Package ‘GMDHreg’

October 12, 2022

Type Package
Title Regression using GMDH Algorithms
Version 0.2.2
Author Manuel Villacorta Tilve
Maintainer Manuel Villacorta Tilve <mvt.oviedo@gmail.com>
Description Regression using GMDH algorithms from Prof. Alexey G. Ivakhnenko.
Group Method of Data Handling (GMDH), or polynomial neural networks, is a family of inductive algorithms
that performs gradually complicated polynomial models and selecting the best solution by an external criterion.
In other words, inductive GMDH algorithms give possibility finding automatically interrelations in data, and
selecting an optimal structure of model or network.
The package includes GMDH Combinatorial, GMDH MIA (Multilayered Iterative Algorithm), GMDH GIA (Generalized Iterative Algorithm) and GMDH Combinatorial with Active Neurons.
License GPL-3
Encoding UTF-8
Depends R (>= 2.15)
Imports stats, utils
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-07-05 12:30:02 UTC

R topics documented:

gmdh.combi ... 2
gmdh.combi.twice ... 4
gmdh.combi

Description

Build a regression model performing GMDH Combinatorial.
This is the basic GMDH algorithm. For more information, please read the package’s vignette.

Usage

```r
gmdh.combi(
  X,
  y,
  G = 2,
  criteria = c("PRESS", "test", "ICOMP"),
  x.test = NULL,
  y.test = NULL
)
```

Arguments

- `X`: matrix with N>1 columns and M rows, containing independent variables in the model. Be careful, N>4 and G=2, could be computationally very expensive and time consuming. The data must not contain NAs.
- `y`: vector or matrix containing dependent variable in the model. The data must not contain NAs.
- `G`: polynomial degree.
 - 0: linear regression without quadratic and interaction terms.
 - 1: linear regression with interaction terms.
 - 2: original Ivakhenko quadratic polynomial.
- `criteria`: GMDH external criteria. Values:
 - PRESS: Predicted Residual Error Sum of Squares. It take into account all information in data sample and it is computed without recalculating of system for each test point.
• test: use x.test and y.test to estimate RMSE (Root Mean Square Errors).

• ICOMP: Index of Informational Complexity. Like PRESS, it is computed without recalculating of system.

`x.test` matrix with a sample randomly drawn from the initial data. This sample should not be included in `X`.
It is used when criteria = test.

`y.test` vector or matrix with y values correspond with x.test values.

Value

An object of class `‘combi’`. This is a list with two elements: results and G.
Results is a list with two elements:

• `coef`: coefficients of final selected GMDH Combinatorial model.
• `CV`: external criteria value for selected model.

`G` the grade of polynomial used in GMDH Combinatorial model.

References

Examples

```r
set.seed(123)
x <- matrix(data = c(rnorm(1050)), ncol = 3, nrow = 350)
colnames(x) <- c("a", "b", "c")
y <- matrix(data = c(10 + x[, "a"] + x[, "b"]^2 + x[, "c"]^3), ncol = 1)
colnames(y) <- "y"
x.test <- x[1:10, ]
y.test <- y[1:10]
x <- x[-c(1:10), ]
y <- y[-c(1:10)]
```
mod <- gmdh.combi(X = x, y = y, criteria = "PRESS")
pred <- predict(mod, x.test)
summary(sqrt((pred - y.test)^2))

gmdh.combi.twice

GMDH Twice-Multilayered Combinatorial

Description

Build a regression model performing GMDH Twice-Multilayered Combinatorial (TMC).
For more information, please read the package’s vignette.

Usage

```r
gmdh.combi.twice(
X,
  y,
  criteria = c("PRESS", "test", "ICOMP"),
  G = 2,
  x.test = NULL,
  y.test = NULL
)
```

Arguments

- `X` matrix with N>1 columns and M rows, containing independent variables in the model.
 Be careful, N>4 and G=2, could be computationally very expensive and time consuming.
 The data must not contain NAs

- `y` vector or matrix containing dependent variable in the model.
 The data must not contain NAs

- `criteria` GMDH external criteria. Values:
 - **PRESS**: Predicted Residual Error Sum of Squares. It take into account all information in data sample and it is computed without recalculating of system for each test point.
 - **test**: use x.test and y.test to estimate RMSE (Root Mean Square Errors).
 - **ICOMP**: Index of Informational Complexity. Like PRESS, it is computed without recalculating of system.

- `G` polynomial degree.
 0: linear regression without quadratic and interaction terms.
 1: linear regression with interaction terms.
 2: original Ivakhnenko quadratic polynomial.
x.test matrix with a sample randomly drawn from the initial data. This sample should not be included in X. It is used when criteria = test.

y.test vector or matrix with y values correspond with x.test values.

Value
An object of class 'combitwice'. This is a list with two elements: results and G
Results is a list with two elements:

- coef: coefficients of final selected GMDH Combinatorial model.
- CV: external criteria value for selected model.

G the grade of polynomial used in GMDH Combinatorial model.

References

Examples
```r
set.seed(123)
x <- matrix(data = c(rnorm(1050)), ncol = 3, nrow = 350)
colnames(x) <- c("a", "b", "c")
y <- matrix(data = c(10 + x[, "a"] + x[, "b"]^2 + x[, "c"]^3), ncol = 1)
colnames(y) <- "y"
x.test <- x[1:10, ]
y.test <- y[1:10]
x <- x[-c(1:10), ]
y <- y[-c(1:10)]
mod <- gmdh.combi.twice(X = x, y = y, criteria = "PRESS")
```

pred <- predict(mod, x.test)
summary(sqrt((pred - y.test)^2))

gmdh.gia $GMDH$ GIA

Description

Build a regression model performing GMDH GIA (Generalized Iterative Algorithm) with Active Neurons (Combinatorial algorithm).
For more information, please read the package’s vignette.

Usage

```r
gmdh.gia(
  X,
  y,
  prune = ncol(X),
  criteria = c("PRESS", "test", "ICOMP"),
  x.test = NULL,
  y.test = NULL
)
```

Arguments

- **X**
 - matrix with N>3 columns and M rows, containing independent variables in the model.
 - The data must not contain NAs

- **y**
 - vector or matrix containing dependent variable in the model.
 - The data must not contain NAs

- **prune**
 - an integer whose recommended minimum value is the number of initial regressors.
 - The maximum value will depend on the available RAM.
 - Prune is the selected number of neurons from layer i to layer i+1. The resulting layer i+1 has prune(prune-1)/2 neurons; for example with prune=150, the resulting neurons will be 11.175

- **criteria**
 - GMDH external criteria. Values:
 - **PRESS**: predicted residual error sum of squares.
 - **test**: use x.test and y.test to estimate RMSE (root mean square errors).
 - **ICOMP**: Index of Informational Complexity. Like PRESS, it is computed without recalculating of system.
x.test matrix with a sample randomly drawn from the initial data. It is used when criteria = test. This sample should not be included in X.

y.test vector or matrix with y values correspond with x.test values.

Value
An object of class gia.

References

Examples
set.seed(123)
x <- matrix(data = c(rnorm(500)), ncol = 4, nrow = 125)
colnames(x) <- c("a", "b", "c", "d")
y <- matrix(data = c(10 + x[, "a"] + x[, "d"]**2), ncol = 1)
colnames(y) <- "y"
x.test <- x[1:5,]
y.test <- y[1:5]
x <- x[-c(1:5),]
y <- y[-c(1:5)]
mod <- gmdh.gia(X = x, y = y, criteria = "PRESS")
pred <- predict(mod, x.test)
summary(sqrt((pred - y.test)**2))
gmdh.mia

GMDH MIA

Description
Build a regression model performing GMDH MIA (Multilayered Iterative Algorithm).
For more information, please read the package’s vignette.

Usage
```r
gmdh.mia(
  X,
  y,
  prune = ncol(X),
  criteria = c("PRESS", "test", "ICOMP"),
  x.test = NULL,
  y.test = NULL
)
```

Arguments
- **X** matrix with N>3 columns and M rows, containing independent variables in the model.
The data must not contain NAs
- **y** vector or matrix containing dependent variable in the model.
The data must not contain NAs
- **prune** an integer whose recommended minimum value is the number of initial regressors.
The maximum value will depend on the available RAM.
Prune is the selected number of neurons from layer i to layer i+1. The resulting layer i+1 has prune(prune-1)/2 neurons; for example with prune=150, the resulting neurons will be 11.175
- **criteria** GMDH external criteria. Values:
 - PRESS: Predicted Residual Error Sum of Squares. It take into account all information in data sample and it is computed without recalculating of system for each test point.
 - test: use x.test and y.test to estimate RMSE (Root Mean Square Errors).
 - ICOMP: Index of Informational Complexity. Like PRESS, it is computed without recalculating of system.
- **x.test** matrix with a sample randomly drawn from the initial data.
 It is used when criteria = test.
 This sample should not be included in X.
- **y.test** vector or matrix with y values correspond with x.test values.
predict.combi

Value

An object of class mia.

References

Examples

set.seed(123)
x <- matrix(data = c(rnorm(1000)), ncol = 5, nrow = 200)
colnames(x) <- c("a", "b", "c", "d", "e")
y <- matrix(data = c(10 + x[, "a"] * x[, "e"]^3), ncol = 1)
colnames(y) <- "y"
x.test <- x[1:10,]
y.test <- y[1:10]
x <- x[-c(1:10),]
y <- y[-c(1:10)]
mod <- gmdh.mia(X = x, y = y, criteria = "PRESS")
pred <- predict(mod, x.test)
summary(sqrt((pred - y.test)^2))

predict.combi

Predict GMDH Combinatorial

Description

Calculates GMDH Combinatorial model predictions for new data.
Usage

```r
## S3 method for class 'combi'
predict(object, newdata, ...)
```

Arguments

- `object` an object of class 'combi'
- `newdata` matrix containing dependent variables in the model, which the predictions are calculated.
- `...` other undocumented arguments

Value

A matrix with predictions.

Examples

```r
set.seed(123)
x <- matrix(data = c(rnorm(1050)), ncol = 3, nrow = 350)
colnames(x) <- c("a", "b", "c")
y <- matrix(data = c(10 + x[, "a"] + x[, "b"]^2 + x[, "c"]^3), ncol = 1)
colnames(y) <- "y"
x.test <- x[1:10, ]
y.test <- y[1:10]
x <- x[-c(1:10), ]
y <- y[-c(1:10)]

mod <- gmdh.combi(X = x, y = y, criteria = "PRESS")
pred <- predict(mod, x.test)
summary(sqrt((pred - y.test)^2))
```

predict.combitwice

Predict GMDH Twice-Multilayered Combinatorial

Description

Calculates GMDH Twice-Multilayered Combinatorial model predictions for new data.

Usage

```r
## S3 method for class 'combitwice'
predict(object, newdata, ...)
```
Arguments

object an object of class 'combitwice'
newdata matrix containing dependent variables in the model, in which the predictions are calculated.

Value

A matrix with predictions.

Examples

```r
set.seed(123)
x <- matrix(data = c(rnorm(1050)), ncol = 3, nrow = 350)
colnames(x) <- c("a", "b", "c")
y <- matrix(data = c(10 + x[, "a"] + x[, "b"]^2 + x[, "c"]^3), ncol = 1)
colnames(y) <- "y"
x.test <- x[1:10, ]
y.test <- y[1:10]
x <- x[-c(1:10), ]
y <- y[-c(1:10)]

mod <- gmdh.combi.twice(X = x, y = y, criteria = "PRESS")
pred <- predict(mod, x.test)
summary(sqrt((pred - y.test)^2))
```
predict.mia

Predict GMDH MIA object

Description
Calculates GMDH MIA model predictions for new data.

Usage
S3 method for class 'mia'
predict(object, newdata, ...)

Arguments

object an object of class 'mia'
newdata matrix containing dependent variables in the model, with the predictions are calculated.
... other undocumented arguments

Value
A matrix with predictions.
Examples

```
set.seed(123)
x <- matrix(data = rnorm(1000), ncol = 5, nrow = 200)
colnames(x) <- c("a", "b", "c", "d", "e")
y <- matrix(data = c(10 + x[, "a"] * x[, "e"]^3), ncol = 1)
colnames(y) <- "y"
x.test <- x[1:10, ]
y.test <- y[1:10]
x <- x[-c(1:10), ]
y <- y[-c(1:10)]

mod <- gmdh.mia(X = x, y = y, prune = 5, criteria = "PRESS")
pred <- predict(mod, x.test)
summary(sqrt((pred - y.test)^2))
```
Index

gmdh.combi, 2

gmdh.combi.twice, 4

gmdh.gia, 6

gmdh.mia, 8

predict.combi, 9

predict.combitwice, 10

predict.gia, 11

predict.mia, 12