Package ‘GMCM’

March 30, 2016

Type Package
Title Fast Estimation of Gaussian Mixture Copula Models
Description Unsupervised Clustering and Meta-analysis using Gaussian Mixture Copula Models.
Version 1.2.3
Author Anders Ellern Bilgrau, Martin Boegsted, Poul Svante Eriksen
Maintainer Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>
URL https://github.com/AEBilgrau/GMCM
BugReports https://github.com/AEBilgrau/GMCM/issues
License GPL (>= 2)
KeepSource yes
Imports Rcpp (>= 0.10.6)
LinkingTo Rcpp, RcppArmadillo
Suggests idr, Hmisc, RColorBrewer, foreach, jpeg, testthat (>= 0.3), knitr
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-03-30 00:56:30

R topics documented:

GMCM-package ... 2
choose.theta ... 3
dmvnormal .. 5
EMAlgorithm ... 6
fit.full.GMCM ... 7
fit.meta.GMCM .. 9
freshVsFrozen .. 11
full2meta .. 12
Description

Gaussian mixture copula models (GMCM) can be used for unsupervised clustering and meta analysis. In meta analysis, GMCMs can be used to quantify and identify which features which have been reproduce across multiple experiments. This package provides a fast and general implementation of GMCM cluster analysis and serves as an extension of the features available in the idr package.

Details

If the meta analysis of Li et al. (2011) is to be performed, the function `fit.meta.GMCM` is used to identify the maximum likelihood estimate of the special Gaussian mixture copula model (GMCM) defined by Li et al. (2011). The function `get.IDR` computes the local and adjusted Irreproducible Discovery Rates defined by Li et al. (2011) to determine the level of reproducibility.

Tewari et al. (2011) proposed using GMCMs as an general unsupervised clustering tool. If such a general unsupervised clustering is needed, like above, the function `fit.full.GMCM` computes the maximum likelihood estimate of the general GMCM. The function `get.prob` is used to estimate the class membership probabilities of each observation.

`SimulateGMCMData` provide easy simulation from the GMCMs.

Author(s)

Anders Ellern Bilgrau, Martin Boegsted, Poul Svante Eriksen

Maintainer: Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

References

See Also

Core user functions: fit.meta.GMCM, fit.full.GMCM, get.IDR, get.prob, SimulateGMCMData, SimulateGMMData, rtheta, Uhat, choose.theta, full2meta, meta2full

Package by Li et. al. (2011): idr.

Examples

Loading data
data(u133VsExon)

Subsetting data to reduce computation time
u133VsExon <- u133VsExon[1:5000,]

Ranking and scaling,
Remember large values should be critical to the null!
what <- Uhat(1 - u133VsExon)

Visualizing P-values and the ranked and scaled P-values
Not run:
par(mfrow = c(1,2))
plot(u133VsExon, cex = 0.5, pch = 4, col = "tomato", main = "P-values",
 xlab = "P (U133)", ylab = "P (Exon)"
plot(uwhat, cex = 0.5, pch = 4, col = "tomato", main = "Ranked P-values",
 xlab = "rank(1-P) (U133)", ylab = "rank(1-P) (Exon)"

End(Not run)

Fitting using BFGS
fit <- fit.meta.GMCM(what, init.par = c(0.5, 1, 1, 0.5), pgtol = 1e-2,
 method = "L-BFGS", positive.rho = TRUE, verbose = TRUE)

Compute IDR values and classify
idr <- get.IDR(what, par = fit)
table(idr$K) # 1 = irreproducible, 2 = reproducible

Not run:
See clustering results
par(mfrow = c(1,2))
plot(u133VsExon, cex = 0.5, pch = 4, main = "Classified genes",
 col = c("tomato", "steelblue")[idr$K],
 xlab = "P-value (U133)", ylab = "P-value (Exon)"
plot(uwhat, cex = 0.5, pch = 4, main = "Classified genes",
 col = c("tomato", "steelblue")[idr$K],
 xlab = "rank(1-P) (U133)", ylab = "rank(1-P) (Exon)"

End(Not run)
choose.theta

Description
This function uses a k-means algorithm to heuristically select suitable starting values for the general model.

Usage
choose.theta(u, m, ...)

Arguments
- u: A matrix of (estimates of) realizations from the GMCM.
- m: The number of components to be fitted.
- ...: Arguments passed to \texttt{kmeans}.

Details
The function selects the centers from the k-means algorithm as an initial estimate of the means. The proportional sizes of the clusters are selected as the initial values of the mixture proportions. The within cluster standard deviations are used as the variance of the clusters. The correlations between each dimension are taken to be zero.

Value
A list of parameters for the GMCM model on the form described in \texttt{rtheta}.

Note
The function uses the \texttt{kmeans} function from the \texttt{stats}-package.

Author(s)
Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

Examples
```r
set.seed(2)

# Simulating data
data1 <- SimulateGMCMData(n = 10000, m = 3, d = 2)
obs.data <- Uhat(data1$u)  # The ranked observed data

# Using choose.theta to get starting estimates
theta <- choose.theta(u = obs.data, m = 3)
print(theta)

# To illustrate theta, we simulate from the model
data2 <- SimulateGMMData(n = 10000, theta = theta)

cols <- apply(get.prob(obs.data,theta),1,which.max)
```
Plotting
par(mfrow = c(1,3))
plot(data1$z, main = "True latent GMM")
plot(Uhat(data1$u), col = cols,
 main = "Observed GMM\nColoured by k-means clustering")
plot(data2$z, main = "initial GMM")

dmvnormal | **Multivariate Gaussian density and simulation**

Description

Fast simulation from and evaluation of multivariate Gaussian probability densities.

Usage

```r
dmvnormal(x, mu, sigma)
```

```r
rmvnormal(n, mu, sigma)
```

Arguments

- `x` A p times k matrix of quantiles. Each rows correspond to a realization from the density and each column corresponds to a dimension.
- `mu` The mean vector of dimension k.
- `sigma` The variance-covariance matrix of dimension k times k.
- `n` The number of observations to be simulated.

Details

`dmvnormal` functions similarly to `dmvnorm` from the `mvtnorm`-package and likewise for `rmvnormal` and `rmvnorm`.

Value

`dmvnormal` returns a 1 by p matrix of the probability densities corresponding to each row of x. `sigma`. Each row corresponds to an observation.

`rmvnormal` returns a p by k matrix of observations from a multivariate normal distribution with the given mean `mu` and covariance

Author(s)

Anders Ellern Bilgrau

See Also

`dmvnorm` and `rmvnorm` in the `mvtnorm`-package.
EMAlgorithm

EM algorithm for Gaussian mixture models

Description

The regular expectation-maximization algorithm for general multivariate Gaussian mixture models.

Usage

EMAlgorithm(x, theta, eps = 1e-06, max.ite = 1e+05, trace.theta = FALSE, verbose = FALSE)

Arguments

x A matrix of observations where rows correspond to features and columns to experiments.
theta A list of parameters as described in rtheta.
eps The maximal required difference in successive likelihoods to establish convergence.
max.ite The maximum number of iterations.
trace.theta Logical. If TRUE, all estimates are stored and returned. Default is FALSE.
verbose Set to TRUE for verbose output. Default is FALSE.

Details

Though not as versatile, the algorithm can be a faster alternative to Mclust in the mclust-package.

Value

A list of length 3 with elements:

theta A list of the estimated parameters as described in rtheta.
loglik.tr A numeric vector of the log-likelihood trace.
kappa A matrix where kappa[i,j] is the probability that x[i,] is realized from the j'th component.

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>
See Also

\texttt{rtheta}, \texttt{pseudoEMAlgorithm}

Examples

```r
set.seed(10)
data <- SimulateGMCD ata(n = 1000, d = 2, m = 3)
start.theta <- rtheta(d = 2, m = 3)
res <- GMCM::EMAlgorithm(data$z, theta = start.theta)

par(mfrow = c(1,2))
plot(data$z, cex = 0.5, pch = 16, main = "Simulated data",
col = rainbow(3)[data$K])
plot(data$z, cex = 0.5, pch = 16, main = "GMM clustering",
col = rainbow(3)[apply(res$kappa,1,which.max)])
```

fit.full.GMCM

Unsupervised clustering using a general GMCM

Description

Perform unsupervised clustering using various optimization procedures to find the maximum likelihood estimate of the general Gaussian mixture copula model by Tewari et al. (2011).

Usage

```r
fit.full.GMCM(u, m, theta = choose.theta(u, m), method = c("NM", "SANN", "L-BFGS", "L-BFGS-B", "PEM"), max.ite = 1000, verbose = TRUE, ...)
```

Arguments

- **u**: An \(n \times d \) matrix of ranked and scaled test statistics. Rows correspond to observations and columns to the dimensions of the variables.
- **m**: The number of components to be fitted.
- **theta**: A list of parameters as defined in \texttt{rtheta}. If \(\theta \) is not provided, then heuristic starting values are chosen using the k-means algorithm.
- **method**: A character vector of length 1. The optimization method used. Should be either "NM", "SANN", "L-BFGS", "L-BFGS-B", or "PEM" which are the Nelder-Mead, Simulated Annealing, limited-memory quasi-Newton method, limited-memory quasi-Newton method with box constraints, and the pseudo EM algorithm, respectively. Default is "NM". See \texttt{optim} for further details.
- **max.ite**: The maximum number of iterations. If the method is "SANN" this is the number of iterations as there is no other stopping criterion. (See \texttt{optim})
- **verbose**: Logical. If \text{TRUE}, a trace of the parameter estimates is made.
- **...**: Arguments passed to the control-list in \texttt{optim} or \texttt{PseudoEMAlgorithm} if the method is "PEM".
Details

The "L-BFGS-B" method does not perform a transformation of the parameters and uses box constraints as implemented in optim. Note that the many parameter configurations are poorly estimable or directly unidentifiable.

Value

A list of parameters formatted as described in rtheta.

Note

All the optimization procedures are strongly dependent on the initial values and the cooling scheme. Therefore it is advisable to apply multiple different initial parameters and select the best fit. The choose.theta itself chooses random a initialization. Hence, the output when theta is not directly supplied can vary. See optim for further details.

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

References

See Also

optim, get.prob

Examples

```r
set.seed(17)
sim <- SimulateGMCMData(n = 1000, m = 3, d = 2)

# Plotting simulated data
par(mfrow = c(1,2))
plot(sim$z, col = rainbow(3)[sim$K], main = "Latent process")
plot(sim$u, col = rainbow(3)[sim$K], main = "GMCM process")

# Observed data
uhat <- Uhat(sim$u)

# The model should be fitted multiple times using different starting estimates
start.theta <- choose.theta(uhat, m = 3)  # Random starting estimate
```
res <- fit.full.GMCM(u = uhat, theta = start.theta, method = "NM", max.ite = 3000, reltol = 1e-2, trace = TRUE) # Note, 1e-2 is too big

Confusion matrix
Khat <- apply(get.prob(uhat, theta = res), 1, which.max)
table("Khat" = Khat, "K" = sim$K) # Note, some components have been swapped

Simulation from GMCM with the fitted parameters
simfit <- SimulateGMCMData(n = 1000, theta = res)

As seen, the underlying latent process is hard to estimate.
The clustering, however, is very good.
par(mfrow = c(2,2))
plot(simfit$z, col = simfit$K, main = "Model check 1\nSimulated GMM")
plot(simfit$u, col = simfit$K, main = "Model check 2\nSimulated GMCM")
plot(sim$u, col = Khat, main = "MAP clustering")

Description

This function performs reproducibility (or meta) analysis using GMCMs. It features various optimization routines to identify the maximum likelihood estimate of the special Gaussian mixture copula model proposed by Li et. al. (2011).

Usage

fit.meta.GMCM(u, init.par, method = c("NM", "SANN", "L-BFGS", "L-BFGS-B", "PEM"), max.ite = 1000, verbose = TRUE, positive.rho = TRUE, trace.theta = FALSE, ...)

Arguments

u An n by d matrix of test statistics. Rows correspond to features and columns to experiments. Large values are assumed to be indicative of reproducible genes.

init.par A 4-dimensional vector of the initial parameters where, init.par[1] is the mixture proportion of spurious signals, init.par[2] is the mean, init.par[3] is the standard deviation, init.par[4] is the correlation.

method A character vector of length 1. The optimization method used. Should be either "NM", "SANN", "L-BFGS", "L-BFGS-B", or "PEM" which are abbreviations of Nelder-Mead, Simulated Annealing, limited-memory quasi-Newton method, limited-memory quasi-Newton method with box constraints, and the pseudo EM algorithm, respectively. Default is "NM". See optim for further details.

max.ite The maximum number of iterations. If the method is "SANN" this is the number of iterations as there is no other stopping criterion. (See optim)
Logical. If TRUE, the log-likelihood values are printed.

Logical. If TRUE, the correlation parameter is restricted to be positive.

Logical. Extra convergence information is appended as a list to the output returned if TRUE. The exact behavior is dependent on the value of method. If method equals "PEM", the argument is passed to trace.theta in PseudoEMAlgorithm. Otherwise it is passed to the control argument trace in optim.

Arguments passed to the control-list in optim or PseudoEMAlgorithm if method is "PEM".

The "L-BFGS-B" method does not perform a transformation of the parameters.

A vector par of length 4 of the fitted parameters where par[1] is the probability of being from the first (or null) component, par[2] is the mean, par[3] is the standard deviation, and par[4] is the correlation.

Simulated annealing is strongly dependent on the initial values and the cooling scheme.

See optim for further details.

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

See Also

optim

Examples

set.seed(1)

True parameters
true.par <- c(0.9, 2, 0.7, 0.6)
Simulation of data from the GMCM model
data <- simulateGMCMData(n = 1000, par = true.par)
what <- Uhat(data$u) # Ranked observed data

init.par <- c(0.5, 1, 0.5, 0.9) # Initial parameters
Optimization with Nelder-Mead

```r
nm.par <- fit.meta.GCMC(uhat, init.par = init.par, method = "NM")
```

Not run:

Comparison with other optimization methods

```
# Optimization with simulated annealing
sann.par <- fit.meta.GCMC(uhat, init.par = init.par, method = "SANN",
                         max.ite = 3000, temp = 1)
```

Optimization with the Pseudo EM algorithm

```rnem.par <- fit.meta.GCMC(uhat, init.par = init.par, method = "PEM")
```

The estimates agree nicely

```r
rbind("True" = true.par, "Start" = init.par,
      "NM" = nm.par, "SANN" = sann.par, "PEM" = pem.par)
```

End(Not run)

Get estimated cluster

```
Khat <- get.IDR(x = uhat, par = nm.par)$Khat
plot(uhat, col = Khat, main = "Clustering\nIDR < 0.05")
```

freshVsFrozen

Reproducibility between Fresh and Frozen B-cell subtypes

Description

This dataset contains a `data.frame` of *t*-scores (from a Linear mixed effects model) and *p*-values for differential expression between pre (Im, N) and post germinal (M, PB) centre cells within peripheral blood. The first and second column contain the test for the hypothesis of no differentially expression between pre and post germinal cells for the freshly sorted and gene profiled cells. The third and fourth column contain the test for the hypothesis of no differentially expression between pre and post germinal cells for the cryopreserved (frozen), thawed, sorted, and gene profiled cells. The fifth and sixth column contain the test for the hypothesis of no differentially expression between fresh and frozen cells. The used array type was Affymetrix Human Exon 1.0 ST microarray.

Format

The format of the `data.frame` is:

```
'data.frame': 18708 obs. of  6 variables:
$ PreVsPost.Fresh.tstat : num -1.073 -0.381 -1.105 -0.559 -1.054 ... $ PreVsPost.Fresh.pval : num 0.283 0.703 0.269 0.576 0.292 ... $ PreVsPost.Frozen.tstat: num -0.245 -0.731 -0.828 -0.568 -1.083 ... $ PreVsPost.Frozen.pval : num 0.806 0.465 0.408 0.57 0.279 ... $ FreshVsFrozen.tstat : num 0.836 1.135 -0.221 0.191 -0.783 ... $ FreshVsFrozen.pval : num 0.403 0.256 0.825 0.849 0.434 ...
```
Details

Further details can be found in Rasmussen and Bilgrau et al. (2015).

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

References

Examples

data(freshVsFrozen)
str(freshVsFrozen)

Plot P-values
plot(freshVsFrozen[,c(2,4)], cex = 0.5)

Plot ranked and scaled P-values
plot(Uhat(abs(freshVsFrozen[,c(1,3)])), cex = 0.5)

full2meta

Convert between parameter formats

Description

These functions converts the parameters between the general Gaussian mixture (copula) model and the special GMCM. Most functions of the GMCM packages use the theta format described in rtheta.

Usage

full2meta(theta)
meta2full(par, d)

Arguments

theta A list of parameters for the full model. Formatted as described in rtheta.
par A vector of length 4 where par[1] is the probability of coming from the first component, par[2] is the mean value, par[3] is the standard deviation, and par[4] is the correlation of the reproducible component.
d The dimension of the mixture distribution.
Details

If a theta is supplied which is not on the form of Li et. al. (2011) the output is coerced by simply picking the first elements of the first mean vector and first covariance matrix as mean and standard deviation, respectively.

Value

full2meta returns a numeric vector of length 4 formatted as par.
meta2full returns a formatted list of parameters as described by rtheta.

Author(s)

Anders Ellern Bilgraau <anders.ellern.bilgrau@gmail.com>

References

See Also

rtheta

Examples

theta <- GMCM:::rtheta(m = 2, d = 2)
print(par <- full2meta(theta))
print(theta.special.case <- meta2full(par, d = 2))

get.IDR

Posterior class probabilities, local, and adjusted IDR.

Description

Functions for computing posterior cluster probabilities (get.prob) in the general GMCM as well as local and adjusted irreproducibility discovery rates (get.IDR) in the special GMCM.

Usage

get.IDR(x, par, threshold = 0.05, ...)

get.idr(x, theta, ...)

get.prob(x, theta, ...)
get.IDR

Arguments

- **x**: A matrix of observations where rows corresponds to features and columns to studies.
- **par**: A vector of length 4 where `par[1]` is mixture proportion of the irreproducible component, `par[2]` is the mean value, `par[3]` is the standard deviation, and `par[4]` is the correlation of the reproducible component.
- **threshold**: The threshold level of the IDR rate.
- **theta**: A list of parameters for the full model as described in `rtheta`.
- **...**: Arguments passed to `qgmm.marginal`.

Value

`get.IDR` returns a list of length 5 with elements:

- **idr**: A vector of the local idr values. I.e. the posterior probability that `x[i,]` belongs to the irreproducible component.
- **IDR**: A vector of the adjusted IDR values.
- **l**: The number of reproducible features at the specified `threshold`.
- **threshold**: The IDR threshold at which features are deemed reproducible.
- **khat**: A vector signifying whether the corresponding feature is reproducible or not.

`get.prob` returns a matrix where entry `(i,j)` is the posterior probability that the observation `x[i,]` belongs to cluster `j`.

Note

`get.idr` returns a vector where the `i`th entry is the posterior probability that observation `i` is irreproducible. It is a simple wrapper for `get.prob`. From `GMCM` version 1.1 it is an internal. Use `get.prop` or `get.IDR` instead. However, the function can still be accessed with `GMCM::get.idr`.

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

References

is.theta

Examples

set.seed(1123)

True parameters
true.par <- c(0.9, 2, 0.7, 0.6)

Simulation of data from the GMCM model
data <- SimulateGMCMData(n = 1000, par = true.par, d = 2)

Initial parameters
init.par <- c(0.5, 1, 0.5, 0.9)

Nelder-Mead optimization
nm.par <- fit.meta.GMCM(data$u, init.par = init.par, method = "NM")

Get IDR values
res <- get.IDR(data$u, nm.par, threshold = 0.05)

Plot results
plot(data$u, col = res$Khat, pch = c(3,16)[data$K])

Description

Function to check whether the argument is coherent and in the correct format.

Usage

is.theta(theta)

Arguments

theta A list on the theta-form described in rtheta

Value

logical. Returns TRUE if theta is coherent and in the correct format. Otherwise, the function returns FALSE with an accompanying warning message of the problem.

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

See Also

rtheta
Examples

theta1 <- rtheta() # Create a random correctly formatted theta
is.theta(theta1)

theta2 <- rtheta(d = 3, m = 5)
theta2$m <- 6 # m is now incoherent with the number of components
is.theta(theta2)

theta3 <- rtheta(d = 4, m = 2)
theta3$sigma$comp[1, 2] <- 0 # Making the covariance matrix non-symmetric
is.theta(theta3)

theta4 <- rtheta(d = 10, m = 10)
theta4$sigma$comp[1, 1] <- 0 # Destroy positive semi-definiteness
is.theta(theta4)

theta5 <- rtheta()
names(theta5) <- c("m", "d", "prop", "mu", "sigmas") # Incorrect names
is.theta(theta5)

rtheta

Get random parameters for the Gaussian mixture (copula) model

Description

Generate a random set parameters for the Gaussian mixture model (GMM) and Gaussian mixture copula model (GMCM). Primarily, it provides an easy prototype of the theta-format used in GMCM.

Usage

rtheta(m = 3, d = 2, method = c("old", "EqualSpherical", "UnequalSpherical", "EqualEllipsoidal", "UnequalEllipsoidal"))

Arguments

m The number of components in the mixture.

d The dimension of the mixture distribution.

method The method by which the theta should be generated. See details. Defaults to "old" which is the regular "old" behavior.

Details

Depending on the method argument the parameters are generated as follows. The new behavior is inspired by the simulation scenarios in Friedman (1989) but not exactly the same.

- pie is generated by m draws of a chi-squared distribution with $3m$ degrees of freedom divided by their sum. If method = "old" the uniform distribution is used instead.
• \(\mu \) is generated by \(m \) i.i.d. \(d \)-dimensional zero-mean normal vectors with covariance matrix \(1 \times 1 \times 1 \). (unchanged from the old behavior)

• \(\sigma \) is dependent on method. The covariance matrices for each component are generated as follows. If the method is

 - "EqualSpherical", then the covariance matrices are the identity matrix and thus are all equal and spherical.

 - "UnequalSpherical", then the covariance matrices are scaled identity matrices. In component \(h \), the covariance matrix is \(hI \)

 - "EqualEllipsoidal", then highly elliptical covariance matrices which equal for all components are used. The square root of the \(d \) eigenvalues are chosen equidistantly on the interval 10 to 1 and a randomly (uniformly) oriented orthonormal basis is chosen and used for all components.

 - "UnequalEllipsoidal", then highly elliptical covariance matrices different for all components are used. The eigenvalues of the covariance matrices equal as in all components as in "EqualEllipsoidal". However, they are all randomly (uniformly) oriented (unlike as described in Friedman (1989)).

 - "old", then the old behavior is used. The old behavior differs from "EqualEllipsoidal" by using the absolute value of \(d \) zero-mean i.i.d. normal eigenvalues with a standard deviation of 8.

In all cases, the orientation is selected uniformly.

Value

A named list of parameters with the 4 elements:

- \(m \) An integer giving the number of components in the mixture. Default is 3.
- \(d \) An integer giving the dimension of the mixture distribution. Default is 2.
- \(\text{pie} \) A numeric vector of length \(m \) of mixture proportions between 0 and 1 which sums to one.
- \(\mu \) A list of length \(m \) of numeric vectors of length \(d \) for each component.
- \(\sigma \) A list of length \(m \) of variance-covariance matrices (of size \(d \) times \(d \)) for each component.

Note

The function \texttt{is.theta} checks whether or not theta is in the correct format.

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

References

SimulateGMCMData

Description

Easy and fast simulation of data from Gaussian mixture copula models (GMCM) and Gaussian mixture models (GMM).

Usage

SimulateGMCMData(n = 1000, par, d = 2, theta, ...)

SimulateGMMData(n = 1000, theta = rtheta(...), ...)

Arguments

n
A single integer giving the number of realizations (observations) drawn from the model. Default is 1000.

par

d
The number of dimensions (or, equivalently, experiments) in the mixture distribution.
theta A list of parameters for the model as described in `rtheta`.

... In `SimulateGMCMData` the arguments are passed to `SimulateGMMData`. In `SimulateGMMData` the arguments are passed to `rtheta`.

Details

The functions provide simulation of \(n \) observations and \(d \)-dimensional GMCMs and GMMs with provided parameters. The `par` argument specifies the parameters of the Li et. al. (2011) GMCM. The `theta` argument specifies an arbitrary GMCM of Tewari et. al. (2011). Either one can be supplied. If both are missing, random parameters are chosen for the general model.

Value

`SimulateGMCMData` returns a list of length 4 with elements:

- `u` A matrix of the realized values of the GMCM.
- `z` A matrix of the latent GMM realizations.
- `K` An integer vector denoting the component from which the realization comes.
- `theta` A list containing the used parameters for the simulations with the format described in `rtheta`.

`SimulateGMMData` returns a list of length 3 with elements:

- `z` A matrix of GMM realizations.
- `K` An integer vector denoting the component from which the realization comes.
- `theta` As above and in `rtheta`.

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

References

See Also

`rtheta`
Examples

```r
set.seed(2)

# Simulation from the GMM
gmm.data1 <- SimulateGMMData(n = 200, m = 3, d = 2)
str(gmm.data1)

# Plotting the simulated data
plot(gmm.data1$z, col = gmm.data1$K)

# Simulation from the GMCM
gmcm.data1 <- SimulateGMCMData(n = 1000, m = 4, d = 2)
str(gmcm.data1)

# Plot the 2nd simulation
par(mfrow = c(1,2))
plot(gmcm.data1$z, col = gmcm.data1$K)
plot(gmcm.data1$u, col = gmcm.data1$K)

# Simulation from the special case of GMCM
theta <- meta2full(c(0.7, 2, 1, 0.7), d = 3)
gmcm.data2 <- SimulateGMCMData(n = 5000, theta = theta)
str(gmcm.data2)

# Plotting the 3rd simulation
par(mfrow=c(1,2))
plot(gmcm.data2$z, col = gmcm.data2$K)
plot(gmcm.data2$u, col = gmcm.data2$K)
```

Description

This dataset contains a data.frame of unadjusted p-values for differential expression between germinal center cells and other B-cells within tonsils for two different experiments. The experiments differ primarily in the microarray platform used. The first column corresponds the evidence from the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. The second column corresponds to the Affymetrix GeneChip Human Exon 1.0 ST Array.

Format

The format of the data.frame is:

```
'data.frame': 19577 obs. of 2 variables:
$ u133: num 0.17561 0.00178 0.005371 0.000669 0.655261 ... 
$ exon: num 1.07e-01 6.74e-10 1.51e-03 6.76e-05 3.36e-01 ... 
```
Details
Further details can be found in Bergkvist et al. (2014) and Rasmussen and Bilgrau et al. (2014).

Author(s)
Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

References

Examples
```r
data(u133VsExon)
str(u133VsExon)

# Plot P-values
plot(u133VsExon, cex = 0.5)

# Plot ranked and scaled P-values
plot(Uhat(1-u133VsExon), cex = 0.5)
```

Uhat
Fast ranking function

Description
Function for computing the scaled ranks for each column of the input matrix. In other words, the values are ranked column-wise and divided by `nrow(x) + 1`. A "1334" ranking scheme is used where the lowest values is awarded rank 1, second lowest value rank 2, and ties are given the maximum available rank.

Usage
`Uhat(x)`

Arguments

- `x` A numeric matrix of observations to be ranked. Rows correspond to features and columns to experiments.
Value

A matrix with the same dimensions as x of the scaled ranks.

Author(s)

Anders Ellern Bilgrau <anders.ellern.bilgrau@gmail.com>

See Also

SimulateGMMData, SimulateGMCMData

Examples

data <- SimulateGMMData()
par(mfrow = c(1,2))
plot(data$z, xlab = expression(z[1]), ylab = expression(z[2]))
plot(Uhat(data$z),
 xlab = expression(hat(u)[1]),
 ylab = expression(hat(u)[2]))
Index

*Topic datasets,
 freshVsFrozen, 11
 u133VsExon, 20
*Topic data
 freshVsFrozen, 11
 u133VsExon, 20
choose.theta, 3, 3, 8
dmvnormal, 5
EMAlgorithm, 6
fit.full.GMCM, 2, 3, 7
fit.full.gmcm (fit.full.GMCM), 7
fit.meta.GMCM, 2, 3, 9
fit.meta.gmcm (fit.meta.GMCM), 9
freshVsFrozen, 11
full2meta, 3, 12
get.IDR, 2, 3, 13
get.idr (get.IDR), 13
get.prob, 2, 3, 8
get.prob (get.IDR), 13
GMCM (GMCM-package), 2
GMCM-package, 2
idr, 3
is.theta, 15, 17, 18
kmeans, 4
meta2full, 3
meta2full (full2meta), 12
optim, 7–10
PseudoEMAlgorithm, 7, 10
qgmm.marginal, 14
rmvnormal (dmvnormal), 5
rtheta, 3, 4, 6–8, 12–15, 16, 19
SimulateGMCMData, 2, 3, 18, 22
SimulateGMMDData, 3, 22
SimulateGMMDData (SimulateGMCMData), 18
u133VsExon, 20
Uhat, 3, 21

23