.gamlss

description

penalised network, work in progress.

Usage

ggmtrust(s, n, lambda = 1, pen = "lasso", params = NULL)

Arguments

s Sample covariance matrix.
n Sample size.
lambda Regularisation parameter.
pen Either "lasso" or "ridge".
params If different from null then these are taken as the starting values.

details

penalised network, work in progress.

value

The function returns an object of class ggmtrust.
Description

gjrm fits flexible joint models with binary/continuous/discrete/survival margins, with several types of covariate effects, copula and marginal distributions.

Usage

gjrm(formula, data = list(), weights = NULL, subset = NULL,
 BivD = "N", margins, Model, dof = 3, ordinal = FALSE,
 surv = FALSE, cens1 = NULL, cens2 = NULL,
 gamlssfit = FALSE, fp = FALSE, infl.fac = 1,
 rinit = 1, rmax = 100,
 iterlimsp = 50, tolsp = 1e-07,
 gc.1 = FALSE, parscale, extra.regI = "t",
 k1.tvc = 0, k2.tvc = 0, knots = NULL,
 penCor = "unpen", sp.penCor = 3,
 Chol = FALSE, gamma = 1, w.lasso = NULL,
 drop.unused.levels = TRUE)

Arguments

- **formula**: In the basic setup this will be a list of two (or three) formulas, one for equation 1, the other for equation 2 and another one for equation 3 if a trivariate model is fitted to the data. Otherwise, more equations can be used depending on the number of distributional parameters. s terms are used to specify smooth functions of predictors; see the documentation of mgcv for further details on formula specifications. Note that if a selection model is employed (that is, Model = "BSS" or Model = "TSS") then the first formula (and the second as well for trivariate models) MUST refer to the selection equation(s). When one outcome is binary and the other continuous/discrete then the first equation should refer to the binary outcome whereas the second to the continuous/discrete one. When one outcome is discrete and the other continuous then the first equation has to be the discrete one.

- **data**: An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which gjrm is called.

- **weights**: Optional vector of prior weights to be used in fitting.

- **subset**: Optional vector specifying a subset of observations to be used in the fitting process.

- **margins**: It indicates the distributions used for the two or three margins. Possible distributions are normal ("N"), normal where sigma2 corresponds to the standard deviation instead of the variance ("N2"), log-normal ("LN"), Gumbel ("GU"), reverse
Gumbel ("rGU"), logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK"), also known as log-logistic distribution), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NBI"), negative binomial - type II ("NBII"), Poisson inverse Gaussian ("PIG"). If the responses are binary then possible link functions are "probit", "logit", "cloglog". For survival models, the margins can be proportional hazards ("PH"), odds ("PO") or "probit".

Model Possible values are "B" (bivariate model), "T" (trivariate model) "BSS" (bivariate model with non-random sample selection), "TSS" (trivariate model with double non-random sample selection), "TESS" (trivariate model with endogeneity and non-random sample selection), "BPO" (bivariate model with partial observability) and "BPO0" (bivariate model with partial observability and zero correlation). Options "T", "TESS" and "TSS" are currently for trivariate binary models only. "BPO" and "BPO0" are for bivariate binary models only.

dof If BivD = "T" then the degrees of freedom can be set to a value greater than 2 and smaller than 249. Only for continuous margins, this will be taken as a starting value and the dof estimated from the data.

ordinal If TRUE then the ordinal model is employed.

surv If TRUE then a bivariate survival model is fitted.

cens1 Binary censoring indicator 1. This is required when surv = TRUE. This variable has to be equal to 1 if the event occurred and 0 otherwise.

cens2 Binary censoring indicator 2. This is required when surv = TRUE.

gamlssfit If gamlssfit = TRUE then gamlss univariate models are also fitted. This is useful for obtaining starting values, for instance.

BivD Type of bivariate error distribution employed. Possible choices are "N", "C0", "C90", "C180", "C270", "J0", "J90", "J180", "J270", "G0", "G90", "G180", "G270", "F", "AMH", "FGM", "T", "PL", "HO" which stand for bivariate normal, Clayton, rotated Clayton (90 degrees), survival Clayton, rotated Clayton (270 degrees), Joe, rotated Joe (90 degrees), survival Joe, rotated Joe (270 degrees), Gumbel, rotated Gumbel (90 degrees), survival Gumbel, rotated Gumbel (270 degrees), Frank, Ali-Mikhail-Haq, Farlie-Gumbel-Morgenstern, Student-t with dof, Plackett, Hougaard. Each of the Clayton, Joe and Gumbel copulae is allowed to be mixed with a rotated version of the same family. The options are: "C0C90", "C0C270", "C180C90", "C180C270", "G0G90", "G0G270", "G180G90", "G180G270", "J0J90", "J0J270", "J180J90" and "J180J270". This allows the user to model negative and positive tail dependencies.

fp If TRUE then a fully parametric model with unpenalised regression splines if fitted. See the Example 2 below.

infl.fact Inflation factor for the model degrees of freedom in the approximate AIC. Smoother models can be obtained setting this parameter to a value greater than 1.

rinit Starting trust region radius. The trust region radius is adjusted as the algorithm proceeds. See the documentation of trust for further details.

rmax Maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest descent path.
iterlimsp A positive integer specifying the maximum number of loops to be performed before the smoothing parameter estimation step is terminated.

tolsp Tolerance to use in judging convergence of the algorithm when automatic smoothing parameter estimation is used.

gc.1 This is relevant when working with big datasets. If TRUE then the garbage collector is called more often than it is usually done. This keeps the memory footprint down but it will slow down the routine.

parscale The algorithm will operate as if optimizing objfun(x / parscale, ...) where parscale is a scalar. If missing then no rescaling is done. See the documentation of trust for more details.

extra.regI If "t" then regularization as from trust is applied to the information matrix if needed. If different from "t" then extra regularization is applied via the options "pC" (pivoted Choleski - this will only work when the information matrix is semi-positive or positive definite) and "sED" (symmetric eigen-decomposition).

k1.tvc, k2.tvc Only used for tvc ps smoothers when using survival models.

knots Optional list containing user specified knot values to be used for basis construction.

penCor This and the arguments below are only for trivariate binary models. Type of penalty for correlation coefficients. Possible values are "unpen", "lasso", "ridge", "alasso".

sp.penCor Starting value for smoothing parameter of penCor.

Chol If TRUE then the Cholesky method instead of the eigenvalue method is employed for the correlation matrix.

gamma Inflation factor used only for the alasso penalty.

w.alasso When using the alasso penalty a weight vector made up of three values must be provided.

drop.unused.levels By default unused levels are dropped from factors before fitting. For some smooths involving factor variables this may have to be turned off (only use if you know what you are doing).

Details

The joint models considered by this function consist of two or three model equations which depend on flexible linear predictors and whose dependence between the responses is modelled through one or more parameters of a chosen multivariate distribution. The additive predictors of the equations are flexibly specified using parametric components and smooth functions of covariates. The same can be done for the dependence parameter(s) if it makes sense. Estimation is achieved within a penalized likelihood framework with integrated automatic multiple smoothing parameter selection. The use of penalty matrices allows for the suppression of that part of smooth term complexity which has no support from the data. The trade-off between smoothness and fitness is controlled by smoothing parameters associated with the penalty matrices. Smoothing parameters are chosen to minimise an approximate AIC.

For sample selection models, if there are factors in the model then before fitting the user has to ensure that the numbers of factor variables’ levels in the selected sample are the same as those in
the complete dataset. Even if a model could be fitted in such a situation, the model may produce fits which are not coherent with the nature of the correction sought. As an example consider the situation in which the complete dataset contains a factor variable with five levels and that only three of them appear in the selected sample. For the outcome equation (which is the one of interest) only three levels of such variable exist in the population, but their effects will be corrected for non-random selection using a selection equation in which five levels exist instead. Having differing numbers of factors’ levels between complete and selected samples will also make prediction not feasible (an aspect which may be particularly important for selection models); clearly it is not possible to predict the response of interest for the missing entries using a dataset that contains all levels of a factor variable but using an outcome model estimated using a subset of these levels.

There are many continuous/discrete/survival distributions and copula functions to choose from and we plan to include more options. Get in touch if you are interested in a particular distribution.

Value

The function returns an object of class \texttt{gjrm} as described in \texttt{gjrmObject}.

WARNINGS

Convergence can be checked using \texttt{conv.check} which provides some information about the score and information matrix associated with the fitted model. The former should be close to 0 and the latter positive definite. \texttt{gjrm()} will produce some warnings if there is a convergence issue.

Convergence failure may sometimes occur. This is not necessarily a bad thing as it may indicate specific problems with a fitted model. In such a situation, the user may use some extra regularisation (see \texttt{extra.regI}) and/or rescaling (see \texttt{parscale}). Using \texttt{gamlssfit = TRUE} is typically more effective than the first two options as this will provide better calibrated starting values as compared to those obtained from the default starting value procedure. The default option is, however, \texttt{gamlssfit = FALSE} only because it tends to be computationally cheaper and because the default procedure has typically been found to do a satisfactory job in most cases. (The results obtained when using \texttt{gamlssfit = FALSE} and \texttt{gamlssfit = TRUE} could also be compared to check if starting values make any difference.)

The above suggestions may help, especially the latter option. However, the user should also consider re-specifying/simplifying the model, and/or using a different dependence structure and/or checking that the chosen marginal distributions fit the responses well. In our experience, we found that convergence failure typically occurs when the model has been misspecified and/or the sample size is low compared to the complexity of the model. Examples of misspecification include using a Clayton copula rotated by 90 degrees when a positive association between the margins is present instead, using marginal distributions that do not fit the responses, and employing a copula which does not accommodate the type and/or strength of the dependence between the margins (e.g., using AMH when the association between the margins is strong). When using smooth functions, if the covariate’s values are too sparse then convergence may be affected by this. It is also worth bearing in mind that the use of three parameter marginal distributions requires the data to be more informative than a situation in which two parameter distributions are used instead.

In the contexts of endogeneity and non-random sample selection, extra attention is required when specifying the dependence parameter as a function of covariates. This is because in these situations the dependence parameter mainly models the association between the unobserved confounders in the two equations. Therefore, this option would make sense when it is believed that the strength of the association between the unobservables in the two equations varies based on some grouping
factor or across geographical areas, for instance. In any case, a clear rationale is typically needed in such cases.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See help("GJRM-package").

See Also

adjCov, VuongClarke, GJRM-package, gjrmObject, conv.check, summary.gjrm

Examples

library(GJRM)

JOINT MODELS WITH BINARY MARGINS
set.seed(1)

n <- 400
Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0, 2), Sigma)
x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)
f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x*exp(-30*(x-0.5)^2)
y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)
dataSim <- data.frame(y1, y2, x1, x2, x3)

out <- gjrm(list(y1 ~ x1 + x2 + x3,
```r
y2 ~ x1 + x2 + x3,
data = dataSim,
margins = c("probit", "probit"),
Model = "B"

conv.check(out)
summary(out)
AIC(out)
BIC(out)

## Not run:

## BIVARIATE PROBIT with Splines

out <- gjrm(list(y1 ~ x1 + s(x2) + s(x3),
y2 ~ x1 + s(x2) + s(x3)),
data = dataSim,
margins = c("probit", "probit"),
Model = "B"

conv.check(out)
summary(out)
AIC(out)

## estimated smooth function plots – red lines are true curves

x2 <- sort(x2)
f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
f2.x2 <- f2(x2)[order(x2)] - mean(f2(x2))
f3.x3 <- rep(0, length(x3))

par(mfrow=c(2,2),mar=c(4.5,4.5,2,2))
plot(out, eq = 1, select = 1, seWithMean = TRUE, scale = 0)
lines(x2, f1.x2, col = "red")
plot(out, eq = 1, select = 2, seWithMean = TRUE, scale = 0)
lines(x3, f3.x3, col = "red")
plot(out, eq = 2, select = 1, seWithMean = TRUE, scale = 0)
lines(x2, f2.x2, col = "red")
plot(out, eq = 2, select = 2, seWithMean = TRUE, scale = 0)
lines(x3, f3.x3, col = "red")

## BIVARIATE PROBIT with Splines and
## varying dependence parameter

eq.mu.1 <- y1 ~ x1 + s(x2)
eq.mu.2 <- y2 ~ x1 + s(x2)
eq.theta <- ~ x1 + s(x2)

f1 <- list(eq.mu.1, eq.mu.2, eq.theta)

outD <- gjrm(f1, data = dataSim,
margins = c("probit", "probit"),
```

Model = "B"

conv.check(outD)
summary(outD)
outD$theta

plot(outD, eq = 1, seWithMean = TRUE)
plot(outD, eq = 2, seWithMean = TRUE)
plot(outD, eq = 3, seWithMean = TRUE)
graphics.off()

Example 2
Generate data with one endogenous variable
and exclusion restriction

set.seed(0)
n <- 400
Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0,2), Sigma)

cov <- rMVN(n, rep(0,2), Sigma)
cov <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1 <- function(x) cos(pi*x)+x
f2 <- function(x) x*exp(-30*(x-0.5)^2)

y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*y1 + f2(x2) + u[,2] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

Testing the hypothesis of absence of endogeneity...

LM.bpm(list(y1 - x1 + s(x2), y2 - y1 + s(x2)), dataSim, Model = "B")

CLASSIC RECURSIVE BIVARIATE PROBIT

out <- gjrm(list(y1 - x1 + x2,
y2 - y1 + x2),
data = dataSim,
margins = c("probit", "probit"),
Model = "B")
conv.check(out)
summary(out)
AIC(out); BIC(out)
FLEXIBLE RECURSIVE BIVARIATE PROBIT

```r
gjrm(list(y1 ~ x1 + s(x2),
        y2 ~ y1 + s(x2)),
data = dataSim,
margins = c("probit", "probit"),
Model = "B")
```

```r
conv.check(out)
summary(out)
AIC(out); BIC(out)
```

Testing the hypothesis of absence of endogeneity post estimation...

gt.bpm(out)

treatment effect, risk ratio and odds ratio with CIs

```r
mb(y1, y2, Model = "B")
AT(out, nm.end = "y1", hd.plot = TRUE)
RR(out, nm.end = "y1")
OR(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")
re.imp <- imputeCounter(out, m = 10, "y1")
re.imp$AT
```

Try a Clayton copula model...

```r
outC <- gjrm(list(y1 ~ x1 + s(x2),
                  y2 ~ y1 + s(x2)),
data = dataSim, BivD = "C0",
margins = c("probit", "probit"),
Model = "B")
```

```r
conv.check(outC)
summary(outC)
AT(outC, nm.end = "y1")
re.imp <- imputeCounter(outC, m = 10, "y1")
re.imp$AT
```

Try a Joe copula model...

```r
outJ <- gjrm(list(y1 ~ x1 + s(x2),
                  y2 ~ y1 + s(x2)),
data = dataSim, BivD = "J0",
margins = c("probit", "probit"),
Model = "B")
```

```r
conv.check(outJ)
summary(outJ)
AT(outJ, "y1")
re.imp <- imputeCounter(outJ, m = 10, "y1")
re.imp$AT
```
VuongClarke(out, outJ)

recursive bivariate probit modelling with unpenalized splines
can be achieved as follows

outFP <- gjrm(list(y1 ~ x1 + s(x2, bs = "cr", k = 5),
y2 ~ y1 + s(x2, bs = "cr", k = 6)),
fp = TRUE, data = dataSim,
margins = c("probit", "probit"),
Model = "B")

conv.check(outFP)
summary(outFP)

in the above examples a third equation could be introduced
as illustrated in Example 1

#
#################
See also _meps
#################

#################
Example 3
#################
Generate data with a non-random sample selection mechanism
and exclusion restriction

set.seed(0)
n <- 2000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rmVN(n, rep(0, 2), Sigma)
SigmaC <- matrix(0.5, 3, 3); diag(SigmaC) <- 1
cov <- rmVN(n, rep(0, 3), SigmaC)
cov <- pnorm(cov)
bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]

f11 <- function(x) -0.7*(4*x + 2.5*x*x2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*(-0.3 - 1.6*x + sin(5*x))
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x))

ys <- 0.58 + 2.5*bi + f11(x1) + f12(x2) + u[, 1] > 0
y <- -0.68 - 1.5*bi + f21(x1) + u[, 2] > 0
yo <- y*(ys > 0)

dataSim <- data.frame(y, ys, yo, bi, x1, x2)

Testing the hypothesis of absence of non-random sample selection...
LM.bpm(list(ys ~ bi + s(x1) + s(x2), yo ~ bi + s(x1)), dataSim, Model = "BSS")

p-value suggests presence of sample selection, hence fit a bivariate model

SEMIPARAMETRIC SAMPLE SELECTION BIVARIATE PROBIT
the first equation MUST be the selection equation

out <- gjrm(list(ys ~ bi + s(x1) + s(x2),
 yo ~ bi + s(x1)),
 data = dataSim, Model = "BSS",
 margins = c("probit", "probit"))
conv.check(out)
gt.bpm(out)

compare the two summary outputs
the second output produces a summary of the results obtained when
selection bias is not accounted for

summary(out)
summary(out$gam2)

corrected predicted probability that 'yo' is equal to 1

mb(ys, yo, Model = "BSS")
prev(out, hd.plot = TRUE)
prev(out, type = "univariate", hd.plot = TRUE)

estimated smooth function plots
the red line is the true curve
the blue line is the univariate model curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.xl <- f21(x1.s)[order(x1.s)]-mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1.65,0.95)); lines(x1.s, f21.xl, col="red")
par(new = TRUE)
plot(out$gam2, se = FALSE, col = "blue", ylim = c(-1.65,0.95),
 ylab = "", rug = FALSE)

try a Clayton copula model...

outC <- gjrm(list(ys ~ bi + s(x1) + s(x2),
 yo ~ bi + s(x1)),
 data = dataSim, Model = "BSS", BivD = "C0",
 margins = c("probit", "probit"))
conv.check(outC)
summary(outC)
prev(outC)
Impute using MICE

```r
library(mice)

ys <- dataSim$ys

dataSim$yo[dataSim$ys == FALSE] <- NA
dataSim <- dataSim[, -c(1:2)]

imp <- mice(dataSim, m = 1, method = c("copulaSS", "", "", ""),
  mice.formula = outFile$mice.formula, margins = outFile$margins,
  BivD = outFile$BivD, maxit = 1)

comp.yo <- dataSim$yo
cmp.yo[ys == 0] <- imp$imp$yo[[1]]
mean(comp.yo)
```

See also ?hiv

Example 4

Generate data with partial observability

```r
set.seed(0)

n <- 10000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rmvn(n, rep(0, 2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

y1 <- ifelse(-1.55 + 2*x1 + x2 + u[,1] > 0, 1, 0)
y2 <- ifelse(0.45 - x3 + u[,2] > 0, 1, 0)
y <- y1*y2

dataSim <- data.frame(y, x1, x2, x3)

## BIVARIATE PROBIT with Partial Observability

out <- gjrm(list(y ~ x1 + x2,
  y ~ x3),
  data = dataSim, Model = "BPO",
  margins = c("probit", "probit"))

conv.check(out)
```
summary(out)

first ten estimated probabilities for the four events from object out
cbind(out$p11, out$p10, out$p00, out$p01)[1:10,]

case with smooth function
(more computationally intensive)
f1 <- function(x) cos(pi*x) + sin(pi*x)
y1 <- ifelse(-1.55 + 2*x1 + f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(0.45 - x3 + u[,2] > 0, 1, 0)
y <- y1*y2
dataSim <- data.frame(y, x1, x2, x3)

out <- gjrm(list(y ~ x1 + s(x2), y ~ x3),
 data = dataSim, Model = "BPO",
 margins = c("probit", "probit"))

conv.check(out)
summary(out)

plot estimated and true functions
x2 <- sort(x2); f1.x2 <- f1(x2)[order(x2)] - mean(f1(x2))
plot(out, eq = 1, scale = 0); lines(x2, f1.x2, col = "red")

See also ?war

Joint models with binary and/or continuous margins

library(GJRM)

Example 5
Generate data

Correlation between the two equations 0.5 - Sample size 400

```r
set.seed(0)

n <- 400

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0,2), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1 <- function(x) cos(pi * 2 * x) + sin(pi * x)
f2 <- function(x) x * exp(-30 * (x - 0.5)^2)

y1 <- -1.55 - 2 * x1 + f1(x2) + u[,1]
y2 <- -0.25 - 1.25 * x1 + f2(x2) + u[,2]

dataSim <- data.frame(y1, y2, x1, x2, x3)

resp.check(y1, "N")
resp.check(y2, "N")

eq.mu.1 <- y1 ~ x1 + s(x2) + s(x3)
eq.mu.2 <- y2 ~ x1 + s(x2) + s(x3)
eq.sigma2.1 <- ~ 1
eq.sigma2.2 <- ~ 1
eq.theta <- ~ x1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2.1, eq.sigma2.2, eq.theta)

# the order above is the one to follow when
# using more than two equations

out <- gjrm(fl, data = dataSim, margins = c("N", "N"),
            Model = "B")

conv.check(out)
post.check(out)
summary(out)
AIC(out)
BIC(out)
jc.probs(out, 1.4, 2.3, intervals = TRUE)[1:4,]
```

Example 6

Generate data with one endogenous binary variable
and continuous outcome

```r
set.seed(0)

n <- 1000
```
Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0, 2), Sigma)

cov <- rMVN(n, rep(0, 2), Sigma)
cov <- pnorm(cov)
x1 <- round(cov[, 1]); x2 <- cov[, 2]

f1 <- function(x) cos(pi * 2 * x) + sin(pi * x)
f2 <- function(x) x + exp(-30 * (x - 0.5)^2)

y1 <- ifelse(-1.55 + 2 * x1 + f1(x2) + u[, 1] > 0, 1, 0)
y2 <- -0.25 - 1.25 * y1 + f2(x2) + u[, 2]

dataSim <- data.frame(y1, y2, x1, x2)

RECURSIVE Model
rc <- resp.check(y2, margin = "N", print.par = TRUE, loglik = TRUE)
AIC(rc); BIC(rc)

out <- gjrm(list(y1 ~ x1 + x2,
 y2 ~ y1 + x2),
 data = dataSim, margins = c("probit","N"),
 Model = "B")
conv.check(out)
summary(out)
post.check(out)

SEMIPARAMETRIC RECURSIVE Model

eq.mu.1 <- y1 ~ x1 + s(x2)
eq.mu.2 <- y2 ~ y1 + s(x2)
eq.sigma2 <- ~ 1
eq.theta <- ~ 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2, eq.theta)

out <- gjrm(fl, data = dataSim,
 margins = c("probit","N"), gamlssfit = TRUE,
 Model = "B")
conv.check(out)
summary(out)
post.check(out)
jc.probs(out, 1, 1.5, intervals = TRUE)[1:4,]
AT(out, mm.end = "y1")
AT(out, mm.end = "y1", type = "univariate")

#
#

############################
Example 7

Generate data with one endogenous continuous exposure and binary outcome

```r
set.seed(0)

n <- 1000

Sigma <- matrix(0.5, 2, 2); diag(Sigma) <- 1
u <- rMVN(n, rep(0,2), Sigma)

cov <- rMVN(n, rep(0,2), Sigma)
cov <- pnorm(cov)
x1 <- round(cov[,1]); x2 <- cov[,2]

f1 <- function(x) cos(pi*x2*x1) + sin(pi*x1)
f2 <- function(x) x*exp(-30*(x-0.5)^2)

y1 <- -0.25 - 2*x1 + f2(x2) + u[,2]
y2 <- ifelse(-0.25 - 0.25*y1 + f1(x2) + u[,1] > 0, 1, 0)

dataSim <- data.frame(y1, y2, x1, x2)

eq.mu.1 <- y2 - y1 + s(x2)
eq.mu.2 <- y1 - x1 + s(x2)
eq.sigma2 <- ~ 1
eq.theta <- ~ 1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2, eq.theta)

out <- gjrm(fl, data = dataSim,
            margins = c("probit","N"),
            Model = "B")

conv.check(out)
summary(out)
post.check(out)
AT(out, nm.end = "y1")
AT(out, nm.end = "y1", type = "univariate")
RR(out, nm.end = "y1", rr.plot = TRUE)
RR(out, nm.end = "y1", type = "univariate")
OR(out, nm.end = "y1", or.plot = TRUE)
OR(out, nm.end = "y1", type = "univariate")
```

Example 8

Survival models

```r
```
```r
set.seed(0)

n <- 2000
c <- runif(n, 3, 8)
u <- runif(n, 0, 1)
z1 <- rbinom(n, 1, 0.5)
z2 <- runif(n, 0, 1)
t <- rep(NA, n)

beta_0 <- -0.2357
beta_1 <- 1

f <- function(t, beta_0, beta_1, u, z1, z2){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  exp(-exp(log(-log(S_0))+beta_0*z1 + beta_1*z2)-u)
}

for (i in 1:n){
  t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5,
                  beta_0 = beta_0, beta_1 = beta_1, u = u[i],
                  z1 = z1[i], z2 = z2[i], extendInt = "yes" )$root
}

delta1 <- ifelse(t < c, 1, 0)
u1 <- apply(cbind(t, c), 1, min)
dataSim <- data.frame(u1, delta1, z1, z2)

c <- runif(n, 4, 8)
u <- runif(n, 0, 1)
z <- rbinom(n, 1, 0.5)
beta_0 <- -1.05
t <- rep(NA, n)

f <- function(t, beta_0, u, z){
  S_0 <- 0.7 * exp(-0.03*t^1.9) + 0.3*exp(-0.3*t^2.5)
  1/(1 + exp(log((1-S_0)/S_0)+beta_0*z))-u
}

for (i in 1:n){
  t[i] <- uniroot(f, c(0, 8), tol = .Machine$double.eps^0.5,
                  beta_0 = beta_0, u = u[i], z = z[i],
                  extendInt="yes" )$root
}

delta2 <- ifelse(t < c, 1, 0)
u2 <- apply(cbind(t, c), 1, min)
dataSim$delta2 <- delta2
dataSim$u2 <- u2
dataSim$z <- z
```

eq1 <- u1 ~ s(u1, bs = "mpI") + z1 + s(z2)
eq2 <- u2 ~ s(u2, bs = "mpI") + z
eq3 <- ~ s(z2)

out <- gjrm(list(eq1, eq2), data = dataSim, surv = TRUE,
margins = c("PH", "PO"),
cens1 = delta1, cens2 = delta2, Model = "B")

PH margin fit can also be compared with cox.ph from mgcv
conv.check(out)
res <- post.check(out)

martingale residuals
mr1 <- out$cens1 - res$qr1
mr2 <- out$cens2 - res$qr2

can be plotted against covariates
obs index, survival time, rank order of
surv times
to determine func form, one may use
res from null model against covariate

to test for PH, use:
library(survival)
fit <- coxph(Surv(u1, delta1) ~ z1 + z2, data = dataSim)
temp <- cox.zph(fit)
print(temp)
plot(temp, resid = FALSE)

summary(out)
AIC(out); BIC(out)
plot(out, eq = 1, scale = 0, pages = 1)
plot(out, eq = 2, scale = 0, pages = 1)

hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0),
 shade = TRUE, n.sim = 10000)
hazsurv.plot(out, eq = 1, newdata = data.frame(z1 = 0, z2 = 0),
 shade = TRUE, n.sim = 10000, type = "hazard")
hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0),
 shade = TRUE, n.sim = 10000)
hazsurv.plot(out, eq = 2, newdata = data.frame(z = 0),
 shade = TRUE, n.sim = 10000, type = "hazard")

jc.probs(out, type = "joint", intervals = TRUE)[1:5,]

newd0 <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1),
 z2 = mean(dataSim$z2),
```r
gjrm

u1 = mean(dataSim$u1) + 1, u2 = mean(dataSim$u2) + 1

ewd1$z <- 1

cj.probs(out, type = "joint", newdata = newd0, intervals = TRUE)
cj.probs(out, type = "joint", newdata = newd1, intervals = TRUE)

out1 <- gjrm(list(eq1, eq2, eq3), data = dataSim, surv = TRUE,
margins = c("PH", "PO"),
cens1 = delta1, cens2 = delta2, gammssfit = TRUE, Model = "B")

# note that Weibull is implemented as AFT model
out2 <- gjrm(list(eq1, eq2, 1, 1, eq3), data = dataSim, surv = TRUE,
margins = c("WEI", "WEI"),
cens1 = delta1, cens2 = delta2,
Model = "B")

# Joint continuous and survival outcomes
# work in progress
#
# eq1 <- z2 ~ z1
# eq2 <- u2 ~ s(u2, bs = "mpb") + z
# eq3 <- ~ s(z2)
# eq4 <- ~ s(z2)
#
# f.1 <- list(eq1, eq2, eq3, eq4)
#
# out3 <- gjrm(f.1, data = dataSim, surv = TRUE,
# margins = c("N", "PO"),
# cens1 = NULL, cens2 = delta2,
# gammssfit = TRUE, Model = "B")
#
# conv.check(out3)
# post.check(out3)
# summary(out3)
# AIC(out3); BIC(out3)
#
# plot(out3, eq = 2, scale = 0, pages = 1)
# plot(out3, eq = 3, scale = 0, pages = 1)
# plot(out3, eq = 4, scale = 0, pages = 1)
#
# newd <- newd1 <- data.frame(z = 0, z1 = mean(dataSim$z1),
# z2 = mean(dataSim$z2),
# u2 = mean(dataSim$u2) + 1)
#
# cj.probs(out3, y1 = 0.6, type = "joint", newdata = newd, intervals = TRUE)
```
library(GJRM)

###########
Example 9
###########
Generate data
Correlation between the two equations 0.5 - Sample size 400

set.seed(0)
n <- 400

Sigma <- matrix(0.5, 3, 3); diag(Sigma) <- 1
u <- rMVN(n, rep(0, 3), Sigma)

x1 <- round(runif(n)); x2 <- runif(n); x3 <- runif(n)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x*exp(-30*(x-0.5)^2)

y1 <- ifelse(-1.55 + 2*x1 - f1(x2) + u[,1] > 0, 1, 0)
y2 <- ifelse(-0.25 - 1.25*x1 + f2(x2) + u[,2] > 0, 1, 0)
y3 <- ifelse(-0.75 + 0.25*x1 + u[,3] > 0, 1, 0)

dataSim <- data.frame(y1, y2, y3, x1, x2)

f.1 <- list(y1 ~ x1 + s(x2),
y2 ~ x1 + s(x2),
y3 ~ x1)

out <- gjrm(f.1, data = dataSim, Model = "T",
 margins = c("probit", "probit", "probit"))
out1 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
 margins = c("probit", "probit", "probit"))

conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 2)
AIC(out)
BIC(out)
```r
out <- gjrm(f.1, data = dataSim, Model = "T",
           margins = c("probit", "logit", "cloglog"))
out1 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
            margins = c("probit", "logit", "cloglog"))
conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 2)
AIC(out)
BIC(out)

f.1 <- list(y1 ~ x1 + s(x2),
             y2 ~ x1 + s(x2),
             y3 ~ x1,
             ~ 1, ~ 1, ~ 1)
out1 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
            margins = c("probit", "probit", "probit"))

f.1 <- list(y1 ~ x1 + s(x2),
             y2 ~ x1 + s(x2),
             y3 ~ x1,
             ~ 1, ~ s(x2), ~ 1)
out2 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
            margins = c("probit", "probit", "probit"))

f.1 <- list(y1 ~ x1 + s(x2),
             y2 ~ x1 + s(x2),
             y3 ~ x1,
             ~ x1, ~ s(x2), ~ x1 + s(x2))
out2 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
            margins = c("probit", "probit", "probit"))

f.1 <- list(y1 ~ x1 + s(x2),
             y2 ~ x1 + s(x2),
             y3 ~ x1,
             ~ x1, ~ x1, ~ s(x2))
out2 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
            margins = c("probit", "probit", "probit"))

f.1 <- list(y1 ~ x1 + s(x2),
             y2 ~ x1 + s(x2),
             y3 ~ x1,
             ~ x1, ~ x1 + x2, ~ s(x2))
out2 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
            margins = c("probit", "probit", "probit"))

f.1 <- list(y1 ~ x1 + s(x2),
             y2 ~ x1 + s(x2),
             y3 ~ x1,
             ~ x1, ~ x1 + x2, ~ s(x2))
```
y2 ~ x1 + s(x2),
y3 ~ x1,
 - x1 + x2, - x1 + x2, - x1 + x2)

out2 <- gjrm(f.1, data = dataSim, Chol = TRUE, Model = "T",
margins = c("probit", "probit", "probit"))

jcres1 <- jc.probs(out2, 1, 1, 1, type = "joint", cond = 0,
 intervals = TRUE, n.sim = 100)

nw <- data.frame(x1 = 0, x2 = seq(0, 1, length.out = 100))

jcres2 <- jc.probs(out2, 1, 1, 1, newdata = nw, type = "joint",
 cond = 0, intervals = TRUE, n.sim = 100)

####################################
Example 10
####################################
Generate data
with double sample selection

set.seed(0)

n <- 5000

Sigma <- matrix(c(1, 0.5, 0.4,
 0.5, 1, 0.6,
 0.4, 0.6, 1), 3, 3)

u <- rMVN(n, rep(0,3), Sigma)

f1 <- function(x) cos(pi*2*x) + sin(pi*x)
f2 <- function(x) x*exp(-30*(x-0.5)^2)

x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
x4 <- runif(n)

y1 <- 1 + 1.5*x1 - x2 + 0.8*x3 - f1(x4) + u[, 1] > 0
y2 <- 1 - 2.5*x1 + 1.2*x2 + x3 + u[, 2] > 0
y3 <- 1.58 + 1.5*x1 - f2(x2) + u[, 3] > 0

dataSim <- data.frame(y1, y2, y3, x1, x2, x3, x4)

f.1 <- list(y1 ~ x1 + x2 + x3 + s(x4),
 y2 ~ x1 + x2 + x3,
 y3 ~ x1 + s(x2))

out <- gjrm(f.1, data = dataSim, Model = "TSS",
margins = c("probit", "probit", "probit"))

conv.check(out)
summary(out)
plot(out, eq = 1)
plot(out, eq = 3)
prev(out)
prev(out, type = "univariate")
prev(out, type = "naive")

End(Not run)

Not run:

Joint models with binary and continuous margins
with sample selection

library(gjrm)

Generate data
Correlation between the two equations and covariate correlation 0.5
Sample size 2000

set.seed(0)

n <- 2000
rh <- 0.5

sigmav <- matrix(c(1, rh, rh, 1), 2, 2)
u <- rMVN(n, rep(0,2), sigmav)

sigmac <- matrix(rh, 3, 3); diag(sigmac) <- 1
cov <- rMVN(n, rep(0,3), sigmac)

cov <- pnorm(cov)

bi <- round(cov[,1]); x1 <- cov[,2]; x2 <- cov[,3]

f11 <- function(x) -0.7*(4*x + 2.5*x^2 + 0.7*sin(5*x) + cos(7.5*x))
f12 <- function(x) -0.4*(-0.3 - 1.6*x + sin(5*x))
f21 <- function(x) 0.6*(exp(x) + sin(2.9*x))

ys <- 0.58 + 2.5*bi + f11(x1) + f12(x2) + u[,1] > 0
y <- -0.68 - 1.5*bi + f21(x1) + u[,2]
yo <- y*(ys > 0)
dataSim <- data.frame(ys, yo, bi, x1, x2)

CLASSIC SAMPLE SELECTION MODEL
the first equation MUST be the selection equation

resp.check(yo[ys > 0], "N")

out <- gjrm(list(ys ~ bi + x1 + x2,
 yo ~ bi + x1),
 data = dataSim, Model = "BSS",
 margins = c("probit", "N"))
conv.check(out)
post.check(out)
summary(out)
AIC(out)
BIC(out)

SEMIPARAMETRIC SAMPLE SELECTION MODEL

out <- gjrm(list(ys ~ bi + s(x1) + s(x2),
 yo ~ bi + s(x1)),
 data = dataSim, Model = "BSS",
 margins = c("probit", "N"))
conv.check(out)
post.check(out)
AIC(out)

compare the two summary outputs
the second output produces a summary of the results obtained when only
the outcome equation is fitted, i.e. selection bias is not accounted for

summary(out)
summary(out$gam2)

estimated smooth function plots
the red line is the true curve
the blue line is the naive curve not accounting for selection bias

x1.s <- sort(x1[dataSim$ys>0])
f21.x1 <- f21(x1.s)[order(x1.s)] - mean(f21(x1.s))

plot(out, eq = 2, ylim = c(-1, 0.8)); lines(x1.s, f21.x1, col = "red")
par(new = TRUE)
plot(out$gam2, se = FALSE, lty = 3, lwd = 2, ylim = c(-1, 0.8),
 ylab = "", rug = FALSE)

IMPUTE MISSING VALUES

n.m <- 10
res <- imputeSS(out, n.m)
bet <- NA

for(i in 1:n.m){

dataSim$yo[dataSim$ys == 0] <- res[[i]]

outg <- gamlss(list(yo ~ bi + s(x1)), data = dataSim)
bet[i] <- coef(outg)["bi"]
print(i)
}

mean(bet)

##

SEMIPARAMETRIC SAMPLE SELECTION MODEL with association
and dispersion parameters
depending on covariates as well

eq.mu.1 <- ys ~ bi + s(x1) + s(x2)
eq.mu.2 <- yo ~ bi + s(x1)
eq.sigma2 <- ~ bi
eq.theta <- ~ bi + x1

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2, eq.theta)

out <- gjrm(fl, data = dataSim, Model = "BSS",
 margins = c("probit", "N"))

conv.check(out)
post.check(out)
summary(out)
out$sigma2
out$theta

jc.probs(out, 0, 0.3, intervals = TRUE)[1:4,]

outC0 <- gjrm(fl, data = dataSim, BivD = "C0", Model = "BSS",
 margins = c("probit", "N"))

conv.check(outC0)
post.check(outC0)
AIC(out, outC0)
BIC(out, outC0)

IMPUTE MISSING VALUES

n.m <- 10
res <- imputeSS(outC0, n.m)

############################
or using MICE
############################
library(mice)
ys <- dataSim$ys

dataSim$yo[dataSim$ys == FALSE] <- NA
dataSim <- dataSim[, -1]

imp <- mice(dataSim, m = 1, method = c("copulaSS", ",", ",", ","),
mice.formula = outC0$mice.formula, margins = outC0$Margins,
BivD = outC0$BivD, maxit = 1)

comp.yo <- dataSim$yo
comp.yo[ys == 0] <- impimpyo[[1]]
mean(comp.yo)

#
example using Gumbel copula and normal-gamma margins
#
Example 12
set.seed(1)

y <- exp(-0.68 - 1.5*bi + f21(x1) + u[, 2])
yo <- y*(ys > 0)
dataSim <- data.frame(y, yo, bi, x1, x2)

out <- gjrm(list(y ~ bi + s(x1) + s(x2),
yo ~ bi + s(x1)),
data = dataSim, BivD = "G0",
margins = c("probit", "GA"),
Model = "BSS")
conv.check(out)
post.check(out)
summary(out)

ATE <- NA
n.m <- 10
res <- imputeSS(out, n.m)

for(i in 1:n.m){
dataSim$yo[dataSim$ys == 0] <- res[[i]]

outg <- gamlss(list(yo ~ bi + s(x1)), margin = "GA", data = dataSim)
out$gamlss <- outg
A fitted joint model returned by function \texttt{gjrm} and of class "\texttt{gjrm}", "\texttt{SemiParBIV}", "\texttt{SemiParTRIV}", etc.

Value

- \texttt{fit} List of values and diagnostics extracted from the output of the algorithm.
- \texttt{gam1} Univariate fit for equation 1. See the documentation of \texttt{mgcv} for full details.
 - \texttt{gam2}, \texttt{gam3}, ...
 Univariate fit for equation 2, equation 3, etc.
- \texttt{coefficients} The coefficients of the fitted model.
- \texttt{weights} Prior weights used during model fitting.
- \texttt{sp} Estimated smoothing parameters of the smooth components.
- \texttt{iter.sp} Number of iterations performed for the smoothing parameter estimation step.
- \texttt{iter.if} Number of iterations performed in the initial step of the algorithm.
- \texttt{iter.inner} Number of iterations performed within the smoothing parameter estimation step.
- \texttt{theta} Estimated dependence parameter linking the two equations.
- \texttt{n} Sample size.
- \texttt{X1}, \texttt{X2}, \texttt{X3}, ...
 Design matrices associated with the linear predictors.
- \texttt{X1.d2}, \texttt{X2.d2}, \texttt{X3.d2}, ...
 Number of columns of \texttt{X1}, \texttt{X2}, \texttt{X3}, etc.
- \texttt{1.sp1}, \texttt{1.sp2}, \texttt{1.sp3}, ...
 Number of smooth components in the equations.
- \texttt{He} Penalized \(-\text{hessian/Fisher}\). This is the same as \texttt{HeSh} for unpenalized models.
- \texttt{HeSh} Unpenalized \(-\text{hessian/Fisher}\).
- \texttt{Vb} Inverse of \texttt{He}. This corresponds to the Bayesian variance-covariance matrix used for confidence/credible interval calculations.
This is obtained multiplying Vb by HeSh.

Total degrees of freedom of the estimated bivariate model. It is calculated as sum(diag(F)).

Degrees of freedom for the two equations of the fitted bivariate model (and for the third and fourth equations if present. They are calculated when splines are used.

List of values and diagnostics extracted from magic in mgcv.

If TRUE then the smoothing parameter selection algorithm stopped before reaching the maximum number of iterations allowed.

Working model quantities.

Estimated linear predictors for the two equations (as well as the third and fourth equations if present).

Responses of the two equations.

Value of the (unpenalized) log-likelihood evaluated at the (penalized or unpenalized) parameter estimates.

List containing response vectors.

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm, summary.gjrm

gt.bpm

Description

gt.bpm can be used to test the hypothesis of absence of endogeneity, correlated model equations/errors or non-random sample selection in binary bivariate probit models.

Usage

gt.bpm(x)

Arguments

x A fitted gjrm object.
Details

The gradient test was first proposed by Terrell (2002) and it is based on classic likelihood theory. See Marra et al. (in press) for full details.

Value

It returns a numeric p-value corresponding to the null hypothesis that the correlation, \(\theta \), is equal to 0.

WARNINGS

This test’s implementation is only valid for bivariate binary probit models with normal errors.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

Examples

```r
## see examples for gjrm
```

<table>
<thead>
<tr>
<th>H.tri</th>
<th>Internal Function</th>
</tr>
</thead>
</table>

Description

This and other similar internal functions calculate the Hessian for trivariate binary models.

Author(s)

Author: Panagiota Filippou

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
hazsurv.plot

Hazard and survival plots

Description

This function produces either a survival or hazard plot.

Usage

hazsurv.plot(x, eq, newdata, type = "surv", intervals = TRUE,
 n.sim = 100, prob.lev = 0.05,
 shade = FALSE, ylim, ylab, xlab, ls = 100, ...)

Arguments

x A fitted gam1ss/gjrm object.

eq Equation number. This can be ignored for univariate models.

newdata A data frame or list containing the values of the model covariates at which predictions are required. This must have one row and must be provided.

type The plot to produce, either "surv" or "hazard".

intervals If TRUE then intervals are also produced.

n.sim Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used for interval calculations.

prob.lev Overall probability of the left and right tails of the probabilities' distributions used for interval calculations.

shade If TRUE then it produces shaded regions as confidence bands.

ylim, ylab, xlab Usual plot arguments.

ls Length of sequence to use for time variable.

Value

It produces a plot or set of plots.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
hiv

HIV Zambian data

Description

HIV Zambian data by region, together with polygons describing the regions’ shapes.

Usage

data(hiv)
data(hiv.polys)

Format

hiv is a 6416 row data frame with the following columns

- **hivconsent** binary variable indicating consent to test for HIV.
- **hiv** binary variable indicating whether an individual is HIV positive.
- **age** age in years.
- **education** years of education.
- **region** code identifying region, and matching names(hiv.polys). It can take nine possible values: 1 central, 2 copperbelt, 3 eastern, 4 luapula, 5 lusaka, 6 northwestern, 7 northern, 8 southern, 9 western.
- **marital** never married, currently married, formerly married.
- **std** had a sexually transmitted disease.
- **highhiv** had high risk sex.
- **condom** used condom during last intercourse.
- **aidscare** equal to 1 if would care for an HIV-infected relative.
- **knowsdiedofaids** equal to 1 if know someone who died of HIV.
- **evertestedHIV** equal to 1 if previously tested for HIV.
- **smoke** smoker.
- **ethnicity** bemba, lunda (luapula), lala, ushi, lamba, tonga, luvale, lunda (northwestern), mbunda, kaonde, lozi, chewa, nsenga, ngoni, mambwe, namwanga, tumbuka, other.
- **language** English, Bemba, Lozi, Nyanja, Tonga, other.
- **interviewerID** interviewer identifier.
- **sw** survey weights.

hiv.polys contains the polygons defining the areas in the format described below.

Details

The data frame **hiv** relates to the regions whose boundaries are coded in **hiv.polys**. **hiv.polys[[i]]** is a 2 column matrix, containing the vertices of the polygons defining the boundary of the **i**th region. **names(hiv.polys)** matches **hiv$region** (order unimportant).
Source

The data have been produced as described in:

References

Examples

```r
## Not run:

# The stuff below is useful if the user wishes to employ
# a Markov Random Field (MRF) smoother. It provides
# the instructions to set up polygons automatically
# and the dataset variable needed to fit a model with
# MRF.

# hiv.polys was already created and
# made available via the call
# data("hiv.polys", package = "GJRM")
# hiv.polys was created using the code below

# obj <- readRDS("ZMB_adml.rds")
# RDS Zambian Level 1 file obtained from

# pol <- polys.setup(obj)

# hiv.polys <- pol$polys
# name <- cbind(names(hiv.polys), pol$names1)
# name

## last step was to create a factor variable with range
```
range(name[, 1]) where the numerical values were linked
to the regions in name[, 2]. This is what was done in
the hiv dataset; see hiv$region. Specifically,
the procedure used was
##
reg <- NULL
##
for(i in 1:dim(hiv)[1]){
#
if(hiv$region[i] == "Central") reg[i] <- 1
if(hiv$region[i] == "Copperbelt") reg[i] <- 2
if(hiv$region[i] == "Eastern") reg[i] <- 3
if(hiv$region[i] == "Luapula") reg[i] <- 4
if(hiv$region[i] == "Lusaka") reg[i] <- 5
if(hiv$region[i] == "North-Western") reg[i] <- 6
if(hiv$region[i] == "Northern") reg[i] <- 7
if(hiv$region[i] == "Southern") reg[i] <- 8
if(hiv$region[i] == "Western") reg[i] <- 9
#
#}

hiv$region <- as.factor(reg)

neighbourhood structure info for MRF
to use in model specification

Bivariate brobit model with non-random sample selection

 sel.eq <- hivconsent ~ s(age) + s(education) + s(wealth) +
 s(region, bs = "mrf", xt = xt, k = 7) +
 marital + std + agelsex_cat + highhiv +
 partner + condom + aidscare +
 knowsdiedofaids + evertestedHIV +
 smoke + religion + ethnicity +
 language + s(interviewerID, bs = "re")

 out.eq <- hiv ~ s(age) + s(education) + s(wealth) +
 s(region, bs = "mrf", xt = xt, k = 7) +
 marital + std + agelsex_cat + highhiv +
 partner + condom + aidscare +
 knowsdiedofaids + evertestedHIV +
 smoke + religion + ethnicity +
 language

 theta.eq <- ~ s(region, bs = "mrf", xt = xt, k = 7)
fl <- list(sel.eq, out.eq, theta.eq)

the above model specification is fairly
complex and it serves to illustrate the
flexibility of the modelling approach

bss <- gjrm(fl, data = hiv, BivD = "J90", Model = "BSS",
 margins = c("probit", "probit"))

conv.check(bss)

set.seed(1)
sb <- summary(bss)
sb

plot(bss, eq = 1, seWithMean = TRUE, scheme = 1,
 scale = 0, pages = 1, jit = TRUE)

plot(bss, eq = 2, seWithMean = TRUE, scheme = 1,
 scale = 0, pages = 1, jit = TRUE)

prev(bss, sw = hiv$sw, type = "naive")

set.seed(1)
prev(bss, sw = hiv$sw, type = "univariate")

prev(bss, sw = hiv$sw)

lr <- length(hiv.polys)
prevBYreg <- matrix(NA, lr, 2)
thetaBYreg <- NA

for(i in 1:lr) {
 prevBYreg[i,1] <- prev(bss, sw = hiv$sw, ind = hiv$region==i,
 type = "univariate")$res[2]
 prevBYreg[i,2] <- prev(bss, sw = hiv$sw, ind = hiv$region==i)$res[2]
 thetaBYreg[i] <- bss$theta[hiv$region==i][1]
}

zlim <- range(prevBYreg) # to establish a common prevalence range

par(mfrow = c(1, 3), cex.axis = 1.3)

polys.map(hiv.polys, prevBYreg[,1], zlim = zlim, lab = "",
 cex.lab = 1.5, cex.main = 1.5,
 main = "HIV - Imputation Model")

polys.map(hiv.polys, prevBYreg[,2], zlim = zlim, cex.main = 1.5,
 main = "HIV - Selection Model")
Description

`imputeCounter` imputes counterfactual missing values for a `gjrm` model object.

Usage

```r
imputeCounter(x, m = 10, nm.end)
```

Arguments

- `x`: A fitted `gjrm` object.
- `m`: Number of imputed response vectors.
- `nm.end`: Name endogenous variable.

Details

This function generates `m` sets of imputed values for the outcome of interest under a fitted joint causal model. The algorithm draws parameters from the posterior distribution of the model which are then used to obtain simulated responses (from the posterior predictive distribution of the missing values) via a rejection algorithm. The bound for acceptance/rejection is obtained via a trust region optimisation.

The imputed values are used to create `m` complete imputed datasets and perform complete data analysis and inference about the parameters of interest using any summary statistics.

Value

It returns a list containing `m` imputed response vectors.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
References

See Also

gjrm

Examples

see examples for gjrm

imputeSS

Missing values’ imputation

Description

imputeSS imputes missing values for a *gjrm* model object.

Usage

```r
imputeSS(x, m = 10)
```

Arguments

- `x`: A fitted *gjrm* object.
- `m`: Number of imputed response vectors.

Details

This function generates m sets of imputed values for the outcome of interest under a fitted copulaSampleSel model. The algorithm draws parameters from the posterior distribution of copulaSampleSel which are then used to obtain simulated responses (from the posterior predictive distribution of the missing values) via a rejection algorithm. The bound for acceptance/rejection is obtained via a trust region optimisation.

The imputed values are used to create m complete imputed datasets and perform complete data analysis and inference about the parameters of interest using function *gamlss()* within this package.

Value

It returns a list containing m imputed response vectors.
jc.probs

Author(s)

Authors: Jose Camarena, Giampiero Marra and Rosalba Radice
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

gjrm

Examples

```r
## see examples for gjrm
```

jc.probs

Joint or conditional probabilities from a fitted joint model

Description

jc.probs can be used to calculate the joint or conditional probabilities from a fitted joint model with intervals obtained using posterior simulation.

Usage

```r
jc.probs(x, y1, y2, y3 = NULL, newdata, type = "joint", cond = 0,
intervals = FALSE, n.sim = 100, prob.lev = 0.05)
```

Arguments

- **x**: A fitted gjrm object as produced by the respective fitting function.
- **y1**: Value of response for first margin.
- **y2**: Value of response for second margin.
- **y3**: Value of response for third margin if a trivariate model is employed.
- **newdata**: A data frame or list containing the values of the model covariates at which predictions are required. If not provided then predictions corresponding to the original data are returned. When newdata is provided, it should contain all the variables needed for prediction.
- **type**: This argument can take two: "joint" (the probabilities are calculated from the fitted joint model) and "independence" (the calculation is done from univariate fits).
There are three possible values: 0 (joint probabilities are delivered), 1 (conditional probabilities are delivered and conditioning is with the respect to the first margin), 2 (as before but conditioning is with the respect to the second margin).

If TRUE then intervals for the probabilities are also produced.

Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used for interval calculations.

Overall probability of the left and right tails of the probabilities’ distributions used for interval calculations.

This function calculates joint or conditional probabilities from a fitted joint model or a model assuming independence, with intervals obtained using posterior simulation.

It returns several values including: estimated probabilities (p12), with lower and upper interval limits (CIpr) if intervals = TRUE, and p1, p2 and p3 (the marginal probabilities).

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

GJRM-package, gjrm

Description

Log-logistic robust function.

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
Description

Before fitting a bivariate probit model, `LM.bpm` can be used to test the hypothesis of absence of endogeneity, correlated model equations/ errors or non-random sample selection.

Usage

```r
LM.bpm(formula, data = list(), weights = NULL, subset = NULL, Model, hess = TRUE)
```

Arguments

- **formula**: A list of two formulas, one for equation 1 and the other for equation 2. s terms are used to specify smooth smooth functions of predictors. Note that if Model = "BSS" then the first formula MUST refer to the selection equation.
- **data**: An optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula).
- **weights**: Optional vector of prior weights to be used in fitting.
- **subset**: Optional vector specifying a subset of observations to be used in the fitting process.
- **Model**: It indicates the type of model to be used in the analysis. Possible values are "B" (bivariate model) and "BSS" (bivariate model with sample selection). The two marginal equations have probit links.
- **hess**: If FALSE then the expected (rather than observed) information matrix is employed.

Details

This Lagrange multiplier test (also known as score test) is used here for testing the null hypothesis that θ is equal to 0 (i.e. no endogeneity, non-random sample selection or correlated model equations/ errors, depending on the model being fitted). Its main advantage is that it does not require an estimate of the model parameter vector under the alternative hypothesis. Asymptotically, it takes a Chi-squared distribution with one degree of freedom. Full details can be found in Marra et al. (2014) and Marra et al. (2017).

Value

It returns a numeric p-value corresponding to the null hypothesis that the correlation, θ, is equal to 0.
logLik.SemiParBIV

WARNINGS

This test’s implementation is ONLY valid for bivariate binary probit models with normal errors.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

gjrm

Examples

```r
## see examples for gjrm
```

logLik.SemiParBIV

Extract the log likelihood for a fitted copula model

Description

It extracts the log-likelihood for a fitted gjrm model.

Usage

```r
## S3 method for class 'SemiParBIV'
logLik(object, ...)
```

Arguments

- `object`
 A fitted gjrm object.

- `...`
 Un-used for this function.

Details

Modification of the classic `logLik` which accounts for the estimated degrees of freedom used in gjrm. This function is provided so that information criteria work correctly by using the correct number of degrees of freedom.
Value
 Standard \texttt{logLik} object.

Author(s)
 Maintainer: Giampiero Marra \texttt{<giampiero.marra@ucl.ac.uk>}

See Also
 \texttt{AIC, BIC}

\begin{verbatim}
mb
\end{verbatim}

Nonparametric (worst-case and IV) Manski's bounds

Description
 \texttt{mb} can be used to calculate the (worst-case and IV) Manski's bounds and confidence interval covering the true effect of interest with a fixed probability.

Usage
 \texttt{mb(treat, outc, IV = NULL, Model, B = 100, sig.lev = 0.05)}

Arguments
 \begin{itemize}
 \item \texttt{treat} Binary treatment/selection variable.
 \item \texttt{outc} Binary outcome variable.
 \item \texttt{IV} An instrumental binary variable can be used if available.
 \item \texttt{Model} Possible values are "B" (model with endogenous variable) and "BSS" (model with non-random sample selection).
 \item \texttt{B} Number of bootstrap replicates. This is used to obtain some components needed for confidence interval calculations.
 \item \texttt{sig.lev} Significance level.
 \end{itemize}

Details
 Based on Manski (1990), this function returns the nonparametric lower and upper (worst-case) Manski's bounds for the average treatment effect (ATE) when \texttt{Model = "B"} or prevalence when \texttt{Model = "BSS"}. When an IV is employed the function returns IV Manski bounds.
 For comparison, it also returns the estimated effect assuming random assignment (i.e., the treatment received or selection relies on the assumption of ignorable observed and unobserved selection). Note that this is equivalent to what provided by \texttt{AT} or \texttt{prev} when type = "naive", and is different from what obtained by \texttt{AT} or \texttt{prev} when type = "univariate" as observed confounders are accounted for and the assumption here is of ignorable unobserved selection.
A confidence interval covering the true ATE/prevalence with a fixed probability is also provided. This is based on the approach described in Imbens and Manski (2004). NOTE that this interval is typically very close (if not identical) to the lower and upper bounds.

The ATE can be at most 1 (or 100 in percentage) and the worst-case Manski’s bounds have width 1. This means that 0 is always included within the possibilities of these bounds. Nevertheless, this may be useful to check whether the effect from a bivariate recursive model is included within the possibilities of the bounds.

When estimating a prevalence the worst-case Manski’s bounds have width equal to the non-response probability, which provides a measure of the uncertainty about the prevalence caused by non-response. Again, this may be useful to check whether the prevalence from a bivariate non-random sample selection model is included within the possibilities of the bounds.

See gjrm for some examples.

Value

LB, UP	Lower and upper bounds for the true effect of interest.
CI	Confidence interval covering the true effect of interest with a fixed probability.
ate.ra	Estimated effect of interest assuming random assignment.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

gjrm

Examples

see examples for gjrm
Description

2008 MEPS data.

Usage

`data(meps)`

Format

`meps` is a 18592 row data frame with the following columns

- `bmi`: body mass index.
- `age`: age in years.
- `gender`: equal to 1 if male.
- `race`: levels: 2 white, 3 black, 4 native American, 5 others.
- `education`: years of education.
- `health`: levels: 5 excellent, 6 very good, 7 good, 8 fair, 9 poor.
- `limitation`: equal to 1 if health limits physical activity.
- `region`: levels: 2 northeast, 3 mid-west, 4 south, 5 west.
- `private`: equal to 1 if individual has private health insurance.
- `visits.hosp`: equal to 1 if at least one visit to hospital outpatient departments.
- `diabetes`: equal to 1 if diabetic.
- `hypertension`: equal to 1 if hypertensive.
- `hyperlipidemia`: equal to 1 if hyperlipidemic.
- `income`: income (000's).

Source

The data have been obtained from http://www.meps.ahrq.gov/.

Examples

```r
# Not run:

#******************************************************************************
#******************************************************************************
library("GJRM")
data("meps", package = "GJRM")
```
Bivariate bivariate models with endogenous treatment

treat.eq <- private ~ s(bmi) + s(income) + s(age) + s(education) +
as.factor(health) + as.factor(race) +
as.factor(limitation) + as.factor(region) +
gender + hypertension + hyperlipidemia + diabetes

out.eq <- visits.hosp ~ private + s(bmi) + s(income) + s(age) +
s(education) + as.factor(health) +
as.factor(race) + as.factor(limitation) +
as.factor(region) + gender + hypertension +
hyperlipidemia + diabetes

f.list <- list(treat.eq, out.eq)

mr <- c("probit", "probit")
bpNet <- gjrm(f.list, data = meps, margins = mr, Model = "B")
bPF <- gjrm(f.list, data = meps, margins = mr, BivD = "F", Model = "B")
bPC0 <- gjrm(f.list, data = meps, margins = mr, BivD = "C0", Model = "B")
bPC180 <- gjrm(f.list, data = meps, margins = mr, BivD = "C180", Model = "B")
bPJ0 <- gjrm(f.list, data = meps, margins = mr, BivD = "J0", Model = "B")
bPJ180 <- gjrm(f.list, data = meps, margins = mr, BivD = "J180", Model = "B")
bPG0 <- gjrm(f.list, data = meps, margins = mr, BivD = "G0", Model = "B")
bPG180 <- gjrm(f.list, data = meps, margins = mr, BivD = "G180", Model = "B")

conv.check(bpj0)

AIC(bpNet, bf, bpC0, bpC180, bpJ0, bpJ180, bpG0, bpG180)

set.seed(1)

summary(bpj0, cex.axis = 1.6,
 cex.lab = 1.6, cex.main = 1.7)

#dev.copy(postscript, "contplot.eps")
#dev.off()

par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
 cex.axis = 1.6, cex.lab = 1.6)

plot(bpj0, eq = 1, seWithMean = TRUE, scale = 0, shade = TRUE,
 pages = 1, jit = TRUE)

#dev.copy(postscript, "spline1.eps")
#dev.off()

par(mfrow = c(2, 2), mar = c(4.5, 4.5, 2, 2),
 cex.axis = 1.6, cex.lab = 1.6)

plot(bpj0, eq = 2, seWithMean = TRUE, scale = 0, shade = TRUE,
 pages = 1, jit = TRUE)

#dev.copy(postscript, "spline2.eps")
#dev.off()}
numgh

Internal Function

Description

This and other similar internal functions calculate numerical derivatives.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

OR

Causal odds ratio of a binary/continuous/discrete endogenous variable

Description

OR can be used to calculate the causal odds ratio of a binary/continuous/discrete endogenous predictor/treatment, with corresponding interval obtained using posterior simulation.

Usage

OR(x, nm.end, E = TRUE, treat = TRUE, type = "joint", ind = NULL, n.sim = 100, prob.lev = 0.05, length.out = NULL, hd.plot = FALSE, or.plot = FALSE, main = "Histogram and Kernel Density of Simulated Odds Ratios", xlab = "Simulated Odds Ratios", ...)
Arguments

x A fitted

nm.end Name of the endogenous variable.

E If TRUE then OR calculates the sample OR. If FALSE then it calculates the sample OR for the treated individuals only.

treat If TRUE then OR calculates the OR using the treated only. If FALSE then it calculates the ratio using the control group. This only makes sense if E = FALSE.

type This argument can take three values: "naive" (the effect is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the effect is obtained from the univariate model which neglects the presence of unobserved confounders) and "joint" (the effect is obtained from the bivariate model which accounts for observed and unobserved confounders).

ind Binary logical variable. It can be used to calculate the OR for a subset of the data. Note that it does not make sense to use ind when some observations are excluded from the OR calculation (e.g., when using E = FALSE).

n.sim Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when delta = FALSE. It may be increased if more precision is required.

prob.lev Overall probability of the left and right tails of the OR distribution used for interval calculations.

length.out Desired length of the sequence to be used when calculating the effect that a continuous/discrete treatment has on a binary outcome.

hd.plot If TRUE then a plot of the histogram and kernel density estimate of the simulated odds ratios is produced. This can only be produced when binary responses are used.

or.plot For the case of continuous/discrete endogenous variable and binary outcome, if TRUE then a plot (on the log scale) showing the odd ratios that the binary outcome is equal to 1 for each incremental value of the endogenous variable and respective intervals is produced.

main Title for the plot.

xlab Title for the x axis.

... Other graphics parameters to pass on to plotting commands. These are used only when hd.plot = TRUE.

Details

OR calculates the causal odds ratio for a binary/continuous/discrete treatment. Posterior simulation is used to obtain a confidence/credible interval.

Value

prob.lev Probability level used.

sim.OR It returns a vector containing simulated values of the average OR. This is used to calculate intervals.
For the case of continuous/discrete endogenous treatment and binary outcome, it returns a matrix made up of three columns containing the odds ratios for each incremental value in the endogenous variable and respective intervals.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

GJRM-package.gjrm

Description

It provides an overall penalty matrix in a format suitable for estimation conditional on smoothing parameters.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

plot.SemiParBIV

Plotting function

Description

It takes a fitted gjrm object produced by gjrm() and plots the estimated smooth functions on the scale of the linear predictors. This function is a wrapper of plot.gam() in mgcv. Please see the documentation of plot.gam() for full details.

Usage

S3 method for class 'SemiParBIV'
plot(x, eq, ...)

Arguments

x A fitted gjrm object.

eq The equation from which smooth terms should be considered for printing.

... Other graphics parameters to pass on to plotting commands, as described for plot.gam() in mgcv.
Details

This function produces plots showing the smooth terms of a fitted semiparametric bivariate probit model. In the case of 1-D smooths, the x axis of each plot is labelled using the name of the regressor, while the y axis is labelled as $s(\text{regr}, \text{edf})$ where \text{regr} is the regressor’s name, and \text{edf} the effective degrees of freedom of the smooth. For 2-D smooths, perspective plots are produced with the x axes labelled with the first and second variable names and the y axis is labelled as $s(\text{var1}, \text{var2}, \text{edf})$, which indicates the variables of which the term is a function and the edf for the term.

If \text{seWithMean} = \text{TRUE} then the intervals include the uncertainty about the overall mean. Note that the smooths are still shown centred. The theoretical arguments and simulation study of Marra and Wood (2012) suggest that \text{seWithMean} = \text{TRUE} results in intervals with close to nominal frequentist coverage probabilities.

Value

The function generates plots.

WARNING

The function can not deal with smooths of more than 2 variables.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

gjrm

dotted.poly

dotted.poly.map

dotted.plot

polys.map

Geographic map with regions defined as polygons

Description

This function produces a map with geographic regions defined by polygons. It is essentially the same function as polys.plot() in mgcv but with added arguments zlim and rev.col and a wider set of choices for scheme.
Usage

```r
callpolys.map(lm, z, scheme = "gray", lab = ",", zlim, rev.col = TRUE, ...)
```

Arguments

- `lm`
 Named list of matrices where each matrix has two columns. The matrix rows each define the vertex of a boundary polygon.

- `z`
 A vector of values associated with each area (item) of `lm`.

- `scheme`
 Possible values are "heat", "terrain", "topo", "cm" and "gray", indicating how to fill the polygons in accordance with the value of `z`.

- `lab`
 Label for plot.

- `zlim`
 If missing then the range of `z` will be chosen using `pretty(z)` otherwise the range provided will be used.

- `rev.col`
 If FALSE then coloring scheme is not reversed.

- `...`
 Other arguments to pass to plot.

Details

See help file of `polys.plot` in mgcv.

Value

It produces a plot.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

polys.setup

Set up geographic polygons

Description

This function creates geographic polygons in a format suitable for smoothing.

Usage

```r
callpolys.setup(object)
```
Arguments

object

Value

It produces a list with polygons (polys), and various names (names0, names1 - first level of aggregation, names2 - second level of aggregation).

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Thanks to Guy Harling for suggesting the implementation of this function.

Examples

?hiv

post.check Diagnostic plots for discrete/continuous response margin

Description

It produces diagnostic plots based on (randomised) quantile residuals.

Usage

post.check(x, main = "Histogram and Density Estimate of Residuals",
 main2 = "Histogram and Density Estimate of Residuals",
 xlab = "Quantile Residuals", xlab2 = "Quantile Residuals",
 intervals = FALSE, n.sim = 100, prob.lev = 0.05, ...)

Arguments

x

A fitted gjrm object.

main

Title for the plot.

main2

Title for the plot in the second row. This comes into play only when fitting models with two non-binary margins.

xlab

Title for the x axis.

xlab2

Title for the x axis in the second row. As above.

intervals

If TRUE then intervals for the qqplots are produced.

n.sim

Number of replicate datasets used to simulate quantiles of the residual distribution.
pred.mvt

prob.lev Overall probability of the left and right tails of the probabilities’ distributions used for interval calculations.

... Other graphics parameters to pass on to plotting commands.

Details

If the model fits the response well then the plots should look normally distributed. When fitting models with discrete and/or continuous margins, four plots will be produced. In this case, the arguments main2 and xlab2 come into play and allow for different labelling across the plots.

Value

qr It returns the (randomised) quantile residuals for the continuous or discrete margin when fitting a model that involves a binary response.

qr1 As above but for first equation (this applies when fitting models with continuous/discrete margins).

qr2 As above but for second equation.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm

pred.mvt Function to predict mean and variance of marginal distributions, as well as Kendall’s tau

Description

It takes a fitted gjrm object produced by gjrm() and produces predictions and respective intervals.

Usage

pred.mvt(x, eq, fun = "mean", n.sim = 100, prob.lev = 0.05, smooth.no = NULL, ...)

Arguments

x A fitted gjrm object.

eq The equation number.

fun Either mean, variance or tau.

n.sim The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals. It may be increased if more precision is required.
prob.lev Probability of the left and right tails of the posterior distribution used for interval calculations.
smooth.no Smooth number if the interest is in a particular smooth and not the additive predictor(s).
... Other parameters.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm

predict.SemiParBIV *Prediction function*

Description

It takes a fitted `gjrm` object and, for each equation, produces predictions for a new set of values of the model covariates or the original values used for the model fit. Standard errors of predictions can be produced and are based on the posterior distribution of the model coefficients. This function is a wrapper for `predict.gam()` in mgcv. Please see the documentation of `predict.gam()` for full details.

Usage

```r
## S3 method for class 'SemiParBIV'
predict(object, eq, ...)  
```

Arguments

- `object` A fitted `gjrm` object.
- `eq` The equation to be considered for prediction.
- `...` Other arguments as in `predict.gam()` in mgcv.

WARNINGS

When `type` = "response" (which gives predictions on the scale of the response variable), for the case of continuous responses this function will NOT produce correct predictions for the outcome variable (except for some the Gaussian case). This is because for all distributions (except the Gaussian) implemented in this package the distributional parameters determine the mean and variance through functions of them.
When predicting based on a new data set, this function can not return correct predictions for models based on a BivD value of "C0C90", "C0C270", "C180C90", "C180C270", "G0G90", "G0G270", "G180G90", "G180G270", "J0J90", "J0J270", "J180J90" or "J180J270".

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also
gjrm

prev Estimated overall prevalence from sample selection model

Description
prev can be used to calculate the overall estimated prevalence from a sample selection model with binary outcome, with corresponding interval obtained using the delta method or posterior simulation.

Usage

prev(x, sw = NULL, type = "joint", ind = NULL, delta = FALSE, n.sim = 100, prob.lev = 0.05, hd.plot = FALSE, main = "Histogram and Kernel Density of Simulated Prevalences", xlab = "Simulated Prevalences", ...)

Arguments

x A fitted gjrm object.
sw Survey weights.
type This argument can take three values: "naive" (the prevalence is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the prevalence is obtained from the univariate probit/single imputation model which neglects the presence of unobserved confounders) and "joint" (the prevalence is obtained from the bivariate/trivariate model which accounts for observed and unobserved confounders).
ind Binary logical variable. It can be used to calculate the prevalence for a subset of the data.
delta If TRUE then the delta method is used for confidence interval calculations, otherwise Bayesian posterior simulation is employed.
n.sim Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when delta = FALSE. It may be increased if more precision is required.
prob.lev Overall probability of the left and right tails of the prevalence distribution used for interval calculations.

hd.plot If TRUE then a plot of the histogram and kernel density estimate of the simulated prevalences is produced. This can only be produced when delta = FALSE.

main Title for the plot.

xlab Title for the x axis.

... Other graphics parameters to pass on to plotting commands. These are used only when hd.plot = TRUE.

Details

dev estimates the overall prevalence of a disease (e.g., HIV) when there are missing values that are not at random. An interval for the estimated prevalence can be obtained using the delta method or posterior simulation.

Value

res It returns three values: lower confidence interval limit, estimated prevalence and upper confidence interval limit.

prob.lev Probability level used.

sim.prev If delta = FALSE then it returns a vector containing simulated values of the prevalence. This is used to calculate an interval.

Author(s)

Authors: Giampiero Marra, Rosalba Radice, Guy Harling, Mark E McGovern

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

GJRM-package, gjrm
print.AT

Print an AT object

Description

The print method for an AT object.

Usage

```r
## S3 method for class 'AT'
print(x, ...)
```

Arguments

- `x`: AT object produced by AT()
- `...`: Other arguments.

Details

print.AT prints the lower confidence interval limit, estimated AT and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

- AT

print.AT2

Print an AT2 object

Description

The print method for an AT2 object.
Usage

```r
## S3 method for class 'AT2'
print(x, ...)
```

Arguments

- `x` AT2 object produced by `AT2()`.
- `...` Other arguments.

Details

`print.AT2` prints the lower confidence interval limit, estimated AT and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

`AT2`

Description

The print method for a copulaSampleSel object.

Usage

```r
## S3 method for class 'copulaSampleSel'
print(x, ...)
```

Arguments

- `x` copulaSampleSel object.
- `...` Other arguments.
Details

It prints out the family, model equations, total number of observations, estimated association coefficient, etc for the penalized or unpenalized model.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

print.gamlss

Print a gamlss object

Description

The print method for a gamlss object.

Usage

```r
## S3 method for class 'gamlss'
print(x, ...)
```

Arguments

- `x` : gamlss object produced by `gamlss()`.
- `...` : Other arguments.

Details

`print.gamlss` prints out the family, model equations, total number of observations, etc for the penalized or unpenalized model.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

`gamlss`
print.gjrm
Print a gjrm object

Description

The print method for a gjrm object.

Usage

```r
## S3 method for class 'gjrm'
print(x, ...)
```

Arguments

- `x`
 gjrm object produced by `gjrm()`.

- `...`
 Other arguments.

Details

`print.gjrm` prints out the family, model equations, total number of observations, estimated association coefficient, etc for the penalized or unpenalized model.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

- `gjrm`

print.mb
Print an mb object

Description

The print method for an mb object.
Usage

```r
## S3 method for class 'mb'
print(x, ...)
```

Arguments

- `x`: mb object produced by `mb()`.
- `...`: Other arguments.

Details

`print.mb` prints the lower and upper bounds, confidence interval, and effect assuming random assignment.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

`mb`
Details

print.OR prints the lower confidence interval limit, estimated OR and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

OR

print.prev Print an prev object

Description

The print method for an prev object.

Usage

S3 method for class 'prev'
print(x, ...)

Arguments

x prev object produced by prev().

... Other arguments.

Details

print.prev prints the lower interval limit, estimated prevalence and upper interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

prev
Description

The print method for an RR object.

Usage

```r
## S3 method for class 'RR'
print(x, ...)
```

Arguments

- `x`: RR object produced by RR().
- `...`: Other arguments.

Details

`print.RR` prints the lower confidence interval limit, estimated RR and upper confidence interval limit.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

`RR`

Description

The print method for a SemiParBIV object.
Usage

```r
## S3 method for class 'SemiParBIV'
print(x, ...)
```

Arguments

- `x`
 SemiParBIV object.
- `...`
 Other arguments.

Details

It prints out the family, model equations, total number of observations, estimated association coefficient and total effective degrees of freedom for the penalized or unpenalized model.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

print.SemiParTRIV
Print a SemiParTRIV object

Description

The print method for a SemiParTRIV object.

Usage

```r
## S3 method for class 'SemiParTRIV'
print(x, ...)
```

Arguments

- `x`
 SemiParTRIV object.
- `...`
 Other arguments.

Details

It prints out the family, model equations, total number of observations, estimated association coefficient and total effective degrees of freedom for the penalized or unpenalized model.
probm

Internal Function

Description

Internal fitting function.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

regH

Internal Function

Description

It applies one of two regularisations on the information matrix if desired. These are based on the Cholesky and eigen decompositions.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

resp.check

Plots for response variable

Description

It produces a histogram of the response along with the estimated density from the assumed distribution as well as a normal Q-Q plot for the (randomised) normalised quantile response. It also provides the log-likelihood for AIC calculation, for instance.

Usage

```r
resp.check(y, margin = "N", main = "Histogram and Density of Response", xlab = "Response", print.par = FALSE, plots = TRUE, loglik = FALSE, os = FALSE, intervals = FALSE, n.sim = 100, prob.lev = 0.05, i.f = FALSE, ...)
```
Arguments

- **y**: Response.
- **margin**: The distributions allowed are: normal ("N"), normal where sigma2 corresponds to the standard deviation instead of the variance ("N2"), log-normal ("LN"), Gumbel ("GU"), reverse Gumbel ("rGU"), logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum ("DAGUM"), Singh-Maddala ("SM"), beta ("BE"), Fisk ("FISK"), Poisson ("PO"), zero truncated Poisson ("ZTP"), negative binomial - type I ("NBI"), negative binomial - type II ("NBII"), Poisson inverse Gaussian ("PIG").

- **main**: Title for the plot.
- **xlab**: Title for the x axis.
- **print.par**: If TRUE then the estimated parameters used to construct the plots are returned.
- **plots**: If FALSE then no plots are produced and only parameter estimates returned.
- **loglik**: If TRUE then it returns the logLik.
- **os**: If TRUE then the estimated parameters are returned on the original scale.
- **intervals**: If TRUE then intervals for the qqplot are produced.
- **n.sim**: Number of replicate datasets used to simulate quantiles of the residual distribution.
- **prob.lev**: Overall probability of the left and right tails of the probabilities’ distribution used for interval calculations.
- **i.f**: Internal fitting option. This is not for user purposes.
- **...**: Other graphics parameters to pass on to plotting commands.

Details

Prior to fitting a model with discrete and/or continuous margins, the distributions for the responses may be chosen by looking at the histogram of the response along with the estimated density from the assumed distribution, and at the normalised quantile responses. These will provide a rough guide to the adequacy of the chosen distribution. The latter are defined as the quantile standard normal function of the cumulative distribution function of the response with scale and location estimated by MLE. These should behave approximately as normally distributed variables (even though the original observations are not). Therefore, a normal Q-Q plot is appropriate here.

If loglik = TRUE then this function also provides the log-likelihood for AIC calculation, for instance.

The shapiro test can also be performed.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

gjrm
rMVN

Multivariate Normal Variates

Description

This function simply generates random multivariate normal variates.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

rob.const

Bootstrap procedure to help select the robust constant in a GAMLSS

Description

It helps finding the robust constant for a GAMLSS.

Usage

```r
rob.const(x, B = 100)
```

Arguments

- `x`: A fitted `gjrm` object.
- `B`: Number of bootstrap replicates.

Details

It helps finding the robust constant for a GAMLSS based on the mean or median.

Value

- `rc`: Robust constant used in fitting.
- `sw`: Sum of weights for each bootstrap replicate.
- `m1`: Mean.
- `m2`: Median.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

`gamlss`
rob.int

Tool for tuning bounds of integral in robust models

Description

Tool for tuning bounds of integral in robust GAMLSS.

Usage

```r
rob.int(x, rc, l.grid = 1000, tol = 1e-4, var.range = NULL)
```

Arguments

- `x`: A fitted `gjrm` object, typically from a non-robust fit.
- `rc`: Robust tuning constant.
- `l.grid`: Length of grid.
- `tol`: Tolerance
- `var.range`: Range of values, min and max, to use in calculations.

Details

Tool for tuning bounds of integral in robust GAMLSS.

Value

`lb, ub` Lower and upper bounds.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also

`gamlss`
Causal risk ratio of a binary/continuous/discrete endogenous variable

Description

RR can be used to calculate the causal risk ratio of a binary/continuous/discrete endogenous predictor/treatment, with corresponding interval obtained using posterior simulation.

Usage

\[
\text{RR}(x, \text{nm.end}, E = \text{TRUE}, \text{treat} = \text{TRUE}, \text{type} = "\text{joint}"), \text{ind} = \text{NULL}, \\
\text{n.sim} = 100, \text{prob.lev} = 0.05, \text{length.out} = \text{NULL}, \text{hd.plot} = \text{FALSE}, \\
\text{rr.plot} = \text{FALSE}, \\
\text{main} = "\text{Histogram and Kernel Density of Simulated Risk Ratios}" , \\
\text{xlab} = "\text{Simulated Risk Ratios}" , ...)
\]

Arguments

- **x**: A fitted gjrm object.
- **nm.end**: Name of the endogenous variable.
- **E**: If TRUE then RR calculates the sample RR. If FALSE then it calculates the sample RR for the treated individuals only.
- **treat**: If TRUE then RR calculates the RR using the treated only. If FALSE then it calculates the ratio using the control group. This only makes sense if E = FALSE.
- **type**: This argument can take three values: "naive" (the effect is calculated ignoring the presence of observed and unobserved confounders), "univariate" (the effect is obtained from the univariate model which neglects the presence of unobserved confounders) and "joint" (the effect is obtained from the bivariate model which accounts for observed and unobserved confounders).
- **ind**: Binary logical variable. It can be used to calculate the RR for a subset of the data. Note that it does not make sense to use ind when some observations are excluded from the RR calculation (e.g., when using E = FALSE).
- **n.sim**: Number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used when delta = FALSE. It may be increased if more precision is required.
- **prob.lev**: Overall probability of the left and right tails of the RR distribution used for interval calculations.
- **length.out**: Desired length of the sequence to be used when calculating the effect that a continuous/discrete treatment has on a binary outcome.
- **hd.plot**: If TRUE then a plot of the histogram and kernel density estimate of the simulated risk ratios is produced. This can only be produced when binary responses are used.
For the case of continuous/discrete endogenous variable and binary outcome, if TRUE then a plot (on the log scale) showing the risk ratios that the binary outcome is equal to 1 for each incremental value of the endogenous variable and respective intervals is produced.

Main
Title for the plot.

xlab
Title for the x axis.

... Other graphics parameters to pass on to plotting commands. These are used only when hd.plot = TRUE.

Details
RR calculates the causal risk ratio of the probabilities of positive outcome under treatment (the binary predictor or treatment assumes value 1) and under control (the binary treatment assumes value 0). Posterior simulation is used to obtain a confidence/credible interval.

RR works also for the case of continuous/discrete endogenous treatment variable.

Value
prob.lev Probability level used.
sim.RR It returns a vector containing simulated values of the average RR. This is used to calculate intervals.
Ratios For the case of continuous/discrete endogenous variable and binary outcome, it returns a matrix made up of three columns containing the risk ratios for each incremental value in the endogenous variable and respective intervals.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

See Also
GJRM-package.gjrm

Description
It provides penalty matrices in a format suitable for automatic multiple smoothing parameter estimation.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
SemiParBIV

SemiParBIV

Internal fitting function

Description

Internal fitting set up function.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

SemiParBIV.fit

Internal Function

Description

Wrapper of core algorithm.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

SemiParBIV.fit.post

Internal Function

Description

This and other similar internal functions calculate useful post estimation quantities.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

SemiParTRIV

Internal fitting function

Description

Internal fitting set up function.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
Description

It takes a fitted `copulaSampleSel` object and produces some summaries from it.

Usage

S3 method for class 'copulaSampleSel'

```r
summary(object, n.sim = 100, prob.lev = 0.05, ...)
```

S3 method for class 'summary.copulaSampleSel'

```r
print(x, digits = max(3, getOption("digits") - 3),
      signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- `object`: A fitted `copulaSampleSel` object.
- `x`: A `summary.copulaSampleSel` object produced by `summary.copulaSampleSel()`.
- `n.sim`: The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for the association parameter, dispersion coefficient, for instance. It may be increased if more precision is required.
- `prob.lev`: Probability of the left and right tails of the posterior distribution used for interval calculations.
- `digits`: Number of digits printed in output.
- `signif.stars`: By default, significance stars are printed alongside output.
- `...`: Other arguments.

Details

`print.summary.copulaSampleSel` prints model term summaries.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Examples

See examples for `gjrm`
summary.gamlss

gamlss summary

Description

It takes a fitted `gamlss` object and produces some summaries from it.

Usage

```r
## S3 method for class 'gamlss'
summary(object, n.sim = 100, prob.lev = 0.05, ...)

## S3 method for class 'summary.gamlss'
print(x, digits = max(3, getOption("digits") - 3),
       signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- `object` A fitted `gamlss` object.
- `x` `summary.gamlss` object produced by `summary.gamlss()`.
- `n.sim` The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for various parameters. It may be increased if more precision is required.
- `prob.lev` Probability of the left and right tails of the posterior distribution used for interval calculations.
- `digits` Number of digits printed in output.
- `signif.stars` By default significance stars are printed alongside output.
- `...` Other arguments.

Details

`print.summary.gamlss` prints model term summaries.

Value

- `tableP1` Table containing parametric estimates, their standard errors, z-values and p-values for equation 1.
- `tableP2`, `tableP3` As above but for equations 2 and 3 if present.
Table of nonparametric summaries for each smooth component including effective degrees of freedom, estimated rank, approximate Wald statistic for testing the null hypothesis that the smooth term is zero and corresponding p-value, for equation 1.

As above but for equations 2 and 3.

Sample size.

Estimated distribution specific parameters.

Formulas used for the model equations.

Number of smooth components in model equation.

Total degrees of freedom of the estimated bivariate model.

Intervals for distribution specific parameters.

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Examples

```r
## see examples for gamlss
```

It takes a fitted gjrm object and produces some summaries from it.

```r
## S3 method for class 'gjrm'
summary(object, n.sim = 100, prob.lev = 0.05, ...)
```

```r
## S3 method for class 'summary.gjrm'
print(x, digits = max(3, getOption("digits") - 3),
   signif.stars = getOption("show.signif.stars"), ...)
```
Arguments

- **object**: A fitted gjrm object.
- **x**: A summary.gjrm object produced by `summary.gjrm()`.
- **n.sim**: The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for the association parameter, dispersion coefficient etc. It may be increased if more precision is required.
- **prob.lev**: Probability of the left and right tails of the posterior distribution used for interval calculations.
- **digits**: Number of digits printed in output.
- **signif.stars**: By default significance stars are printed alongside output.
- **...**: Other arguments.

Details

`print.summary.gjrm` prints model term summaries.

Value

- **tableP1**, **tableP2**, **tableP3**, ... Table containing parametric estimates, their standard errors, z-values and p-values for equation 1.
- **tableNP1**, **tableNP2**, **tableNP3**, ... As above but for equation 2 and equations 3 and 4 if present.
- **n**: Sample size.
- **theta**: Estimated dependence parameter linking the two equations.
- **sigma21**, **sigma22**: Estimated distribution specific parameters for equations 1 and 2.
- **nu1**, **nu2**: Estimated distribution specific parameters for equations 1 and 2.
- **formula1**, **formula2**, **formula3**, ... Formulas used for the model equations.
- **l.sp1**, **l.sp2**, **l.sp3**, ... Number of smooth components in model equations.
- **t.edf**: Total degrees of freedom of the estimated bivariate model.
- **Ciltheta**: Interval(s) for θ.
- **Cilsig21**, **Cilsig22**, **CInu1**, **CInu2**: Intervals for distribution specific parameters.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
Summary

It takes a fitted SemiParBIV object and produces some summaries from it.

Usage

S3 method for class 'SemiParBIV'
summary(object, n.sim = 100, prob.lev = 0.05, gm = FALSE, ...)

S3 method for class 'summary.SemiParBIV'
print(x, digits = max(3, getOption("digits") - 3),
 signif.stars = getOption("show.signif.stars"), ...)

Arguments

object A fitted SemiParBIV object.
x summary.SemiParBIV object produced by summary.SemiParBIV().
n.sim The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for the association parameter, dispersion coefficient and other measures (e.g., gamma measure). It may be increased if more precision is required.
prob.lev Probability of the left and right tails of the posterior distribution used for interval calculations.
gm If TRUE then intervals for the gamma measure and odds ratio are calculated.
digits Number of digits printed in output.
signif.stars By default significance stars are printed alongside output.
... Other arguments.

Details

Using some low level functions in mgcv, based on the results of Marra and Wood (2012), ‘Bayesian p-values’ are returned for the smooth terms. These have better frequentist performance than their frequentist counterpart. See the help file of summary.gam in mgcv for further details. Covariate selection can also be achieved using a single penalty shrinkage approach as shown in Marra and Wood (2011).

Posterior simulation is used to obtain intervals of nonlinear functions of parameters, such as the association and dispersion parameters as well as the odds ratio and gamma measure discussed by Tajar et al. (2001) if gm = TRUE.

print.summary.SemiParBIV prints model term summaries.
Value

- **tableP1**
 - Table containing parametric estimates, their standard errors, z-values and p-values for equation 1.
- **tableP2,tableP3, ...**
 - As above but for equation 2 and equations 3 and 4 if present.
- **tableNP1**
 - Table of nonparametric summaries for each smooth component including effective degrees of freedom, estimated rank, approximate Wald statistic for testing the null hypothesis that the smooth term is zero and corresponding p-value, for equation 1.
- **tableNP2,tableNP3, ...**
 - As above but for equation 2 and equations 3 and 4 if present.

- **n**
 - Sample size.
- **theta**
 - Estimated dependence parameter linking the two equations.
- **formula1,formula2,formula3, ...**
 - Formulas used for the model equations.
- **l.sp1,l.sp2,l.sp3, ...**
 - Number of smooth components in model equations.
- **t.edf**
 - Total degrees of freedom of the estimated bivariate model.
- **CItheta**
 - Interval(s) for θ.
- **n.sel**
 - Number of selected observations in the sample selection case.
- **OR, CIor**
 - Odds ratio and related CI. The odds ratio is a measure of association between binary random variables and is defined as $p_{00}p_{11}/p_{01}p_{10}$. In the case of independence this ratio is equal to 1. It can take values in the range (-Inf, Inf) and it does not depend on the marginal probabilities (Tajar et al., 2001). Interval is calculated using posterior simulation.
- **GM, CIgm**
 - Gamma measure and related CI. This measure of association was proposed by Goodman and Kruskal (1954). It is defined as $(\text{OR} - 1)/(\text{OR} + 1)$, can take values in the range (-1, 1) and does not depend on the marginal probabilities. Interval is calculated using posterior simulation.
- **tau, CITau**
 - Kendall’s tau and respective intervals.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

See Also

AT.prev

summary.SemiParTRIV
SemiParTRIV summary

Description

It takes a fitted SemiParTRIV object and produces some summaries from it.

Usage

```r
## S3 method for class 'SemiParTRIV'
summary(object, n.sim = 100, prob.lev = 0.05, ...)

## S3 method for class 'summary.SemiParTRIV'
print(x, digits = max(3, getOption("digits") - 3),
      signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- `object`: A fitted SemiParTRIV object.
- `x`: summary.SemiParTRIV object produced by summary.SemiParTRIV().
- `n.sim`: The number of simulated coefficient vectors from the posterior distribution of the estimated model parameters. This is used to calculate intervals for the association parameter and other measures. It may be increased if more precision is required.
- `prob.lev`: Probability of the left and right tails of the posterior distribution used for interval calculations.
- `digits`: Number of digits printed in output.
- `signif.stars`: By default significance stars are printed alongside output.
- `...`: Other arguments.

Details

print.summary.SemiParTRIV prints model term summaries.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

Examples

```r
## see examples for gjrm
```
TRIapprox

Internal Function

Description
It approximates the trivariate normal integral.

Author(s)
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

triprobgHs

Internal Function

Description
It provides score and Hessian for trivariate binary models.

Author(s)
Author: Panagiota Filippou
Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

vis.gjrm
Visualization function

Description
It takes a fitted gjrm object produced by gjrm() and produces perspective or contour plot views of model predictions. This function is a wrapper of vis.gam() in mgcv. Please see the documentation of vis.gam() for full details.

Usage
vis.gjrm(x, eq, fun = NULL, ...)

Arguments
x A fitted gjrm object.
eq The equation number.
fun Either mean or variance. If left as equal to NULL then predictions on the scale of the predictor will be produced.
... Other graphics parameters to pass on to plotting commands, as described for vis.gam() in mgcv.
The Vuong and Clarke tests are likelihood-ratio-based tests that can be used for choosing between two non-nested models.

Usage

VuongClarke(obj1, obj2, sig.lev = 0.05)

Arguments

- obj1, obj2: Objects of the two fitted bivariate non-nested models.
- sig.lev: Significance level used for testing.

Details

The Vuong (1989) and Clarke (2007) tests are likelihood-ratio-based tests for model selection that use the Kullback-Leibler information criterion. The implemented tests can be used for choosing between two bivariate models which are non-nested.

In the Vuong test, the null hypothesis is that the two models are equally close to the actual model, whereas the alternative is that one model is closer. The test follows asymptotically a standard normal distribution under the null. Assume that the critical region is \((-c, c)\), where \(c\) is typically set to 1.96. If the value of the test is higher than \(c\) then we reject the null hypothesis that the models are equivalent in favor of model \(obj1\). Vice versa if the value is smaller than \(c\). If the value falls in \([-c, c]\) then we cannot discriminate between the two competing models given the data.

In the Clarke test, if the two models are statistically equivalent then the log-likelihood ratios of the observations should be evenly distributed around zero and around half of the ratios should be larger than zero. The test follows asymptotically a binomial distribution with parameters \(n\) and 0.5. Critical values can be obtained as shown in Clarke (2007). Intuitively, model \(obj1\) is preferred over \(obj2\) if the value of the test is significantly larger than its expected value under the null hypothesis \((n/2)\), and vice versa. If the value is not significantly different from \(n/2\) then \(obj1\) can be thought of as equivalent to \(obj2\).
Value

It returns two decisions based on the tests and criteria discussed above.

Author(s)

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>

References

Examples

```r
## see examples for gjrm
```

war

Civil war data

Description

Civil war data from Fearon and Laitin (2003).

Usage

```r
data(war)
```

Format

war is a 6326 row data frame with the following columns:

- **onset**: equal to 1 for all country-years in which a civil war started.
- **instab**: equal to 1 if unstable government.
- **oil**: equal to 1 for oil exporter country.
- **warl**: equal to 1 if the country had a distinct civil war ongoing in the previous year.
- **gdpenl**: GDP per capita (measured as thousands of 1985 U.S. dollars) lagged one year.
- **ncontig**: equal to 1 for non-contiguous state.
- **nwstate**: equal to 1 for new state.
- **lpopl**: log(population size).
- **lmtnest**: log(mountainous).
- **ethfrac**: measure of ethnic fractionalization (calculated as the probability that two randomly drawn individuals from a country are not from the same ethnicity).
- **relfrac**: measure of religious fractionalization.
- **polity2l**: measure of political democracy (ranges from -10 to 10) lagged one year.
Source

Data are from:

Examples

```
## Not run:

library("GJRM")
data("war", package = "GJRM")

# Bivariate probit model with partial observability
rebi < - onset ~ instab + oil + warl + lpopl + lmtnest + ethfrac + polity21 + s(gdpnl) + s(relfrac)

govbi < - onset ~ instab + oil + warl + ncontig + nwstate + s(gdpnl)

bpi < - gjrm(list(rebi, govbi), data = war, Model = "BPO", margins = c("probit", "probit"))
conv.check(bpi)

# perhaps model is too complex

set.seed(1)
sbpi < - summary(bpi)
sbpi$theta; sbpi$CItheta

# let's exclude the correlation parameter in fitting

bpi0 < - gjrm(list(rebi, govbi), data = war, Model = "BPO0", margins = c("probit", "probit"))
conv.check(bpi0)

summary(bpi0)

wari < - onset ~ instab + oil + warl + ncontig + nwstate + lpopl + lmtnest + ethfrac + polity21 + s(gdpnl) + s(relfrac)

Probit < - gam(wari, family = binomial(link = "probit"), data = war)
summary(Probit)

cov(Probit)[(which(names(cov(Probit)) == "s(gdpnl).9"))]`
coef(bpo0)[(which(names(coef(bpo)) == "s(gdpen1).9"))]

probitW <- bpoW <- bpoReb <- bpoGov <- NA
gdp.grid <- seq(0, 8)
median.values <- data.frame(t(apply(war, 2, FUN = median)))

for (i in 1:length(gdp.grid)){
  newd <- median.values; newd$gdpen1 <- gdp.grid[i]
  eta1 <- predict(bpo0, eq = 1, newd)
  eta2 <- predict(bpo0, eq = 2, newd)
  probitW[i] <- predict(Probit, newd, type = "response")
  bpoW[i] <- pnorm(eta1) * pnorm(eta2)
  bpoReb[i] <- pnorm(eta1)
  bpoGov[i] <- pnorm(eta2)
}

plot(gdp.grid, probitW, type = "l", ylim = c(0, 0.55), lwd = 2,
     col = "grey", xlab = "GDP per Capita (in thousands)",
     ylab = "Pr(Outcome)", main = "Probabilities for All Outcomes",
     cex.main = 1.5, cex.lab = 1.3, cex.axis = 1.3)
lines(gdp.grid, bpoW, lwd = 2)
lines(gdp.grid, bpoReb, lwd = 2, lty = 2)
lines(gdp.grid, bpoGov, lwd = 2, lty = 3)

#dev.copy(postscript, "probWAR.eps", width = 8)
#dev.off()

## End(Not run)
#

---

**working.comp**

**Internal Function**

**Description**

It efficiently calculates the working model quantities needed to implement the automatic multiple smoothing parameter estimation procedure by exploiting a result which leads to very fast and stable calculations.

**Author(s)**

Maintainer: Giampiero Marra <giampiero.marra@ucl.ac.uk>
Index

*Topic **AIC**
  logLik.SemiParBIV, 66
*Topic **ATE**
  AT, 8
  AT2, 10
  mb, 67
*Topic **BIC**
  logLik.SemiParBIV, 66
*Topic **Clarke test**
  VuongClarke, 104
*Topic **Manski’s bounds**
  mb, 67
  print.mbx, 84
*Topic **Nonparametric bounds**
  mb, 67
*Topic **OR**
  OR, 71
*Topic **Q-Q plot**
  post.check, 76
  resp.check, 89
*Topic **RR**
  RR, 93
*Topic **Vuong test**
  VuongClarke, 104
*Topic **Worst-case bounds**
  mb, 67
*Topic **average treatment effect**
  AT, 8
  AT2, 10
  mb, 67
*Topic **bayesian posterior simulation**
  AT, 8
  AT2, 10
  jc.probs, 63
  OR, 71
  prev, 79
  RR, 93
*Topic **bivariate binary model**
  AT2, 10

*Topic **bivariate model**
  AT, 8
*Topic **complex survey design**
  adjCovSD, 7
*Topic **confidence interval**
  mb, 67
*Topic **copulae**
  AT, 8
  AT2, 10
*Topic **copula**
  gjrm, 28
  GJRM-package, 3
  jc.probs, 63
*Topic **correlated equations/errors**
  LM.bmx, 65
*Topic **covariance matrix adjustment**
  adjCov, 6
  adjCovSD, 7
*Topic **density plot**
  post.check, 76
  resp.check, 89
*Topic **diagnostics**
  conv.check, 15
*Topic **distribution**
  gamlss, 18
*Topic **endogeneity**
  gjrm, 28
  GJRM-package, 3
  gt.bmx, 54
  imputeCounter, 61
  LM.bmx, 65
*Topic **flexible copula regression modelling**
  gjrm, 28
*Topic **generalised joint regression modelling**
  conv.check, 15
  gjrm, 28
  gt.bmx, 54
imputeCounter, 61
imputeSS, 62
jc.probs, 63
OR, 71
post.check, 76
prev, 79
print.AT, 81
print.AT2, 81
print.copulaSampleSel, 82
print.gjrm, 84
print.OR, 85
print.prev, 86
print.RR, 87
print.SemiParBIV, 87
print.SemiParTRIV, 88
resp.check, 89
RR, 93
*Topic gradient test
gt.bpm, 54
*Topic histogram
post.check, 76
resp.check, 89
*Topic hplot
hazsurv.plot, 56
plot.SemiParBIV, 73
polys.map, 74
vis.gjrm, 103
*Topic imputation
imputeCounter, 61
imputeSS, 62
*Topic information criteria
summary.copulaSampleSel, 96
summary.gamlss, 97
summary.gjrm, 98
summary.SemiParBIV, 100
summary.SemiParTRIV, 102
*Topic joint regression modelling
LM.bpm, 65
*Topic lagrange multiplier test
LM.bpm, 65
*Topic likelihood ratio test
VuongClarke, 104
*Topic logLik
logLik.SemiParBIV, 66
*Topic marginal distribution
gjrm, 28
jc.probs, 63
*Topic non-random sample selection
gjrm, 28
GJRPM-package, 3
gt.bpm, 54
imputeSS, 62
LM.bpm, 65
prev, 79
summary.copulaSampleSel, 96
*Topic odds ratio
OR, 71
*Topic package
GJRPM-package, 3
*Topic partial observability
gjrm, 28
GJRPM-package, 3
*Topic penalised regression spline
GJRPM-package, 3
*Topic prediction
pred.mvt, 77
predict.SemiParBIV, 78
*Topic prevalence
mb, 67
prev, 79
*Topic regression modelling
cv.info, 16
gamlss, 18
print.gamlss, 83
*Topic regression spline
gamlss, 18
gjrm, 28
*Topic regression
GJRPM-package, 3
hazsurv.plot, 56
plot.SemiParBIV, 73
polys.map, 74
post.check, 76
resp.check, 89
rob.const, 91
rob.int, 92
summary.copulaSampleSel, 96
summary.gamlss, 97
summary.gjrm, 98
summary.SemiParBIV, 100
summary.SemiParTRIV, 102
vis.gjrm, 103
*Topic risk ratio
RR, 93
*Topic robust
rob.const, 91
rob.int, 92

*Topic score test
LM, bpm, 65

*Topic smooth

gamlss, 18
GJRM-package, 3
hazsurv.plot, 56
plot.SemiParBIV, 73
polys.map, 74
summary.copulaSampleSel, 96
summary.gamlss, 97
summary.gjrm, 98
summary.SemiParBIV, 100
summary.SemiParTRIV, 102
vis.gjrm, 103

*Topic survival data

cv.inform, 16
gamlss, 18
gjrm, 28

*Topic trivariate model

AT, 8

aCov (adjCov), 6
adjCov, 6, 32
adjCovSD, 7
AIC, 67
approx.CLIM (eta.tr), 17
ass.dp (eta.tr), 17
ass.ms (SemiParBIV.fit.post), 95
AT, 8, 67, 81, 102
AT2, 10, 82

BCDF, 11
bcont, 11
bcont23 (bcont), 11
bcont3 (bcont), 11
bcont32 (bcont), 11
bcontROB (bcont), 11
bcontSurvGunivInform (bprobHsContUniv), 13
bCopulaCLMgHsCont (bprobHsCont), 12
bcorrec (eta.tr), 17
bcorrecDiscr (eta.tr), 17
bcorrecFuncs (eta.tr), 17
bsdirccont, 11
bsdirccont12 (bsdirccont), 11
bsdirccont13 (bsdirccont), 11
bsdirccont23 (bsdirccont), 11

bsdircdiscr, 12
bsdircdiscr1 (bsdircdiscr), 12
bsdircdiscr2 (bsdircdiscr), 12
BIC, 67
BiCDF (BCDF), 11
bprobHs, 12
bprobHsCont, 12
bprobHsCont3 (bprobHsCont), 12
bprobHsContSS (bprobHsContSS), 13
bprobHsContSS, 13
bprobHsContUniv, 13
bprobHsContUniv3 (bprobHsContUniv), 13
bprobHsContUnivBIN (bprobHsContUniv), 13
bprobHsDiscr1, 13
bprobHsDiscr1SS, 14
bprobHsDiscr2 (bprobHsDiscr1), 13
bprobHsDiscr2SS (bprobHsDiscr1SS), 14
bprobHsPO, 14
bprobHsPO0 (bprobHsPO), 14
bprobHsSS, 14
bprobHstwoParC (bprobHs), 12

conv.check, 15, 20, 21, 31, 32
Cop1Cop2 (eta.tr), 17
copgHs, 15
copgHs2 (copgHs), 15
copgHs3 (copgHs), 15
copgHsAT (copgHs), 15
copgHsCond (copgHs), 15
copgHsCont (copgHs), 15
CopulaCLM, 16
copulaReg.fit.post (SemiParBIV.fit.post), 95
copulaSampleSel, 16
copulaSampleSel.fit.post (SemiParBIV.fit.post), 95
cov.c (eta.tr), 17
cv.inform, 16
distrHs, 17
distrHsAT (distrHs), 17
distrHsAT1 (distrHs), 17
distrHsATDiscr (distrHs), 17
distrHsATDiscr2 (distrHs), 17
distrHsDiscr (distrHs), 17
dof.tr (eta.tr), 17

edf.loop (SemiParBIV.fit.post), 95
enu.tr (eta.tr), 17
esp.tr (eta.tr), 17
eta.tr, 17

form.check (SemiParBIV.fit.post), 95
form.eq12 (eta.tr), 17

g.tri, 18
g.triESS (g.tri), 18
g.triSS (g.tri), 18

gamlss.upsv (eta.tr), 17
gamlss, 5, 15, 17, 18, 27, 83, 91, 92
gamlss.fit.post (SemiParBIV.fit.post), 95

gamlssObject, 21, 26
ggm.Deriv (bcont), 11
ggmtrust, 27
ggmtrust.path (eta.tr), 17
gjrm, 5, 7, 9, 11, 15, 28, 54, 62–64, 66, 68, 73, 74, 77–80, 84, 90, 94, 104

GJRM-package, 3
gjrmObject, 32, 53
gt.bpm, 54

H.tri, 55
H.triESS (H.tri), 55
H.triSS (H.tri), 55
hazsurv.plot, 56
hiv, 57

imputeCounter, 61
imputeSS, 62
inform.setup (eta.tr), 17
int.postcheck (post.check), 76
intB (eta.tr), 17

jc.probs, 63
jc.probs1 (jc.probs), 63
jc.probs2 (jc.probs), 63
jc.probs3 (jc.probs), 63
jc.probs4 (jc.probs), 63
jc.probs5 (jc.probs), 63
jc.probs6 (jc.probs), 63

llpsi, 64
LM.bpm, 65
logLik, 67
logLik.ggmtrust (logLik.SemiParBIV), 66
logLik.SemiParBIV, 66

mb, 67, 85
meps, 69
mice.impute.copulaSS (eta.tr), 17
mm (numgh), 71
mmf (eta.tr), 17

numch (numgh), 71
numgh, 71

OR, 71, 86
overall.sv (eta.tr), 17
overall.svG (eta.tr), 17

PDef (eta.tr), 17
pen, 73
penAprL (eta.tr), 17
penCor (pen), 73
plot.SemiParBIV, 73
polys.map, 74
polys.setup, 75
PosDefCor (eta.tr), 17
post.check, 76
postVb (SemiParBIV.fit.post), 95
pp (eta.tr), 17
pred.mvt, 77
pred.var (SemiParBIV.fit.post), 95
predict.SemiParBIV, 78
prev, 67, 79, 86, 102
print.AT, 81
print.AT2, 81
print.copulaSampleSel, 82
print.gamlss, 83
print.gjrm, 84
print.mb, 84
print.OR, 85
print.prev, 86
print.RR, 87
print.SemiParBIV, 87
print.SemiParTRIV, 88
print.summary.copulaSampleSel
(summary.copulaSampleSel), 96
print.summary.gamlss (summary.gamlss), 97
print.summary.gjrm (summary.gjrm), 98
print.summary.SemiParBIV
(summary.SemiParBIV), 100
print.summary.SemiParTRIV
(summary.SemiParTRIV), 102
probm, 89
INDEX

probmS(eta.tr), 17
pscr(eta.tr), 17
pscr0(eta.tr), 17
Reg2Copost(eta.tr), 17
regH, 89
resp.check, 89
resp.CLM(eta.tr), 17
rIC(eta.tr), 17
rMVN, 91
rob.const, 91
rob.int, 92
RR, 87, 93
S.m, 94
SemiParBIV, 95
SemiParBIV.fit, 95
SemiParBIV.fit.post, 95
SemiParTRIV, 95
SemiParTRIV.fit.post
(SemiParBIV.fit.post), 95
sim.resp(eta.tr), 17
SS(eta.tr), 17
startsn(eta.tr), 17
summary.copulaSampleSel, 96
summary.gamlss, 21, 27, 97
summary.gjrm, 32, 54, 98
summary.SemiParBIV, 100
summary.SemiParTRIV, 102
susu(eta.tr), 17
susutsn(eta.tr), 17
teta.tr(eta.tr), 17
TRIapprox, 103
triprobghs, 103
triprobghsESS(triprobghs), 103
triprobghsSS(triprobghs), 103
vis.gam2(eta.tr), 17
vis.gjrm, 103
VuongClarke, 32, 104
war, 105
working.comp, 107
Xdpred(eta.tr), 17