Package ‘GORCure’

January 13, 2017

Type Package

Title Fit Generalized Odds Rate Mixture Cure Model with Interval Censored Data

Version 2.0

Date 2017-01-12

Author Jie Zhou, Jiajia Zhang, Wenbin Lu

Maintainer Jie Zhou <zhoujie02569@gmail.com>

Description Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.

License GPL (>= 2)

Depends R (>= 2.15.0),stats,graphics,survival,ICsurv,pracma,MASS

NeedsCompilation no

Repository CRAN

Date/Publication 2017-01-13 19:25:30

R topics documented:

GORCure-package .. 2
GORMC .. 2
plot.predict.GORMC .. 5
predict.GORMC ... 5
summary.GORMC ... 6

Index 7
GORMC

GORMC-package

Fit Generalized Odds Rate Mixture Cure Model with Interval Censored Data

Description

Generalized Odds Rate Mixture Cure (GORMC) model is a flexible cure model which includes the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure (POMC) model as special cases. When the survival data is interval censored, this package provides an efficient solution for the GORMC model based on a gamma-poisson data augmentation.

Details

- **Package:** GORCure
- **Type:** Package
- **Version:** 2.0
- **Date:** 2017-01-12
- **License:** GPL-2

The main function is GORMC, which produces the estimates for coefficients and the covariance matrix. The summary function can be used to get the test results of the coefficients. The predict function can be used to obtain the estimated cure rate and survival curve for an individual with specified covariates for the cure rate and survival parts separately. The plot function can be applied to generate the predicted survival curve for that individual.

Author(s)

Jie Zhou, Jiajia Zhang, Wenbin Lu

Maintainer: Jie Zhou <zhoujie02569@gmail.com>

References

Description

The Generalized Odds Rate Mixture Cure model is fitted for interval censored survival data. The EM algorithm facilitated by a gamma-poisson data augmentation is applied for estimating the coefficients in both the cure rate part and the survival part. The covariance matrix has closed forms based on the Louis method.
Usage

GORMC(survfun = formula(data), curefun = formula(data), data = parent.frame(),
 r = 0, n.int = 5, order = 3, max.iter = 1000, cov.rate = 0.001)

Arguments

- **survfun**: A formula for the survival part in the GORMC model, defined using the Surv function and type="interval2".
- **curefun**: The formula of predictors of the cure rate part in the GORMC model.
- **data**: The interval censored survival data, including the left and right end points of the time intervals and the covariates for the cure rate part and the survival part. If a subject is left(right) censored, the left(right) end point of the subject should be defined as "NA", see example.
- **r**: The transformation parameter in the GORMC model, should be greater than or equal to 0. r=0 refers to the PHMC model and r=1 refers to the POMC model. The default is 0.
- **n.int**: Number of interior knots of the splines. Default is 5.
- **order**: Order of the spline basis functions. Default is 3, i.e. the cubic splines.
- **max.iter**: The maximum number of interations for the EM algorithm. Default is 1000.
- **cov.rate**: The bound for convergence of the algorithm, which defined as the difference between the log-likelihood values of two consecutive iterations smaller than this value. Default is 0.001.

Details

The formula defined for “survfun” is based on the Surv() function, where the left and right end points of the time interval are included and the type is equal to “interval2”. The left(right) end points of left(right) censored individuals should be defined as “NA” in the data frame before running the function. The transformation parameter r is a nonnegative number corresponding to a specific model in the GORMC family of models. Special cases include the PHMC model(r=0) and the POMC model(r=1). Other positive numbers can also be specified. The grid search method is suggested to find the best model in practice. That is, try a sequence of r values and choose the one with the greatest log-likelihood value.

Value

- **ParEst**: A list includes the estimated coefficients (Eta,Beta,gi), the whole hessian matrix (Hessian), AIC, and the log-likelihood value(loglik).
- **ParVcov**: The estimated covariance matrix of the coefficients Eta and Beta.

Note

The estimated hessian matrix can be very large and sometimes not invertable. In which case, we try the QR decomposition, g-inverse or even numerical methods to get the covariance matrix. Different values of hess in the ParVcov indicating the different cases. hess=0:the hessian matrix is invertable; hess=1:the QR decomposition is applied to solve the hessian matrix; hess=2:the g-inverse is applied.
to the hessian matrix; hess=3: the hessian matrix is obtained from numerical methods. The variance estimates may be unreliable for the cases when hess>0.

References

Examples

data(Hemophilia)
head(Hemophilia)
Set Left/Right Interval End Points as NA
Hemophilia$L[Hemophilia$d1==1]<-Hemophilia$R[Hemophilia$d3==1]<-NA

Fit PHMC Model (r=0)
fit<-GORMC(survfun=Surv(L,R)-Low+Medium+High,curefun=Low+Medium+High, data=Hemophilia,r=0)
summary(fit)

Fit POMC Model (r=1)
B fit<-GORMC(survfun=Surv(L,R)-Low+Medium+High,curefun=Low+Medium+High, # data=Hemophilia,r=1)
summary(fit)

Predict Cure Rate and Survival Curve for a New Individual
Specify covariate vectors for new.z and new.x
pred1<-predict(fit,new.z=c(1,0,0,0),new.x=c(0,0,0))
pred2<-predict(fit,new.z=c(1,1,0,0),new.x=c(1,0,0))
pred3<-predict(fit,new.z=c(1,0,1,0),new.x=c(0,1,0))
pred4<-predict(fit,new.z=c(1,0,0,1),new.x=c(0,0,1))

Obtain Cure Rates
pred1$CureRate
pred2$CureRate
pred3$CureRate
pred4$CureRate

Plot the Survival Curves
plot(pred1,xlab="Time",ylab="Survival Probability",ylim=c(0,1))
lines(pred2$Survival,col=2)
lines(pred3$Survival,col=3)
lines(pred4$Survival,col=4)
legend(0,0.3,c("None","Low","Medium","High"),lty=1,col=1:4)

Not run: Grid Search r
rr<-seq(0.2,0.2)
logl<-numeric()
for(i in 1:length(rr)){
fit<-GORMC(survfun=Surv(L,R)-Low+Medium+High,curefun=Low+Medium+High, # data=Hemophilia,r=rr[i])
logl[i]<-fit$ParEst$loglik
Description

Plot the predicted survival curve of the new subject.

Usage

```r
## S3 method for class 'predict.GORMC'
plot(x, ...)
```

Arguments

- `x`: An object from the `predict.GORMC` function.
- `...`: Other plot arguments.

predict.GORMC

Predict cure rate and overall survival curve for a new subject.

Description

Based on the predicted model, cure rate and survival probabilities are calculated for a new individual with specific covariate values. The `new.x` specifies the covariate vector of the survival part and the `new.z` specifies that in the cure rate part. If no values are specified, zeros will be used and the baseline survival probabilities are returned.

Usage

```r
## S3 method for class 'GORMC'
predict(object, ...)
```

Arguments

- `object`: An object from the function `GORMC`.
- `...`: Other arguments including `new.x` and `new.z`. See details.

Details

For a new subject, `new.x` and `new.z` correspond to the covariate vector in the survival part and the cure rate part. The first input of `new.z` is always 1 corresponding to the intercept. `tp` is an argument specifying the time points at which survival probabilities will be predicted. If no value specified for `tp`, a sequence of equally spaced time points from 0 to the largest observation time will be used and the total length of the sequence is defined by an argument `len`. The default value of `len` is 100.
Value

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CureRate</td>
<td>Estimated cure rate of the new subject.</td>
</tr>
<tr>
<td>Survival</td>
<td>A data frame including the time points and survival probabilities.</td>
</tr>
</tbody>
</table>

summary.GORMC: Summary table of hypothesis tests for the coefficients in the GORMC model.

Description

Estimates, standard errors, test statistics and p values are presented for each coefficient in the GORMC model. The “INC” indicate the covariate is in the cure rate (incidence) part, “LAT” indicate the covariate is in the survival (latency) part.

Usage

```r
## S3 method for class 'GORMC'
summary(object, ...)```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object from the function GORMC.</td>
</tr>
<tr>
<td>...</td>
<td>Other arguments to be specified.</td>
</tr>
</tbody>
</table>
Index

*Topic **GORMC model**
  GORMC, 2
*Topic **Interval censoring**
  GORMC, 2
*Topic **package, linear transformation model, mixture cure model, interval censoring**
  GORCure-package, 2

GORCure (GORCure-package), 2
GORCure-package, 2
GORMC, 2

plot.predict.GORMC, 5
predict.GORMC, 5

summary.GORMC, 6