Package ‘GLMcat’

January 17, 2024

Title Generalized Linear Models for Categorical Responses

Version 0.2.6

Description In statistical modeling, there is a wide variety of regression models for categorical dependent variables (nominal or ordinal data); yet, there is no software embracing all these models together in a uniform and generalized format. Following the methodology proposed by Peyhardi, Trottier, and Guédon (2015) <doi:10.1093/biomet/asv042>, we introduce ‘GLMcat’, an R package to estimate generalized linear models implemented under the unified specification (r, F, Z). Where r represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), F the cumulative cdf function for the linkage, and Z, the design matrix.

License GPL-3

Encoding UTF-8

Depends R (>= 2.10)

LazyData true

RoxygenNote 7.2.3

LinkingTo Rcpp, BH, RcppEigen

Imports Rcpp, stats, stringr, ordinal

Suggests knitr, rmarkdown, testthat (>= 3.0.0), dplyr, ggplot2, gridExtra, gtools, tidyr

VignetteBuilder knitr

Config/testthat/edition 3

URL https://github.com/ylorenaleonv/GLMcat

BugReports https://github.com/ylorenaleonv/GLMcat/issues

NeedsCompilation yes

Author Lorena León [aut, cre],
 Jean Peyhardi [aut],
 Catherine Trottier [aut]

Maintainer Lorena León <ylorenaleonv@gmail.com>

Repository CRAN

Date/Publication 2024-01-17 09:42:04 UTC
R topics documented:

anova.glmcat ... 2
coef.glmcat ... 3
confint.glmcat .. 3
control_glmcat ... 4
discrete_cm ... 4
DisturbedDreams ... 6
extractAIC.glmcat .. 7
glmcat ... 7
logLik.glmcat ... 9
nobs.glmcat ... 10
plot.glmcat ... 10
predict.glmcat ... 11
print.anova.glmcat .. 11
print.glmcat ... 11
print.summary.glmcat .. 12
step.glmcat ... 13
summary.glmcat ... 13
terms.glmcat .. 14
TravelChoice ... 14
vcov.glmcat ... 15

Index 16

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anova.glmcat</td>
<td>Anova for a fitted glmcat model object</td>
</tr>
</tbody>
</table>

Description

Compute an analysis of deviance table for one fitted glmcat model object.

Usage

```r
## S3 method for class 'glmcat'
anova(object, ...)
```

Arguments

- **object**: an object of class "glmcat".
- **...**: additional arguments.
coef.glmcat

Model coefficients of a fitted glmcat model object

Description

Returns the coefficient estimates of the fitted glmcat model object.

Usage

```r
## S3 method for class 'glmcat'
coef(object, na.rm = FALSE, ...)
```

Arguments

- `object` an fitted object of class glmcat.
- `na.rm` TRUE for NA coefficients to be removed, default is FALSE.
- `...` additional arguments affecting the coef method.

confint.glmcat

Confidence intervals for parameters of a fitted glmcat model object

Description

Computes confidence intervals from a fitted glmcat model object for all the parameters.

Usage

```r
## S3 method for class 'glmcat'
confint(object, parm, level, ...)
```

Arguments

- `object` an fitted object of class glmcat.
- `parm` a numeric or character vector indicating which regression coefficients should be displayed
- `level` the confidence level.
- `...` other parameters.
control_glmcat
Control parameters for glmcat models

Description

Set control parameters for glmcat models.

Usage

```r
control_glmcat(maxit = 25, epsilon = 1e-06, beta_init = NA)
```

Arguments

- `maxit`: the maximum number of the Fisher’s Scoring Algorithm iterations. Defaults to 25.
- `epsilon`: a double to change update the convergence criterion of GLMcat models.
- `beta_init`: an appropriate sized vector for the initial iteration of the algorithm.

discrete_cm
Discrete Choice Models

Description

Family of models for Discrete Choice. Fits discrete choice models which require data in long form. For each individual (or decision maker), there are multiple observations (rows), one for each of the alternatives the individual could have chosen. A group of observations of the same individual is a "case". It is important to note that each case represents a single statistical observation although it comprises multiple observations.

Usage

```r
discrete_cm(
  formula,
  case_id,
  alternatives,
  reference,
  alternative_specific = NA,
  data,
  cdf = list(),
  intercept = "standard",
  normalization = 1,
  control = list(),
  na.action = "na.omit",
  find_nu = FALSE
)
```
Arguments

- **formula**: a symbolic description of the model to be fit. An expression of the form \(y \sim \text{predictors} \) is interpreted as a specification that the response \(y \) is modeled by a linear predictor specified symbolically by model. A particularity for the formula is that for the case-specific variables, the user can define a specific effect for a category (in the parameter `alternative_specific`).
- **case_id**: a string with the name of the column that identifies each case.
- **alternatives**: a string with the name of the column that identifies the vector of alternatives the individual could have chosen.
- **reference**: a string indicating the reference category.
- **alternative_specific**: a character vector with the name of the explanatory variables that are different for each case, these are the alternative-specific variables. By default, the case-specific variables are the explanatory variables that are not identified here but are part of the formula.
- **data**: a dataframe (in long format) object in R, with the dependent variable as a factor.
- **cdf**: a parameter specifying the inverse distribution function to be used as part of the link function. If the distribution has no parameters to specify, it should be entered as a string indicating the name. The default value is 'logistic'. If there are parameters to specify, a list must be entered. For example, for Student's distribution, it would be `list("student", df=2)`.
- **intercept**: if set to "conditional", the design will be equivalent to the conditional logit model.
- **normalization**: the quantile to use for the normalization of the estimated coefficients where the logistic distribution is used as the base cumulative distribution function.
- **control**: a list specifying additional control parameters. - `maxit`: the maximum number of iterations for the Fisher scoring algorithm. - `epsilon`: a double value to fix the epsilon value. - `beta_init`: an appropriately sized vector for the initial iteration of the algorithm.
- **na.action**: an argument to handle missing data. Available options are `na.omit`, `na.fail`, and `na.exclude`. It comes from the stats library and does not include the `na.pass` option.
- **find_nu**: a logical argument to indicate whether the user intends to utilize the Student CDF and seeks an optimization algorithm to identify an optimal degrees of freedom setting for the model.

Details

Family of models for Discrete Choice

Note

For these models, it is not allowed to exclude the intercept.
Examples

```r
library(GLMcat)
data(TravelChoice)

discrete_cm(formula = choice ~ hinc + gc + invt,
    case_id = "indv", alternatives = "mode", reference = "air",
    data = TravelChoice,
    cdf = "logistic")

#' Model with alternative specific effects for gc and invt:
discrete_cm(formula = choice ~ hinc + gc + invt,
    case_id = "indv", alternatives = "mode", reference = "air",
    data = TravelChoice, alternative_specific = c("gc", "invt"),
    cdf = "logistic")

#' A more specific design was studied by Louvierte et al. (2000, p. 157) and Greene (2003, p. 730).
#' These analyses set the effect of the variables hinc and psize exclusively for the category air
discrete_cm(formula = choice ~ hinc[air] + psize[air] + gc + ttme,
    case_id = "indv",
    alternatives = "mode",
    reference = "car",
    alternative_specific = c("gc", "ttme"),
    data = TravelChoice)
```

DisturbedDreams
Severity of disturbed dreams

Description

Boy’s disturbed dreams benchmark dataset drawn from a study that cross-classified boys by their age, and the severity (not severe, severe 1, severe 2, very severe) of their disturbed dreams (Maxwell, 1961).

Usage

```r
data(DisturbedDreams)
```

Format

A dataframe containing:

- **Age** Individuals age
- **Level** Severity level: Not.severe, Severe.1, Severe.2, Very.severe.

References

Examples

```r
data(DisturbedDreams)
```

Description

Method to compute the (generalized) Akaike An Information Criterion for a fitted object of class `glmcat`.

Usage

```r
## S3 method for class 'glmcat'
extractAIC(fit, ...)
```

Arguments

- `fit` an fitted object of class `glmcat`.
- `...` further arguments (currently unused in base R).

Examples

```r
model <- glmcat(formula = Level ~ Age, data = DisturbedDreams,
                 ref_category = "Very.severe", ratio = "cumulative")
extractAIC(model)
```

Description

Estimate generalized linear models implemented under the unified specification (ratio,cdf,Z) where ratio represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), cdf the cumulative distribution function for the linkage, and Z the design matrix which must be specified through the parallel and the threshold arguments.
glmcat()

Arguments

formula: a symbolic description of the model to be fit. An expression of the form ‘y ~ predictors’ is interpreted as a specification that the response ‘y’ is modeled by a linear predictor specified by ‘predictors’.

data: a dataframe object in R, with the dependent variable as a factor.

ratio: a string indicating the ratio (equivalently to the family) options are: reference, adjacent, cumulative and sequential. It is mandatory for the user to specify the desired ratio option as there is no default value.

cdf: The inverse distribution function to be used as part of the link function. - If the distribution has no parameters to specify, then it should be entered as a string indicating the name, e.g., ‘cdf = "normal"’. The default value is ‘cdf = "logistic"’. - If there are parameters to specify, then a list must be entered. For example, for Student’s distribution: ‘cdf = list("student", df=2)’. For the non-central distribution of Student: ‘cdf = list("noncentralt", df=2, mu=1)’.

parallel: a character vector indicating the name of the variables with a parallel effect. If a variable is categorical, specify the name and the level of the variable as a string, e.g., ‘"namelevel"’.

categories_order: a character vector indicating the incremental order of the categories, e.g., ‘c("a", "b", "c")’ for ‘a < b < c’. Alphabetical order is assumed by default. Order is relevant for adjacent, cumulative, and sequential ratio.

ref_category: a string indicating the reference category. This option is suitable for models with reference ratio.

threshold: a restriction to impose on the thresholds. Options are: ‘standard’, ‘equidistant’, or ‘symmetric’. This is valid only for the cumulative ratio.

control: a list of control parameters for the estimation algorithm. - ‘maxit’: The maximum number of iterations for the Fisher scoring algorithm. - ‘epsilon’: A double to change the convergence criterion of GLMcat models. - ‘beta_init’: An appropriately sized vector for the initial iteration of the algorithm.
The quantile to use for the normalization of the estimated coefficients when the logistic distribution is used as the base cumulative distribution function.

an argument to handle missing data. Available options are `na.omit`, `na.fail`, and `na.exclude`. It does not include the `na.pass` option.

a logical argument to indicate whether the user intends to utilize the Student CDF and seeks an optimization algorithm to identify an optimal degrees of freedom setting for the model.

additional arguments. Note: If the 'reference' ratio is used, you'll get a warning if the variable is an ordered factor. Note: If any other 'radio' is used, it will issue a warning if the response is not ordered, and the variables order will default to the alphanumeric natural order.

Fitting models for categorical responses

This function fits generalized linear models for categorical responses using the unified specification framework introduced by Peyhardi, Trottier, and Guédon (2015).

References

See Also

summary.glmcat

Examples

data(DisturbedDreams)
ref_log_com <- glmcat(formula = Level ~ Age, data = DisturbedDreams,
 ref_category = "Very.severe",
 cdf = "logistic", ratio = "reference")

logLik.glmcat

Log-likelihood of a fitted glmcat model object

Description

Extract Log-likelihood of a fitted glmcat model object.

Usage

S3 method for class 'glmcat'
logLik(object, ...)

logLik.glmcat

Log-likelihood of a fitted glmcat model object
Arguments

object an fitted object of class glmcat.
... additional arguments affecting the loglik.

nobs.glmcat
Number of observations of a fitted glmcat model object

Description

Extract the number of observations of the fitted glmcat model object.

Usage

```r
## S3 method for class 'glmcat'
nobs(object, ...)
```

Arguments

object an fitted object of class glmcat.
... additional arguments affecting the nobs method.

plot.glmcat
Plot method for a fitted glmcat model object

Description

Plot of the log-likelihood profile for a fitted glmcat model object.

Usage

```r
## S3 method for class 'glmcat'
plot(x, ...)
```

Arguments

x an object of class glmcat.
... additional arguments.
predict.glmcat

Predict method for a fitted glmcat model object

Description

Obtains predictions of a fitted glmcat model object.

Usage

```r
## S3 method for class 'glmcat'
predict(object, newdata, type, ...)
```

Arguments

- `object`: a fitted object of class `glmcat`.
- `newdata`: optionally, a data frame in which to look for the variables involved in the model. If omitted, the fitted linear predictors are used.
- `type`: the type of prediction required. The default is "prob" which gives the probabilities, the other option is "linear.predictor" which gives predictions on the scale of the linear predictor.
- `...`: further arguments. The default is "prob" which gives the probabilities, the other option is "linear.predictor" which gives predictions on the scale of the linear predictor.

print.anova.glmcat

Printing Anova for glmcat model fits

Description

`print.anova` method for GLMcat objects.

Usage

```r
## S3 method for class 'anova.glmcat'
print(x, digits = max(getOption("digits") - 2, 3), ...)
```

Arguments

- `x`: an object of class "glmcat".
- `digits`: the number of digits in the printed table.
- `...`: additional arguments affecting the summary produced.
print.glmcat

Print method for a fitted glmcat model object.

Description

print method for a fitted glmcat model object.

Usage

S3 method for class 'glmcat'
print(x, ...)

Arguments

x an object of class glmcat.
...

additional arguments.

Examples

model <- glmcat(formula = Level ~ Age, data = DisturbedDreams,
ref_category = "Very.severe", ratio = "cumulative")
print(model)

print.summary.glmcat

Printing a fitted glmcat model object

Description

print.summary method for GLMcat objects.

Usage

S3 method for class 'summaryglmcat'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x an object of class "glmcat".
digits the number of digits in the printed table.
...

additional arguments affecting the summary produced.
step.glmcat
Stepwise for a glmcat model object

Description
Stepwise for a glmcat model object based on the AIC.

Usage
```r
## S3 method for class 'glmcat'
step(object, scope, scale, direction, trace, keep, steps, k, ...)
```

Arguments
- `object`: an fitted object of class `glmcat`.
- `scope`: defines the range of models examined in the stepwise search (same as in the step function of the stats package). This should be either a single formula, or a list containing components upper and lower, both formulae.
- `scale`: the scaling parameter (if applicable).
- `direction`: the mode of the stepwise search.
- `trace`: to print the process information.
- `keep`: a logical value indicating whether to keep the models from all steps.
- `steps`: the maximum number of steps.
- `k`: additional arguments (if needed).
- `...`: additional arguments passed to the function.

summary.glmcat
Summary method for a fitted glmcat model object

Description
Summary method for a fitted `glmcat` model object.

Usage
```r
## S3 method for class 'glmcat'
summary(object, normalized = FALSE, correlation = FALSE, ...)
```

Arguments
- `object`: an fitted object of class `glmcat`.
- `normalized`: if `TRUE`, the summary method yields the normalized coefficients.
- `correlation`: if `TRUE`, prints the correlation matrix.
- `...`: additional arguments affecting the summary produced.
Examples

```r
mod1 <- discrete_cm(formula = choice ~ hinc + gc + invt,
                     case_id = "indv", alternatives = "mode", reference = "air",
                     data = TravelChoice, alternative_specific = c("gc", "invt"),
                     cdf = "normal", normalization = 0.8)
summary(mod1, normalized = TRUE)
```

terms.glmcat

Terms of a fitted glmcat model object

Description

Returns the terms of a fitted glmcat model object.

Usage

```r
## S3 method for class 'glmcat'
terms(x, ...)
```

Arguments

- **x**
 - an object of class glmcat.
- **...**
 - additional arguments.

TravelChoice

Travel Mode Choice

Description

The data set contains 210 observations on mode choice for travel between Sydney and Melbourne, Australia.

Usage

```r
data(TravelChoice)
```

Format

A dataframe containing:

- **indv** Id of the individual
- **mode** available options: air, train, bus or car
- **choice** a logical vector indicating as TRUE the transportation mode chosen by the traveler As category-specific variables:
- **invt** travel time in vehicle
vcov.glmcat

ge generalized cost measure
ttme terminal waiting time for plane, train and bus; 0 for car
invc in vehicle cost As case-specific variables:
 hinc household income
 psize traveling group size in mode chosen

Source

References

Examples
data(TravelChoice)

vcov.glmcat Variance-Covariance Matrix for a fitted glmcat model object

Description
Returns the variance-covariance matrix of the main parameters of a fitted glmcat model object.

Usage
S3 method for class 'glmcat'
vcov(object,...)

Arguments
object an object of class glmcat.
... additional arguments.
Index

* categorical
glmcat, 7
* datasets
 DisturbedDreams, 6
 TravelChoice, 14
* generalized
glmcat, 7
* linear
glmcat, 7
* model
glmcat, 7
* variables
glmcat, 7
anova.glmcat, 2
coef.glmcat, 3
confint.glmcat, 3
control_glmcat, 4
discrete_cm, 4
DisturbedDreams, 6
extractAIC.glmcat, 7
glmcat, 7
logLik.glmcat, 9
nobs.glmcat, 10
plot.glmcat, 10
predict.glmcat, 11
print.anova.glmcat, 11
print.glmcat, 12
print.summary.glmcat, 12
step.glmcat, 13
summary.glmcat, 9, 13
terms.glmcat, 14
TravelChoice, 14
vcov.glmcat, 15