CRAN GMD: User’s Guide (0.3.3)

Generic histogram construction, generic distance measure, cluster analysis with evaluation and visualization

Xiaobei Zhao∗1 and Albin Sandelin†1

1Bioinformatics Centre, University of Copenhagen

Modified: 2014-08-26 Compiled: 2016-12-27

You may find the latest version of GMD and this documentation at,
http://CRAN.R-project.org/package=GMD

Keywords: histogram, distance, metric, non-parametric, cluster analysis, hierarchical clustering, sum-of-squares, heatmap.3

Abstract

The purpose of this GMD vignette is to show how to get started with the R package GMD. GMD denotes Generalized Minimum Distance between distributions, which is a true metric that measures the distance between the shapes of any two discrete numerical distributions (e.g. histograms).

The vignette includes a brief introduction, an example to illustrate the concepts and the implementation of GMD and case studies that were carried out using classical data sets (e.g. iris) and high-throughput sequencing data (e.g. ChIP-seq) from biology experiments. The appendix on page 14 contains an overview of package functionality, and examples using primary functions in histogram construction (the ghist function), how to measure distance between distributions (the gdist function), cluster analysis with evaluation (the ‘elbow’ method in the css function) and visualization (the heatmap.3 function).

Contents

1 Introduction 2

2 Minimal Example: “Hello, GMD!” 3
Similar to the Earth Mover’s distance, Generalized Minimum distance of Distributions (GMD) (based on MDPA - Minimum Difference of Pair Assignment [3]) is a true metric of the similarity between the shapes of two histograms\(^1\). Considering two normalized histograms \(A\) and \(B\), GMD measures their similarity by counting the necessary “shifts” of elements between the bins that have to be performed to transform distribution \(A\) into distribution \(B\).

\(^1\)In statistics (and many other fields), histogram refers to a graphical representation of category frequencies in the data. Here, we use this term in a more mathematical sense, defined as a function that counts categorical data or a result returned by such a function.
The GMD package provides classes and methods for computing GMD in R [5]. The algorithm has been implemented in C to interface with R for efficient computation. The package also includes downstream cluster analysis in function css (A.4 on page 23) that use a pairwise distance matrix to make partitions given variant criteria, including the “elbow” rule as discussed in [7] or desired number of clusters. In addition, the function heatmap.3 (A.5 on page 25) integrates the visualization of the hierarchical clustering in dendrogram, the distance measure in heatmap and graphical representations of summary statistics of the resulting clusters or the overall partition. For more flexibility, the function heatmap.3 can also accept plug-in functions defined by end-users for custom summary statistics.

The motivation to write this package was born with the project [7] on characterizing Transcription Start Site (TSS) landscapes using high-throughput sequencing data, where a non-parametric distance measure was developed to assess the similarity among distributions of high-throughput sequencing reads from biological experiments. However, it is possible to use the method for any empirical distributions of categorical data.

The package is available on CRAN. The source code is available at http://CRAN.R-project.org/package=GMD under GPL license.

2 Minimal Example: “Hello, GMD!”

```r
## Check GMD’s sanity and start up
## @name hello-GMD
## GMD at CRAN, for source code download and installation
## http://cran.r-project.org/web/packages/GMD/index.html
## load GMD
library(GMD)

## version of GMD and description
packageVersion("GMD")
packageDescription("GMD")

## view GMD vignette
vignette("GMD-vignette",package="GMD")

## list the available data sets in GMD
data(package="GMD")

## list all the objects in the GMD
ls("package:GMD")

## help info on GMD
help(package="GMD")

## run a demo
demo("GMD-demo")

## cite GMD in publications
citation(package="GMD")
```

hello-GMD.R (Source Code 1) is a minimal example to load and check of that your GMD installation works. It also includes code for viewing the package information and this “vignette”, checking data sets provided by GMD, starting a demo and listing the citation of GMD.
3 An example to understand GMD

This example, based on simulated data, is designed to illustrate the concepts and the implementation of GMD by stepping through the computations in detail.

3.1 Histogram: construction and visualization

3.1.1 Load library and simulate data

```r
> require("GMD") # load library
> ## create two normally-distributed samples
> ## with unequal means and unequal variances
> set.seed(2012)
> x1 <- rnorm(1000,mean=-5, sd=10)
> x2 <- rnorm(1000,mean=10, sd=5)
```

3.1.2 Construct histograms

```r
> ## create common bins
> n <- 20 # desired number of bins
> breaks <- gbreaks(c(x1,x2),n) # bin boundaries
> ## make two histograms
> v1 <- ghist(x1,breaks=breaks,digits=0)
> v2 <- ghist(x2,breaks=breaks,digits=0)
```

3.1.3 Save histograms as multiple-histogram (‘mhist’) object

```r
> x <- list(v1,v2)
> mhist.obj <- as.mhist(x)
```
3.1.4 Visualize an ‘mhist’ object

```r
> ## plot histograms side-by-side
> plot(mhist.obj,mar=c(1.5,1,1,0),main="Histograms of simulated normal distributions")
```

Histograms of simulated normal distributions
> ## plot histograms as subplots, with corresponding bins aligned
> plot(mhist.obj, beside=FALSE, mar=c(1.5,1,1,0),
+ main="Histograms of simulated normal distributions")

Histograms of simulated normal distributions
3.2 Histogram: distance measure and alignment

Here we measure the GMD distance between shapes of two histograms with option sliding on.

3.2.1 Measure the pairwise distance between two histograms by GMD

```r
> gmdp.obj <- gmdp(v1,v2,sliding=TRUE)
> print(gmdp.obj)  # print a brief version by default
[1] 1.334

> print(gmdp.obj,mode="detailed")  # print a detailed version

GM-Distance: 1.334
Sliding: TRUE
Number of hits: 1
Gap:
  v1  v2
Hit1 5 0
Resolution: 1

> print(gmdp.obj,mode="full")  # print a full version

Distribution of v1:
1 2 10 19 28 46 59 101 109 119 133 108 77 42 29 17 6 3 1
(After normalization)
0.001 0.002 0.01 0.019 0.028 0.046 0.059 0.101 0.109 0.119 0.133 0.108 0.09 0.077 0.042 0.029 0.017 0.006 0.003

Distribution of v2:
0 0 0 0 0 0 0 0 0 1 5 30 94 206 258 199 139 58 8 2
(After normalization)
0 0 0 0 0 0 0 0 0 0.001 0.005 0.03 0.094 0.206 0.258 0.199 0.139 0.058 0.008 0.002

GM-Distance: 1.334
Sliding: TRUE
Number of hits: 1
Gap:
  v1  v2
Hit1 5 0
Resolution: 1
```
3.2.2 Show alignment

Now, let’s have a look at the alignment by GMD, with a distance 1.334 and a “shift” of 5 in the 1st distribution. It is important to note that the specific features (the values in this case) of the original bins in the histograms are ignored with sliding on. To keep original bin-to-bin correspondence, please set sliding to FALSE (see examples in section 4.2 on page 12).

```r
> plot(gmdp.obj, beside=FALSE)
```

Optimal alignment between distributions (with sliding)
GMD=1.334, gap=c(5,0)
4 Case study

4.1 CAGE: measuring the dissimilarities among TSSDs

Studies have demonstrated that the spatial distributions of read-based sequencing data from different platforms often indicate functional properties and expression profiles (reviewed in [6] and [8]). Analyzing the distributions of DNA reads is therefore often meaningful. To do this systematically, a measure of similarity between distributions is necessary. Such measures should ideally be true metrics, have few parameters as possible, be computationally efficient and also make biological sense to end-users. Case studies were made in section 4.1 and 4.2 to demonstrate the applications of GMD using distributions of CAGE and ChIP-seq reads.

In this section we demonstrate how GMD is applied to measure the dissimilarities among TSSDs, histograms of transcription start site (TSS) that are made of CAGE tags, with option sliding on. The spatial properties of TSSDs vary widely between promoters and have biological implications in both regulation and function. The raw data were produced by CAGE and downloaded from FANTOM3 ([2]) and CAGE sequence reads were preprocessed as did in [7]. The following codes case-cage.R (Source Code 2) are sufficient to perform both pairwise GMD calculation by function gmdp and to construct a GMD distance matrix by function gmdm.

A handful of options are available for control and flexibility, particularly, the option sliding is enabled by default to allow partial alignment.

```r
case-cage.R

require("GMD") # load library
data(cage) # load data

## measure pairwise distance
x <- gmdp(cage["Pfkfb3 (T02R00AECE2D8)"] , cage["Csf1 (T03R0672174D)"])
print(x) # print a brief version by default
print(x, mode="full") # print a full version by default

## show alignment
plot(x, labels=c("Pfkfb3","Csf1"), beside=FALSE)

## show another alignment
plot(gmdp(cage["Hig1 (T09R0743763C)"] , cage["Cd72 (T04R028B8BC9)"])
labels=c("Hig1 (T09R0743763C)","Cd72 (T04R028B8BC9)"),
beside=FALSE)

## construct a distance matrix and visualize it
short.labels <- gsub("(.)\(.*\) \(.*\)\\1","\1",names(cage)) # get short labels
x <- gmdm(cage[1:6], labels=short.labels[1:6])
plot(x)
```
Figure 1: Graphical output of "case-cage.R".

Figure 2: Graphical output of "case-cage.R".
Figure 3: Graphical output of “case-cage.R”.
4.2 ChIP-seq: measuring the similarities among histone modification patterns

In this section we demonstrate how GMD is applied to measure the dissimilarities between histone modifications represented by ChIP-seq reads. Distinctive patterns of chromatin modifications around the TSS are associated with transcription regulation and expression variation of genes. Comparing the chromatin modification profiles (originally produced by [1] and [4], and preprocessed by [7]), the sliding option is disabled for fixed alignments at the TSSs and the flanking regions. The GMD measure indicates how well profiles are co-related to each other. In addition, the downstream cluster analysis is visualized with function heatmap.3 that use GMD distance matrix to generate clustering dendrograms and make partitions given variant criteria, including the "elbow" rule (discussed in [7]) or desired number of clusters.

```r
require("GMD") # load library
data(chipseq_mES) # load data
data(chipseq_hCD4T) # load data

## pairwise distance and alignment based on GMD metric
plot(gmdm(chipseq_mES,sliding=FALSE))

## clustering on spatial distributions of histone modifications
x <- gmdm(chipseq_hCD4T,sliding=FALSE,resolution=10)
heatmap.3(x,revC=TRUE)

## Determine the number of clusters by "Elbow" criterion
main <- "Heatmap of ChIP-seq data (human CD4+ T cells)"
dist.obj <- gmdm2dist(x)
css.multi.obj <- css.hclust(dist.obj,hclust(dist.obj))
elbow.obj <- elbow.batch(css.multi.obj,ev.thres=0.90,inc.thres=0.05)
heatmap.3(dist.obj,main=main, revC=TRUE, kr=elbow.obj$k, kc=elbow.obj$k)

## more strict threshold
elbow.obj <- elbow.batch(css.multi.obj,ev.thres=0.75,inc.thres=0.1)
heatmap.3(dist.obj, main=main, revC=TRUE, kr=elbow.obj$k, kc=elbow.obj$k)

## side plots
normalizeVector <- function(v){v/sum(v)} # a function to normalize a vector
dev.new(width=12,height=8)

## summary of row clusters
expr1 <- list(quote(op <- par(mar = par("mar")*2)),
quote(plot(mhist.summary(as.mhist(i.x)),if.plot.new=FALSE)),
quote(par(op))
)

## summary of row clustering
expr2 <- list(quote(tmp.clusters <- cutree(hclust(dist.row),k=kr)),
quote(tmp.css <- css(dist.row,tmp.clusters)),
quote(print(tmp.css)),
quote(tmp.wev <- tmp.css$vss/tmp.css$tss),
quote(names(tmp.wev) <- as.character(unique(tmp.clusters))),
quote(tmp.wev <- tmp.wev[order(unique(tmp.clusters))]),
quote(barplot(tmp.wev,main="Cluster Explained Variance", xlab="Cluster", ylab="EV",col="white",border="black", ylim=c(0,max(tmp.wev)*1.1),cex.main=1)))
expr3 <- list(quote(op <- par(mar = par("mar")*2)),
quote(plot.elbow(css.multi.obj,elbow.obj,if.plot.new=FALSE)),
quote(par(op))
)

heatmap.3(dist.obj, main=main, cex.main=1.25, revC=TRUE, kr=elbow.obj$k, kc=elbow.obj$k,
keysize=1,mapsize=4.5,row.data=lapply(chipseq_hCD4T,normalizeVector),
plot.row.clusters=TRUE,plot.row.clusters.list=list(expr1),
plot.row.clustering=TRUE,plot.row.clustering.list=list(expr2,expr3))
```
Figure 4: Graphical output of “case-chipseq.R”.

Figure 5: Graphical output of “case-chipseq.R”.
A Functionality

A.1 An overview

Table 1. Functions of the GMD R package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghist</td>
<td>Generalized Histogram Computation and Visualization</td>
</tr>
<tr>
<td>gdist</td>
<td>Generalized Distance Matrix Computation</td>
</tr>
<tr>
<td>css</td>
<td>Computing Clustering Sum-of-Squares and evaluating the clustering by the “elbow” method</td>
</tr>
<tr>
<td>heatmap.3</td>
<td>Enhanced Heatmap Representation with Dendrogram and Partition</td>
</tr>
<tr>
<td>gmdp</td>
<td>Computation of GMD on a pair of histograms</td>
</tr>
<tr>
<td>gmdm</td>
<td>Computation of GMD Matrix on a set of histograms</td>
</tr>
</tbody>
</table>
A.2 ghist: Generic construction and visualization of histograms

A.2.1 Examples using simulated data

eexample-ghist.R (Source Code 4) is an example on how to construct a histogram object from raw data and make a visualization based on this.

```r
## load library
require("GMD")

## create two normally-distributed samples
## with unequal means and unequal variances
set.seed(2012)
v1 <- rnorm(1000,mean=-5, sd=10)
v2 <- rnorm(1000,mean=10, sd=5)

## create common bins
n <- 20 # desired number of bins
breaks <- gbreaks(c(v1,v2),n) # bin boundaries
x <- list(ghist(v1,breaks=breaks,digits=0),
          ghist(v2,breaks=breaks,digits=0))
mhist.obj <- as.mhist(x)

## plot histograms side-by-side
plot(mhist.obj,mar=c(1.5,1,1,0),main="Histograms of simulated normal distributions")

## plot histograms as subplots,
## with corresponding bins aligned
plot(mhist.obj,beside=FALSE,mar=c(1.5,1,1,0),
     main="Histograms of simulated normal distributions")
```

Figure 6: Graphical output of “example-ghist.R”.

Histograms of simulated normal distributions

![Histograms of simulated normal distributions](image)
Histograms of simulated normal distributions

Figure 7: Graphical output of “example-ghist.R”.
A.2.2 Examples using iris data

case-iris.R (Source Code 5) is a study on how to obtain and visualize histograms, using Fisher’s iris data set.

```r
## load library
require("GMD")

## load data
data(iris)

## create common bins
n <- 30 # the number of bins
breaks <- gbreaks(iris[,"Sepal.Length"],n) # the boundary of bins

## create a list of histograms
Sepal.Length <-
  list(setosa=ghist(iris[iris$Species=="setosa","Sepal.Length"],breaks=breaks),
       versicolor=ghist(iris[iris$Species=="versicolor","Sepal.Length"],breaks=breaks),
       virginica=ghist(iris[iris$Species=="virginica","Sepal.Length"],breaks=breaks)
  )

## convert to a 'hist' object
x <- as.mhist(Sepal.Length)

## get bin-wise summary statistics
summary(x)

## visualize the histograms
plot(x,beside=FALSE,
     main="Histogram of Sepal.Length of iris",xlab="Sepal.Length (cm)")
```
Figure 8: Graphical output of “case-iris.R”.

Histogram of Sepal.Length of iris
A.2.3 Examples using nottem data

case-nottem.R (Source Code 6) is a study on how to draw histograms side-by-side and to compute and visualize a bin-wise summary plot, using air temperature data at Nottingham Castle.

```r
## load library
require("GMD")

## load data
data(nottem)

class(nottem) # a time-series (ts) object
x <- ts2df(nottem) # convert ts to data.frame
mhist1 <- as.mhist(x[1:3,])

## plot multiple discrete distributions side-by-side
plot(mhist1,xlab="Month",ylab="Degree Fahrenheit",
   main="Air temperatures at Nottingham Castle")

## make summary statistics for each bin
mhist2 <- as.mhist(x)
ms <- mhist.summary(mhist2)
print(ms)

## plot bin-wise summary statistics with
## confidence intervals over the bars
plot(ms, main="Mean air temperatures at Nottingham Castle (1920-1939)",
     xlab="Month", ylab="Degree Fahrenheit")
```

Figure 9: Graphical output of “case-nottem.R”.

Figure 10: Graphical output of “case-nottem.R”.

Mean air temperatures at Nottingham Castle (1920–1939)
A.3 gdist: Generic construction and visualization of distances

element-gdist.R (Source Code 7) is an example on how to measure distances using a user-defined metric, such as correlation distance and GMD.

```r
## load library
require("GMD")
require(cluster)

## compute distance using Euclidean metric (default)
data(ruspini)
x <- gdist(ruspini)

## see a dendrogram result by hierarchical clustering
dev.new(width=12, height=6)
plot(hclust(x),
     main="Cluster Dendrogram of Ruspini data",
     xlab="Observations")

## convert to a distance matrix
m <- as.matrix(x)

## convert from a distance matrix
d <- as.dist(m)
stopifnot(d == x)

## Use correlations between variables "as distance"
data(USJudgeRatings)
xx <- gdist(x = USJudgeRatings, method="correlation.of.variables")
dev.new(width=12, height=6)
plot(hclust(xx),
     main="Cluster Dendrogram of USJudgeRatings data",
     xlab="Variables")
```

Figure 11: Graphical output of “example-gdist.R”.
Figure 12: Graphical output of “example-gdist.R”.

Cluster Dendrogram of USJudgeRatings data

Variables
hclust (”, "complete“)
A.4 css: Clustering Sum-of-Squares and the “elbow” plot: determining the number of clusters in a data set

A good clustering yields clusters where the total within-cluster sum-of-squares (WSSs) is small (i.e. cluster cohesion, measuring how closely related are objects in a cluster) and the total between-cluster sum-of-squares (BSSs) is high (i.e. cluster separation, measuring how distinct or well-separated one cluster is from the other).

`example-css.R` (Source Code 8) is an example on how to make correct choice of \(k \) using “elbow criterion”. A good \(k \) is selected according a) how much of the total variance in the whole data that the clusters can explain, and b) how large gain in explained variance we obtain by using these many clusters compared to one less or one more, the so-called “elbow” criterion.

The optimal choice of \(k \) will strike a balance between maximum compression of the data using a single cluster, and maximum accuracy by assigning each data point to its own cluster. More important, an ideal \(k \) should also be relevant in terms of what it reveals about the data, which typically cannot be measured by a metric but by a human expert. Here we present a way to measure such performance of a clustering model, using squared Euclidean distances. The evaluation is based on pairwise distance matrix and therefore more generic in a way that doesn’t involve computing the “centers” of the clusters in the raw data, which are often not available or hard to obtain.

```r
## load library
require("GMD")

## simulate data around 12 points in Euclidean space
pointv <- data.frame(x=c(1,2,2,4,4,5,5,6,8,8,9,9),y=c(1,2,8,2,4,4,5,9,9,8,1,9))
set.seed(2012)

mydata <- c()
for (i in 1:nrow(pointv)){
  mydata <- rbind(mydata,cbind(rnorm(10,pointv[i,1],0.1),rnorm(10,pointv[i,2],0.1)))
}

mydata <- data.frame(mydata); colnames(mydata) <- c("x","y")
plot(mydata,type="p",pch=21, main="Simulated data")

# determine a "good" k using elbow
dist.obj <- dist(mydata[,1:2])
hclust.obj <- hclust(dist.obj)
css.obj <- css.hclust(dist.obj,hclust.obj)
elbow.obj <- elbow.batch(css.obj)
print(elbow.obj)

# make partition given the "good" k
k <- elbow.obj$k; cutree.obj <- cutree(hclust.obj,k=k)
mydata$cluster <- cutree.obj

# draw a elbow plot and label the data
dev.new(width=12, height=6)
par(mfcol=c(1,2),mar=c(4,5,3,3),omi=c(0.75,0,0,0))
plot(mydata$x,mydata$y,pch=as.character(mydata$cluster),col=mydata$cluster,cex=0.75,
     main="Clusters of simulated data")
plot.elbow(css.obj,elbow.obj,if.plot.new=FALSE)

## clustering with more relaxed thresholds (, resulting a smaller "good" k)
mydata$cluster2 <- cutree(hclust.obj,k=elbow.obj$elbow.obj2)
mydata$cluster2 <- cutree(hclust.obj,k=elbow.obj2$k)

# draw an elbow plot with more relaxed thresholds
dev.new(width=12, height=6)
par(mfcol=c(1,2),mar=c(4,5,3,3),omi=c(0.75,0,0,0))
plot(mydata$x,mydata$y,pch=as.character(mydata$cluster2),col=mydata$cluster2,cex=0.75,
     main="Clusters of simulated data")
plot.elbow(css.obj,elbow.obj2,if.plot.new=FALSE)
```

23
Figure 13: Graphical output of “example-css.R”.

Figure 14: Graphical output of “example-css.R”.

A "good" $k=7$ (EV=0.98) is detected when the EV is no less than 0.95 and the increment of EV is no more than 0.01 for a bigger k.

A "good" $k=5$ (EV=0.94) is detected when the EV is no less than 0.9 and the increment of EV is no more than 0.05 for a bigger k.
A.5 heatmap.3: Visualization in cluster analysis, with evaluation

A.5.1 Examples using mtcars data

element-heatmap3a.R (Source Code 9) is an example on how to make a heatmap with summary visualization of observations.

```r
require("GMD") # load library
data(mtcars) # load data
x <- as.matrix(mtcars) # data as a matrix

dev.new(width=10,height=8) # default, with reordering and dendrogram
heatmap.3(x) # no reordering and no dendrogram
heatmap.3(x, dendrogram="none") # reordering without dendrogram
heatmap.3(x, dendrogram="row") # row dendrogram with row (and col) reordering
heatmap.3(x, dendrogram="col") # col dendrogram

heatmapOut <-
  heatmap.3(x, scale="column") # scaled by column
  names(heatmapOut) # view the list that is returned
heatmap.3(x, x.center=0) # colors centered around 0
heatmap.3(x, trace="column")# true "trace" on

## coloring cars (row observations) by brand
brands <- sapply(rownames(x), function(e) strsplit(e," ")[[1]][1])
names(brands) <- c()
brands.index <- as.numeric(as.factor(brands))
RowIndividualColors <- rainbow(max(brands.index))[brands.index]
heatmap.3(x, scale="column", RowIndividualColors=RowIndividualColors)

## coloring attributes (column features) randomly (just for a test :) 
heatmap.3(x, scale="column", ColIndividualColors=rainbow(ncol(x)))

## add a single plot for all row individuals
dev.new(width=12,height=8)
expr1 <- list(quote(plot(row.data[rowInd,"hp"],1:nrow(row.data),xlab="hp",ylab="", 
  main="Gross horsepower",yaxt="n")),
  quote(axis(2,1:nrow(row.data),rownames(row.data)[rowInd],las=2)))
heatmap.3(x, x.scale="column", plot.row.individuals=TRUE, row.data=x,
  plot.row.individuals.list=list(expr1))

## add a single plot for all col individuals
dev.new(width=12,height=8)
expr2 <- list(quote(plot(colMeans(col.data)[colInd], xlab="", ylab="Mean",xaxt="n", 
  main="Mean features",cex=1,pch=19)),
  quote(axis(1,1:ncol(col.data),colnames(col.data)[colInd],las=2)))
heatmap.3(x, x.scale="column", plot.col.individuals=TRUE, col.data=x,
  plot.col.individuals.list=list(expr2))

## add another single plot for all col individuals
dev.new(width=12,height=8)
expr3 <- list(quote(op <- par(mar = par("mar")*1.5)),
  quote(mytmp.data <- apply(col.data,2,function(e) e/sum(e))),
  quote(boxplot(mytmp.data[,colInd], xlab="", ylab="Value", 
  main="Boxplot of normalized column features")),
  quote(par(op)))
heatmap.3(x, x.scale="column", plot.col.individuals=TRUE, col.data=x,
  plot.col.individuals.list=list(expr3))
```
Figure 15: Graphical output of “example-heatmap3a.R”.

Figure 16: Graphical output of “example-heatmap3a.R”.
Figure 17: Graphical output of “example-heatmap3a.R”.

Figure 18: Graphical output of “example-heatmap3a.R”.

27
A.5.2 Examples using ruspini data

example-heatmap3b.R (Source Code 10) is an example on how to make a heatmap with summary visualization of clusters.

```r
# load library
require("GMD")
require(cluster)

# load data
data(ruspini)

# heatmap on a 'dist' object
x <- dist(ruspini)
main <- "Heatmap of Ruspini data"
dev.new(width=10,height=10)
heatmap.3(x, main=main, mapratio=1) # default with a title and a map in square!
heatmap.3(x, main=main, revC=TRUE) # reverse column for a symmetric look
heatmap.3(x, main=main, kr=2, kc=2) # show partition by predefined number of clusters

# show partition by elbow
css.multi.obj <- css.hclust(x,hclust(x))
elbow.obj <- elbow.batch(css.multi.obj,ev.thres=0.90,inc.thres=0.05)
heatmap.3(x, main=main, revC=TRUE, kr=elbow.obj$k, kc=elbow.obj$k)
heatmap.3(x, main=main, sub=sub("\n","",attr(elbow.obj,"description")), cex.sub=1.25,
          revC=TRUE,kr=elbow.obj$k, kc=elbow.obj$k) # show elbow info as subtitle

# side plot for every row clusters
dev.new(width=10,height=10)
expr1 <- list(quote(plot(do.call(rbind,i.x),xlab="x",ylab="y",
xlim=range(ruspini$x),ylim=range(ruspini$y),))
heatmap.3(x, main=main, revC=TRUE, kr=elbow.obj$k, kc=elbow.obj$k, trace="none",
row.data=as.list(data.frame(t(ruspini)))),
plot.row.clusters=TRUE,plot.row.clusters.list=list(expr1))

# side plot for every col clusters
dev.new(width=10,height=10)
expr2 <- list(quote(plot(do.call(rbind,i.x),xlab="x",ylab="y",
xlim=range(ruspini$x),ylim=range(ruspini$y),))
heatmap.3(x, main=main, revC=TRUE, kr=elbow.obj$k, kc=elbow.obj$k, trace="none",
col.data=as.list(data.frame(t(ruspini)))),
plot.col.clusters=TRUE,plot.col.clusters.list=list(expr2))
```

28
Figure 19: Graphical output of “example-heatmap3b.R”.

Heatmap of Ruspini data

A "good" k=4 (EV=0.93) is detected when the EV is no less than 0.9 and the increment of EV is no more than 0.05 for a
B Data

B.1 GMD dataset overview

```r
> data(package="GMD")
```

Data sets in package 'GMD':

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cage</td>
<td>CAGE Data</td>
</tr>
<tr>
<td>cagel</td>
<td>CAGE Data</td>
</tr>
<tr>
<td>chipseq_hCD4T</td>
<td>ChIP-seq Data</td>
</tr>
<tr>
<td>chipseq_mES</td>
<td>ChIP-seq Data</td>
</tr>
</tbody>
</table>

B.2 CAGE data: cage and cagel

```r
> help(cage)
```
> require(GMD)
> data(cage)
> class(cage)

[1] "list"

> length(cage)

[1] 20

> names(cage)

[1] "NA (T01F029805F8)" "Glul (T01F092C2995)"
[3] "Cyp4a14 (T04R06C91673)" "Stxbp4 (T11R05607FD4)"
[5] "D230039L06Rik (T01F0AA465EB)" "Gas5 (T01F09995479)"
[7] "Rab5c (T11R055FC6C4)" "BC003940 (T11R072A6CB0)"
[9] "Tpt1 (T14F04079189)" "Pcna (T02R07DE319B)"
[11] "D0H45114 (T18R020553F0)" "Gsto1 (T19F02D03566)"
[13] "Hsd11b1 (T01R0BB305BD)" "Csf1 (T03R0672174D)"
[15] "E2m (T02F0743FF05)" "Alox5ap (T05F08BCF2C4)"
[17] "Pfkf3 (T02R00AEC2D8)" "Hig1 (T09R0743763C)"
[19] "Cd72 (T04R028B8BC9)" "Egln1 (T08R0769239F)"

> data(cagel)
> names(cagel)

[1] "NA (T17F05912B83)" "Tpt1 (T14F04079189)"
[3] "E2m (T02F0743FF05)" "Grn (T11F0615F289)"
[5] "260001A11Rik (T12R043A2595)" "Rbbp7 (T0X0F91A7ACA)"
[7] "Rp14i (T10R07AB713B)" "H2afy (T13R034ACF47)"
[9] "Descr11 (T17F02802885)" "Ckap4 (T10R0504CE97)"
[11] "Rab5c (T11R055FC6C4)" "Pfkf3 (T02R00AEC2D8)"
[13] "Csf1 (T03R0672174D)" "Ctsb (T14F034BEDBA)"
[15] "Crim1 (T17F04928998)" "39304F1E0I5rik (T18R02C1D1A1)"
[17] "Rai17 (T14F0414BF473)" "Hig1 (T09R0743763C)"
[19] "Apbb2 (T05R03E329C8)" "Ptn (T06R0230806E)"
[21] "Tmeff2 (T01F03OE757)" "Mrps6 (T16F0583C906)"
[23] "Hsd11b1 (T01R0BB305BD)" "D0H4S114 (T18R020553F0)"
[25] "4930430J02Rik (T09F036E80C6)" "Phtf2 (T05R0125E896)"
[27] "Trpv2 (T11F034EBB8)" "Slc3a1 (T07R03AC06B9)"
[29] "Scdl (T19R02985186)" "Ctnx (T08R00950D6A)"
[31] "5730596K2ORik (T19F006DFC1A)" "Arbp (T05F06BBE13B)"
[33] "Klh15 (T05F03CA673)" "Gsto1 (T19F02D03566)"
[35] "NA (T02R07EF5EDA)" "Srpk1 (T17R019F44A1)"
[37] "Nudt7 (T08F06C36561)" "Tnfrsf10b (T14F03AB1306)"
[39] "Egln1 (T08R0769239F)" "9630050M13Rik (T02F002EC972)"
[41] "BC003940 (T11R072A6CB0)" "Ppia (T11F06040AFF)"
[43] "Alox5ap (T05F08BCF2C4)" "Pcna (T02R07DE319B)"
[45] "Gch1 (T14R02602138)" "Yap1 (T09R079F3FF)"
[47] "Vrx1 (T12F06O10C9B)" "Cd72 (T04R028B8BC9)"
[49] "Wdxc1 (T04R07DADFC0)" "Centg2 (T01F055392D1)"
B.3 ChIP-seq data: chipseq_mES and chipseq_hCD4T

```r
> help(chipseq)
> data(chipseq_mES)
> class(chipseq_mES)

[1] "list"

> length(chipseq_mES)

[1] 6

> names(chipseq_mES)

[1] "H3K27me3" "H3K36me3" "H3K4me1" "H3K4me2" "H3K4me3" "H3K9me3"

> data(chipseq_hCD4T)
> names(chipseq_hCD4T)

[1] "CTCF" "H2AK5ac" "H2AK9ac" "H2AZ" "H2BK120ac" "H2BK12ac"
[7] "H2BK20ac" "H2BK5ac" "H2BK5me1" "H3K14ac" "H3K18ac" "H3K23ac"
[13] "H3K27ac" "H3K27me1" "H3K27me2" "H3K27me3" "H3K36ac" "H3K36me1"
[19] "H3K36me3" "H3K4ac" "H3K4me1" "H3K4me2" "H3K4me3" "H3K79me1"
[25] "H3K79me2" "H3K79me3" "H3K9ac" "H3K9me1" "H3K9me2" "H3K9me3"
[31] "H4K2me1" "H4K2me2" "H4K12ac" "H4K16ac" "H4K20me1" "H4K20me3"
[37] "H4K5ac" "H4K8ac" "H4K91ac" "H4R3me2"
```
References

