Package ‘GOCompare’
December 2, 2022

Title Comprehensive GO Terms Comparison Between Species
Version 1.0.2.1
Description Supports the assessment of functional enrichment analyses obtained for several lists of genes and provides a workflow to analyze them between two species via weighted graphs. Methods are described in Sosa et al. (2023) <doi:10.1016/j.ygeno.2022.110528>.

URL https://github.com/ccsosa/GOCompare
BugReports https://github.com/ccsosa/GOCompare/issues
Depends R (>= 4.0.0)
Imports base (>= 3.5),
 utils (>= 3.5),
 methods (>= 3.5),
 stats,
 grDevices,
 ape,
 vegan,
 ggplot2,
 ggrepel,
 igraph,
 parallel,
 stringr,
 mathjaxr,

RdMacros mathjaxr
License GPL (>= 3)
LazyData true
Encoding UTF-8
RoxygenNote 7.2.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3

R topics documented:

 GOCompare-package ... 2
 A_thaliana ... 2
 A_thaliana_compress .. 3
GOCompare-package

Description

GOCompare is an R package used to compare a GO terms list between two species.

Details

- **Package:** GOCompare
- **Type:** Package
- **Version:** 1.0.2.1
- **Date:** 2022-12-02
- **License:** GPL-3

A_thaliana

A thaliana functional enrichment analysis of 2224 ortholog genes related to cancer-hallmarks

Description

This dataset is the original dataset obtained for Clavijo-Buriticá (In preparation).

Usage

A_thaliana
A_thaliana_compress

Format

A data frame with 4063 rows and 6 variables:

- **Enrichment_FDR** Numeric: False discovery rate values for the GO term
- **Genes_in_list** numeric: Number of genes in the list of genes for a given GO term
- **Total_genes** numeric: Number of genes in the genome of a species for a given GO term
- **Functional_Category** character: GO term name or GO term id
- **Genes** character: Genes found for a given GO term
- **feature** character: A column representing the belonging of a group of comparison

Source

https://data.mendeley.com/datasets/myyy2wxd59/1

References

Clavijo-Buriticá, Sosa, C.C., Mosquera, A.J. Álvarez, A., Medina, J. Quimbaya, M.A. A systematic comparison of the molecular machinery associated with Cancer-Hallmarks between plants and humans reveals Arabidopsis thaliana as a useful model to understand specific carcinogenic events (to be submitted, Target journal: Plos Biology)

A_thaliana_compress A thaliana functional enrichment analysis results for "AID", "DCE", "RCD", "SPS" cancer-hallmarks

Description

This dataset is a subset of the original dataset obtained for Clavijo-Buriticá (In preparation)

Usage

A_thaliana_compress

Format

A data frame with 120 rows and 6 variables (30 GO terms per cancer hallmark):

- **Enrichment_FDR** Numeric: False discovery rate values for the GO term
- **Genes_in_list** numeric: Number of genes in the list of genes for a given GO term
- **Total_genes** numeric: Number of genes in the genome of a species for a given GO term
- **Functional_Category** character: GO term name or GO term id
- **Genes** character: Genes found for a given GO term
- **feature** character: A column representing the belonging of a group of comparison

Source

https://data.mendeley.com/datasets/myyy2wxd59/1
References

Clavijo-Buriticá, Sosa, C.C., Mosquera, A.J., Álvarez, A., Medina, J. Quimbaya, M.A. A systematic comparison of the molecular machinery associated with Cancer-Hallmarks between plants and humans reveals Arabidopsis thaliana as a useful model to understand specific carcinogenic events (to be submitted, Target journal: Plos Biology)

Description

`compareGOspecies` function provides a simple workflow to compare results of functional enrichment analysis for two species.

To use this function you will need two matrices with a column which, represents the features to be compared (e.g. feature). This function will extract the unique GO terms for two matrices and it will generate a presence-absence matrix where rows will represent a combination of categories and species (e.g H.sapiens AID) and columns will represent the GO terms analyzed. Further, this function will calculate Jaccard distances and it will provide as outputs a list with four slots: 1.) A principal coordinates analysis (PCoA) 2.) The Jaccard distance matrix 3.) A list of shared GO terms between species 4.) Finally, a list of the unique GO terms and the belonging to the respective species.

Usage

```r
compareGOspecies(
  df1,
  df2,
  GOterm_field,
  species1,
  species2,
  skipPCoA = FALSE,
  paired_lists = TRUE
)
```

Arguments

- `df1`: A data frame with the results of a functional enrichment analysis for the species 1 with an extra column "feature" with the features to be compared
- `df2`: A data frame with the results of a functional enrichment analysis for the species 2 with an extra column "feature" with the features to be compared
- `GOterm_field`: This is a string with the column name of the GO terms (e.g; "Functional_Category")
- `species1`: This is a string with the species name for species 1 (e.g; "H. sapiens")
- `species2`: This is a string with the species name for species 2 (e.g; "A. thaliana")
- `skipPCoA`: This is a boolean to indicate if the PCoA graphics can be skipped
- `paired_lists`: This is a boolean to indicate if both species have same comparable categories (gene lists). If the paired_lists is FALSE the counts will be done only for species and categories will be kept in the outcomes. Please use carefully when paired_lists = FALSE.
Value

This function will return a list with four slots: graphics, distance shared_GO_list, and unique_GO_list.

Note

Do not use "-" in the feature column. This will lead to wrong results!

Examples

```r
#Loading example datasets
data(H_sapiens_compress)
data(A_thaliana_compress)
#Defining the column with the GO terms to be compared
GOterm_field <- "Functional_Category"
#Defining the species names
species1 <- "H. sapiens"
species2 <- "A. thaliana"

#Running function
x <- compareGOspecies(df1=H_sapiens_compress,
df2=A_thaliana_compress,
GOterm_field=GOterm_field,
species1=species1,
species2=species2,
skipPCoA=FALSE,
paired_lists=TRUE)

## Not run:
#Displaying PCoA results
x$graphics
# Checking shared GO terms between species
print(tapply(x$shared_GO_list$feature,x$shared_GO_list$feature,length))
## End(Not run)
```

Description

This dataset is the results of running the `compareGOspecies` species and it is composed of four slots:

- **graphics** PCoA graphics
- **distance** numeric: Jaccard distance matrix
- **shared_GO_list** data.frame with shared GO terms between species
- **unique_GO_list** data.frame with unique GO terms and their belonging two each species

Usage

`comparison_ex_compress`
Format

An object of class `list` of length 4.

Source

https://data.mendeley.com/datasets/myy2wxd59/1

References

Clavijo-Buriticá, Sosa, C.C., Mosquera, A.J. Álvarez, A., Medina, J. Quimbaya, M.A. A systematic comparison of the molecular machinery associated with Cancer-Hallmarks between plants and humans reveals Arabidopsis thaliana as a useful model to understand specific carcinogenic events (to be submitted, Target journal: Plos Biology)

comparison_ex_compress_CH

Functional enrichment analysis comparison between H. sapiens and A. thaliana for “DCE”, and “RCD” cancer-hallmarks. This dataset contains 10 GO terms per category to allow a fast run of the function graph_two_GOs.

Description

This dataset is the results of running the compareGOspecies species and it is composed of three slots:

- `distance` numeric: Jaccard distance matrix
- `shared.GO_list` data.frame with shared GO terms between species
- `unique.GO_list` data.frame with unique GO terms and their belonging two each species

Usage

`comparison_ex_compress_CH`

Format

An object of class `list` of length 3.

Source

https://data.mendeley.com/datasets/myy2wxd59/1

References

Clavijo-Buriticá, Sosa, C.C., Mosquera, A.J. Álvarez, A., Medina, J. Quimbaya, M.A. A systematic comparison of the molecular machinery associated with Cancer-Hallmarks between plants and humans reveals Arabidopsis thaliana as a useful model to understand specific carcinogenic events (to be submitted, Target journal: Plos Biology)
evaluateCAT_species

Comprehensive comparison between species using categories and Pearson’s Chi-squared Tests

Description

evaluateGO_species provides a simple function to compare results of functional enrichment analysis for two species through the use of proportion tests or Pearson’s Chi-squared Tests and a False discovery rate correction.

Usage

evaluateCAT_species(df1, df2, species1, species2, GOterm_field, test = "prop")

Arguments

df1: A data frame with the results of a functional enrichment analysis for the species 1 with an extra column "feature" with the features to be compared

df2: A data frame with the results of a functional enrichment analysis for the species 2 with an extra column "feature" with the features to be compared

species1: This is a string with the species name for the species 1 (e.g; "H. sapiens")

species2: This is a string with the species name for the species 2 (e.g; "A. thaliana")

GOterm_field: This is a string with the column name of the GO terms (e.g; "Functional_Category")

test: This is a string with the hypothesis test to be performed. Two options are provided, "prop" and "chi-squared" (default value="prop")

Value

This function will return a data.frame with the following fields:

<table>
<thead>
<tr>
<th>CAT</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvalue</td>
<td>p-value obtained through the use of Pearson’s Chi-squared Test</td>
</tr>
<tr>
<td>FDR</td>
<td>Multiple comparison correction for the p-value column</td>
</tr>
</tbody>
</table>

Examples

#Loading example datasets
data(H_sapiens)
data(A_thaliana)

#Defining the column with the GO terms to be compared
GOterm_field <- "Functional_Category"

#Defining the species names
species1 <- "H. sapiens"
species2 <- "A. thaliana"

#Running function
x <- evaluateCAT_species(df1= H_sapiens,
df2=A_thaliana,
species1=species1,
species2=species2,
GOterm_field=GOterm_field,
test="prop")

print(x)
evaluateGO_species

Comprehensive comparison between species using GO terms and Pearson’s Chi-squared Tests

Description

evaluateGO_species provides a simple function to compare results of functional enrichment analysis for two species through the use of proportion tests or Pearson’s Chi-squared Tests and a False discovery rate correction

Usage

evaluateGO_species(df1, df2, species1, species2, GOterm_field, test = “prop”)

Arguments

df1
A data frame with the results of a functional enrichment analysis for the species 1 with an extra column “feature” with the features to be compared

df2
A data frame with the results of a functional enrichment analysis for the species 2 with an extra column “feature” with the features to be compared

species1
This is a string with the species name for the species 1 (e.g; “H. sapiens”)

species2
This is a string with the species name for the species 2 (e.g; “A. thaliana”)

GOterm_field
This is a string with the column name of the GO terms (e.g; “Functional_Category”)

test
This is a string with the hypothesis test to be performed. Two options are provided, “prop” and “chi-squared” (default value=”prop”)

Value

This function will return a data.frame with the following fields:

<table>
<thead>
<tr>
<th>GO term analyzed</th>
<th>p-value</th>
<th>FDR</th>
</tr>
</thead>
</table>

Examples

#Loading example datasets
data(H_sapiens)
data(A_thaliana)
#Defining the column with the GO terms to be compared
GOterm_field <- “Functional_Category”
#Defining the species names
species1 <- “H. sapiens”
species2 <- “A. thaliana”
#Running function
x <- evaluateGO_species(df1= H_sapiens,
df2= A_thaliana,
species1=species1,
species2=species2,
GOterm_field=GOterm_field,
test=“prop”)

print(x)
graphGOspecies

Undirected network representation for the results of functional enrichment analysis for one species

Description

graphGOspecies is a function to create undirected graphs using two options:

Categories option:
The nodes \((V) \) represent groups of gene lists (categories), and the edges \((E) \) represent GO terms co-occurring between pairs of categories. More specifically, Two categories: \(u, v \in V \) are connected by an edge \(e = (u, v) \), the edge weights \(w(e) \) are defined as the ratio of the number of GO terms co-occurring between two categories. Edge weights \(w(e) \) are defined as the ratio of the number of GO terms (e.g. biological processes) co-occurring between two categories \(BP_u \cap BP_v \) compared to the total number of GO terms available. A node weight \(K_u(u) \) is defined as the sum of the edge weights where the node \(u \) is a participant. Thus, the node weight represents how frequently GO terms are reported and expressed in a biological phenomenon.

\[
w(e) = \frac{|BP_u \cap BP_v|}{|BP|}
\]

(1)

\[
K_u = \sum_{v \in V} w(u, v)
\]

(2)

GO option:
The nodes \(V \) represent GO terms and the edges \(E' \) represent categories where a pair of GO terms co-occur. More specifically, two GO terms are connected by an edge \(e' = (u, v') \). the edge weight \(w'(e') \) corresponds to the number of categories co-occurring the GO terms \(u \) and \(v' \), compared with the total number of GO terms (Equation 3). A node weight \(K'_u(u') \) is defined, in this case the weight represents the importance of a GO term (more frequent co-occurring). (Please be patient, it requires a long time to finish).

\[
w'(e') = \frac{|Cu' \cap Cv'|}{|BP|}
\]

(3)

\[
K'_u(u') = \sum_{v \in V'} w'(u', v)
\]

(4)

Usage

graphGOspecies(
 df,
 GOterm_field,
 option = "Categories",
)
graphGOspecies

```r
numCores = 2,
saveGraph = FALSE,
outdir = NULL,
filename = NULL
```

Arguments

- **df**
 A data frame with the results of a functional enrichment analysis for a species with an extra column "feature" with the features to be compared.

- **GOterm_field**
 This is a string with the column name of the GO terms (e.g. "Functional.Category").

- **option**
 (values: "GO" or "Categories"). This option allows create either a graph where nodes are GO terms and edges are features or alternatively a graph where nodes are features and edges are GO terms (default value="Categories").

- **numCores**
 numeric, Number of cores to use for the process (default value numCores=2). For the example below, only one core will be used.

- **saveGraph**
 logical, if TRUE the function will allow save the graph in graphml format.

- **outdir**
 This parameter will allow save the graph file in a folder described here (e.g: "D:"). This parameter only works when saveGraph=TRUE.

- **filename**
 The name of the graph filename to be saved in the outdir detailed by the user. This parameter only works when saveGraph=TRUE.

Value

This function will return a list with two slots: edges and nodes.

(Categories): Edges list columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE and TARGET</td>
<td>The source and target categories (Nodes in the edge)</td>
</tr>
<tr>
<td>FEATURES_N</td>
<td>The number of GO terms between the categories</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Edge weight</td>
</tr>
<tr>
<td>FEATURES</td>
<td>GO terms available for both nodes</td>
</tr>
</tbody>
</table>

Node list columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>feature</td>
<td>Category name</td>
</tr>
<tr>
<td>GO_count</td>
<td>GO terms counts for the node</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Node weight</td>
</tr>
</tbody>
</table>

(GO):

Edges list columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE and TARGET</td>
<td>The source and target GO terms (Nodes in the edge)</td>
</tr>
<tr>
<td>FEATURE</td>
<td>The number of Categories where both GO Terms were found</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Edge weight</td>
</tr>
</tbody>
</table>
graph_two.GOspecies

Node list columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO</td>
<td>GO term node name</td>
</tr>
<tr>
<td>GO_WEIGHT</td>
<td>Node weight</td>
</tr>
</tbody>
</table>

Examples

```r
#Loading example datasets
data(H_sapiens_compress)

GOterm_field <- "Functional_Category"

#Running function
x <- graphGOspecies(df=H_sapiens_compress,
                     GOterm_field=GOterm_field,
                     option = "Categories",
                     numCores=1,
                     saveGraph=FALSE,
                     outdir = NULL,
                     filename=NULL)
```

graph_two.GOspecies

Undirected network representation for the results of functional enrichment analysis to compare two species and a series of categories

Description

graph_two.GOspecies is a function to create undirected graphs

The graph_two.GOspecies is an analog of the graphGOspecies function, and it has the same options (" Categories " and " GO "). Nevertheless, the way in which the edge and node weights are calculated is slightly different. Since two species are compared, three possible graphs are available G_1, G_2, and G_3. G_1 and G_2 represent each of the species analyzed and G_3 is a subgraph of G_1, G_2, which contains the GO terms or Categories co-occurring between both species.

Categories option: (Weight): The nodes (V) represent groups of gene lists (categories), and the edges (E) represent GO terms co-occurring between pairs of categories and the weight of the nodes provides a measure of how a GO term is conserved between two species and a series of categories but it is biased to categories.

$$
\hat{K}_w(u) = \sum_{v \in V_1} w(u, v) + \sum_{v \in V_2} w(u, v)
$$

(shared weight): The nodes (V) represent groups of gene lists (categories), and the edges (E) represent GO terms co-occurring between pairs of categories that are only shared between species. This node weight K_s is computed from a shared weight of edges s, where $N1$ and $N2$ are the set of GO terms associated with the edge $e = (u, v)$ for species 1 and 2, respectively. Therefore the node shared weight $K_s(u)$ is the sum of s.

5

(5)
\[s(e) = \left| \frac{N1 \cap N2}{N1 \cup N2} \right| \]

(6)

\[K_s(u) = \sum_{v=(V_1 \cup V_2)} s(u, v) \]

(7)

(combined weight): This node weight \(K_c(u) \) is a combination of the weight and the shared weight. The idea of this combined weight is to find categories with more frequent GO terms co-occurring in order to observe functional similarities between two species with a balance of GO terms co-occurring among gene lists (categories) and the two species. This node weight varies from -1 (categories with GO terms found only in one species and few categories) to 1 (categories with GO terms shared widely between species and among other categories). The combined node weight \(K_c \) is defined as the sum of the min-max normalized weights \(\hat{K}_w \) and \(K_s \) minus 1.

\[\text{minmax}(y) = \frac{y - \min(y)}{\max(y) - \min(y)} \]

(8)

\[K_c(u) = \text{minmax}(\hat{K}_w(u)) + \text{minmax}(K_s(u)) - 1 \]

(9)

GO option: Given there are three possible graphs are available \(G_1, G_2, \) and \(G_3 \). \(G_1 \) and \(G_2 \) represent each of the species analyzed and \(G_3 \) is a subgraph of \(G_1, G_2 \), which contains the GO terms or Categories co-occurring between both species. For this case, Nodes are GO terms and edges are categories where a GO terms is co-occurring. This weight is similar to the GO weight calculated for graphGOspecies function. It is calculated as the equation 5.

\[\hat{K}_w(u) = \sum_{v \in V_1} w(u, v) + \sum_{v \in V_2} w(u, v) \]

(5)

Usage

\[
\text{graph_two_GOspecies(}
\text{x,}
\text{species1,}
\text{species2,}
\text{GOterm_field,}
\text{saveGraph = FALSE,}
\text{option = "Categories",}
\text{numCores = 2,}
\text{outdir = NULL,}
\text{filename = NULL}
\text{)}
\]
Arguments

- **x**: is a list obtained as output of the compareGOspecies function.
- **species1**: This is a string with the species name for species 1 (e.g. "H. sapiens").
- **species2**: This is a string with the species name for species 2 (e.g. "A. thaliana").
- **GOterm_field**: This is a string with the column name of the GO terms (e.g. "Functional_Category").
- **saveGraph**: logical, if TRUE the function will allow save the graph in graphml format.
- **option**: (values: "Categories or "GO"). This option allows create either a graph where nodes are GO terms and edges are features and GO as well as species belonging are edges attributes or a graph where nodes are GO terms and edges are species belonging (default value="Categories").
- **numCores**: numeric, Number of cores to use for the process (default value numCores=2). For the example below, only one core will be used.
- **outdir**: This parameter will allow save the graph file in a folder described here (e.g: "D:"). This parameter only works when saveGraph=TRUE.
- **filename**: The name of the graph filename to be saved in the outdir detailed by the user. This parameter only works when saveGraph=TRUE.

Value

This function will return a list with two slots: edges and nodes. (Categories): Edges list columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE and TARGET</td>
<td>The source and target categories (Nodes in the edge)</td>
</tr>
<tr>
<td>GO_N</td>
<td>The number of GO terms between the categories</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Edge weight</td>
</tr>
<tr>
<td>GO</td>
<td>GO terms available for both nodes</td>
</tr>
<tr>
<td>SP1</td>
<td>Number of GO terms for the species 1</td>
</tr>
<tr>
<td>SP2</td>
<td>Number of GO terms for the species 2</td>
</tr>
<tr>
<td>SHARED</td>
<td>Number of GO terms shared or co-occurring between the categories</td>
</tr>
<tr>
<td>SHARED_WEIGHT</td>
<td>Shared weight for the edge</td>
</tr>
</tbody>
</table>

Node list columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT</td>
<td>Category name</td>
</tr>
<tr>
<td>CAT_WEIGHT</td>
<td>Node weight</td>
</tr>
<tr>
<td>SHARED_WEIGHT</td>
<td>Shared weight for the node</td>
</tr>
<tr>
<td>COMBINED_WEIGHT</td>
<td>Combined weight for the node</td>
</tr>
</tbody>
</table>

(GO):

Edges list columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE and TARGET</td>
<td>The source and target GO terms (Nodes in the edge)</td>
</tr>
<tr>
<td>FEATURE</td>
<td>The number of Categories where both GO Terms were found</td>
</tr>
<tr>
<td>SP</td>
<td>Species where the GO terms was found (Species 1, Species 2 or Shared)</td>
</tr>
</tbody>
</table>
Examples

```r
GOterm_field <- "Functional_Category"
data(comparison_ex_compress_CH)
# Defining the species names
species1 <- "H. sapiens"
species2 <- "A. thaliana"
x_graph <- graph_two_GOspecies(x=comparison_ex_compress_CH,
                                species1=species1,
                                species2=species2,
                                GOterm_field=GOterm_field,
                                numCores=1,
                                saveGraph = FALSE,
                                option= "Categories",
                                outdir = NULL,
                                filename= NULL)
```

Description

This dataset is a subset of the original dataset obtained for Clavijo-Buriticá (In preparation)

Usage

H_sapiens

Format

A data frame with 5000 rows and 6 variables:

- **Enrichment_FDR** Numeric: False discovery rate values for the GO term
- **Genes_in_list** numeric: Number of genes in the list of genes for a given GO term
- **Total_genes** numeric: Number of genes in the genome of a species for a given GO term
- **Functional_Category** character: GO term name or GO term id
- **Genes** character: Genes found for a given GO term
- **feature** character: A column representing the belonging of a group of comparison
Source

https://data.mendeley.com/datasets/myyyy2wxd59/1

References

Clavijo-Buriticá, Sosa, C.C., Mosquera, A.J. Álvarez, A., Medina, J. Quimbaya, M.A. A systematic comparison of the molecular machinery associated with Cancer-Hallmarks between plants and humans reveals Arabidopsis thaliana as a useful model to understand specific carcinogenic events (to be submitted, Target journal: Plos Biology)

H_sapiens_compress

H. sapiens functional enrichment analysis results for "AID", "DCE", "RCD", "SPS" cancer-hallmarks

Description

This dataset is a subset of the original dataset obtained for Clavijo-Buriticá (In preparation)

Usage

H_sapiens_compress

Format

A data frame with 120 rows and 6 variables (30 GO terms per cancer hallmark):

- **Enrichment_FDR** Numeric: False discovery rate values for the GO term
- **Genes_in_list** numeric: Number of genes in the list of genes for a given GO term
- **Total_genes** numeric: Number of genes in the genome of a species for a given GO term
- **Functional_Category** character: GO term name or GO term id
- **Genes** character: Genes found for a given GO term
- **feature** character: A column representing the belonging of a group of comparison

Source

https://data.mendeley.com/datasets/myyyy2wxd59/1

References

Clavijo-Buriticá, Sosa, C.C., Mosquera, A.J. Álvarez, A., Medina, J. Quimbaya, M.A. A systematic comparison of the molecular machinery associated with Cancer-Hallmarks between plants and humans reveals Arabidopsis thaliana as a useful model to understand specific carcinogenic events (to be submitted, Target journal: Plos Biology)
mostFrequentGOs

Most frequent GO terms among groups for a data.frame

Description

Provides an easy way to get the frequency of GO terms such as biological processes for a data frame and a series of features.

Usage

```r
mostFrequentGOs(df, GOterm_field)
```

Arguments

- `df`: A data frame with the results of a functional enrichment analysis for a species with an extra column "feature" with the features to be compared.
- `GOterm_field`: This is a string with the column name of the GO terms (e.g. "Functional.Category").

Value

This function will return a table with the frequency of GO terms per feature.

Examples

```r
# Loading example datasets
data(H_sapiens)
# Defining the column with the GO terms to be compared
GOterm_field <- "Functional_Category"
# Running function
x <- mostFrequentGOs(df=H_sapiens, GOterm_field=GOterm_field)
# Displaying results
head(x)
```
Index

* datasets
 A_thaliana, 2
 A_thaliana_compress, 3
 comparison_ex_compress, 5
 comparison_ex_compress_CH, 6
 H_sapiens, 14
 H_sapiens_compress, 15

* package
 GOCompare-package, 2
 A_thaliana, 2
 A_thaliana_compress, 3
 compareGOspecies, 4
 comparison_ex_compress, 5
 comparison_ex_compress_CH, 6
 evaluateCAT_species, 7
 evaluateGO_species, 8
 GOCompare (GOCompare-package), 2
 GOCompare-package, 2
 graph_two_GOspecies, 11
 graphGOspecies, 9
 H_sapiens, 14
 H_sapiens_compress, 15
 mostFrequentGOs, 16