Package ‘GPCMlasso’

October 12, 2022

Type Package
Title Differential Item Functioning in Generalized Partial Credit Models
Version 0.1-6
Date 2022-05-03
Author Gunther Schauberger
Maintainer Gunther Schauberger <gunther.schauberger@tum.de>
Description Provides a framework to detect Differential Item Functioning (DIF) in Generalized Partial Credit Models (GPCM) and special cases of the GPCM as proposed by Schauberger and Mair (2019) <doi:10.3758/s13428-019-01224-2>. A joint model is set up where DIF is explicitly parametrized and penalized likelihood estimation is used for parameter selection. The big advantage of the method called GPCMlasso is that several variables can be treated simultaneously and that both continuous and categorical variables can be used to detect DIF.
License GPL (>= 2)
Imports Rcpp (>= 0.12.4), TeachingDemos, cubature, caret, statmod, mvtnorm, mirt, methods
Depends ltm
Suggests gvcm.cat
LinkingTo Rcpp, RcppArmadillo
SystemRequirements C++11
RoxygenNote 7.1.2
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-05-03 11:10:04 UTC

R topics documented:

GPCMlasso-package .. 2
ctrl_GPCMlasso .. 3
DESCRIPTION

Performs GPCMlasso, a method to identify DIF in Generalized Partial Credit Models. A joint parametric model is set up based on an IRT model chosen by the user. Several variables can be considered simultaneously. For each pair between variable and item, a parametric DIF effect is introduced which indicates DIF if the respective parameter is selected (estimated to be unequal zero). Parameter selection is done using a lasso-type penalization term.

AUTHOR(S)

Gunther Schauberger
<gunther.schauberger@tum.de>

REFERENCES

SEE ALSO

GPCMlasso

EXAMPLES

data(tenseness_small)

formula for simple model without covariates
form.0 <- as.formula(paste("cbind(","paste(colnames(tenseness_small)[1:5],collapse="","",")~0"))

fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM", control= ctrl_GPCMlasso(cores=2))
rsm.0
Control function GPCMlasso

Description

Control parameters for penalty terms and for tuning the fitting algorithm.

Usage

```r
ctrl_GPCMlasso(
  log.lambda = TRUE,
  lambda = NULL,
  l.lambda = 50,
  lambda.min = 0.1,
  adaptive = TRUE,
  weight.penalties = TRUE,
)```
ctrl_GPCMlasso

```r
ada.lambda = 1e-04,
ada.power = 1,
Q = 15,
lambda2 = 1e-04,
cvalue = 1e-05,
trace = TRUE,
folds = 10,
cores = 25,
null_thresh = 0.01,
gradtol = 1e-06,
steptol = 1e-06,
iterlim = 500,
precision = 3,
all.dummies = FALSE
)
```

**Arguments**

- `log.lambda` Should the grid of tuning parameters be created on a log scale?
- `lambda` Optional argument to specify a vector of tuning parameters. If `lambda = NULL`, a vector of length `l.lambda` is created automatically.
- `l.lambda` Specifies the length of the grid of tuning parameters.
- `lambda.min` Minimal value used if the grid of tuning parameters is created automatically.
- `adaptive` Should adaptive lasso be used? Default is `TRUE`.
- `weight.penalties` Should penalties be weighted according to the number of penalty term and the number of parameters corresponding to one pair between item and covariate. Only relevant if both `DSF = TRUE` and the number of response categories differs across items (because only then these values can differ).
- `ada.lambda` Size of tuning parameter for Ridge-regularized estimation of parameters used for adaptive weights.
- `ada.power` By default, 1st power of absolute values of Ridge-regularized estimates are used. Could be changed to squared values by `ada-power = 2`.
- `Q` Number of nodes to be used in Gauss-Hermite quadrature.
- `lambda2` Tuning parameter for ridge penalty on all coefficients except sigma/slope parameters. Should be small, only used to stabilize results.
- `cvalue` Internal parameter for the quadratic approximation of the L1 penalty. Should be sufficiently small. For details see `cat_control`.
- `trace` Should the trace of the progress (current tuning parameter) be printed?
- `folds` Number of folds for cross-validation. Only relevant if `cv = TRUE` in `GPCMlasso`.
- `cores` Number of cores to be used parallel when fitting the model.
- `null_thresh` Threshold which is used to distinguish between values equal and unequal to zero.
- `gradtol` Parameter to tune optimization accuracy, for details see `nlm`.
- `steptol` Parameter to tune optimization accuracy, for details see `nlm`. 
Parameter to tune optimization accuracy, for details see `nlm`.

Number of decimal places used to round coefficient estimates.

Should (in case of factors with more than 2 categories) the dummy variables for all categories be included in the design matrix? If `all.dummies = TRUE`, the dependence on the reference category is eliminated for multi-categorical covariates.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

References


Examples

data(tenseness_small)

```r
formula for simple model without covariates
form.0 <- as.formula(paste("cbind(" paste(colnames(tenseness_small)[1:5], collapse=""," ")~0"))

fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM",
control= ctrl_GPCMlasso(cores=2))
rsm.0

Not run:
formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind(" paste(colnames(tenseness_small)[1:5], collapse=""," ")~."))

fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM",
control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)

fit RSM, detect differential step functioning (DSF)
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
plot(rsm.DSF)
```
## create binary data set

tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2

######
## fit and cross-validate Rasch model

set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE,
                   control = ctrl_GPCMlasso(l.lambda = 10))
rm.cv
plot(rm.cv)

## End(Not run)

---

**GPCMlasso**

**GPCMlasso**

**Description**

Performs GPCMlasso, a method to identify differential item functioning (DIF) in Generalized Partial Credit Models. A joint parametric model is set up based on an IRT model chosen by the user. Several variables can be considered simultaneously. For each pair between variable and item, a parametric DIF effect is introduced which indicates DIF if the respective parameter is selected (estimated to be unequal zero). Parameter selection is done using a lasso-type penalization term.

**Usage**

```
GPCMlasso(
 formula,
 data,
 DSF = FALSE,
 model = c("PCM", "RSM", "GPCM", "GRSM", "RM", "2PL"),
 control = ctrl_GPCMlasso(),
 cv = FALSE,
 main.effects = TRUE
)
```

**Arguments**

- **formula**: Formula to indicate which items are considered and which covariates should be used to find DIF. Items are considered to be the response and are concatenated by `cbind()`. If the RHS of the formula is ~0, simply the model specified in `model` is calculated.
- **data**: Data frame containing the ordinal item response data (as ordered factors) and all covariates.
- **DSF**: Should Differential Step Functioning (DSF) be considered? If DSF = TRUE, one parameter per step between two response categories is introduced. For binary items, DSF and DIF coincide.
model Specify the underlying basic model. Currently, you can choose between the partial credit model and the rating scale model and the respective generalized versions of both models called 'PCM', 'RSM', 'GPCM' and 'GRSM'. Generalized models allow for different discrimination parameters between items.

control Control argument to specify further arguments for the algorithm and numerical optimization, specified by ctrl_GPCMlasso.

cv Should cross-validation be performed? Cross-validation can be used as an alternative to BIC to select the optimal tuning parameter.

main.effects Should also main effects of the variables be included in the model? Default is TRUE. Here, positive parameter estimates correspond to an increase of the respective trait if the variable increases.

Value

coefficients Matrix containing all parameters for the GPCMlasso model, one row per tuning parameter lambda. Due to the penalty the parameters are scaled and, therefore, are comparable with respect to their size.

logLik Vector of log-likelihoods, one value per tuning parameter lambda.

call The function call of GPCMlasso

cv_error Vector of cv_errors, one per tuning parameter. Only relevant if cv = TRUE.

model Basic IRT model chosen by user.

data Data from call.

control Control list.

DSF DSF from call.

formula Formula from call.

item.names Item names.

Y Matrix containing item responses.

design_list List containing several helpful objects for internal use.

AIC Vector of AIC values, one per tuning parameter.

BIC Vector of BIC values, one per tuning parameter.

cAIC Vector of corrected AIC values, one per tuning parameter.

df Vector of degrees of freedom, one per tuning parameter.

coef.rescal Matrix containing all rescaled parameters for the GPCMlasso model, one row per tuning parameter lambda. In contrast to coefficients, all parameters are rescaled back to their original scales.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>
References


See Also

GPCMlasso-package, ctrl_GPCMlasso, print.GPCMlasso, plot.GPCMlasso, predict.GPCMlasso, trait.posterior

Examples

data(tenseness_small)

## formula for simple model without covariates
form.0 <- as.formula(paste("cbind","paste(colnames(tenseness_small)[1:5],collapse="","0"))

# fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM", control= ctrl_GPCMlasso(cores=2))
rsm.0

## fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM", control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)

## fit RSM, detect differential step functioning (DSF)
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE, control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
plot(rsm.DSF)

# create binary data set
tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2

## fit and cross-validate Rasch model
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE, control = ctrl_GPCMlasso(l.lambda = 10))
## plot.GPCMlasso

Description

Plot function for a GPCMlasso object. Plots show coefficient paths of DIF (or DSF) parameters along (a transformation of) the tuning parameter lambda. One plot per item is created, every single parameter corresponding to this item is depicted by a single path. The optimal model is highlighted with a red dashed line.

Usage

```r
S3 method for class 'GPCMlasso'
plot(x, select = c("BIC", "AIC", "cAIC", "cv"),
 log.lambda = TRUE, items_per_page = 1, items = "all",
 columns = NULL, ask_new = TRUE, lambda.lines = TRUE,
 equal_range = TRUE, ...)```

Arguments

- **x**: GPCMlasso object
- **select**: Specifies which criterion to use for the optimal model, we recommend the default value "BIC". If cross-validation was performed, automatically the optimal model according to cross-validation is used. The chosen optimal model is highlighted with a red dashed line.
- **log.lambda**: A logical value indicating whether lambda or a log-transformation of lambda should be used as x-axis in the plots.
- **items_per_page**: By default, each plot/item is put on a separate page. For example, items_per_page=4 would put four plots/items on one page.
- **items**: By default, all items are plotted. If items=c(1,3), only the first and the third item are plotted.
- **columns**: Specifies the number of columns to use when several plots are on one page. Only relevant if items_per_page>1.
- **ask_new**: If TRUE, the user is asked to confirm before the next item is plotted.
- **lambda.lines**: A logical value indicating whether a thin gray line plotted for each value from the vector of tuning parameters from object
- **equal_range**: A logical value indicating whether for each plot equal limits on the y-axis shall be used.
- **...**: Further plot arguments.
plot.GPCMlasso

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

References

See Also

GPCMlasso

Examples

data(tenseness_small)

formula for simple model without covariates
form.0 <- as.formula(paste("cbind(","paste(colnames(tenseness_small)[1:5],collapse="","\~0"))

fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM",
control= ctrl_GPCMlasso(cores=2))
rsm.0

Not run:
formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind(","paste(colnames(tenseness_small)[1:5],collapse="",")~.\b")

fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM",
control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)

fit RSM, detect differential step functioning (DSF)
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
plot(rsm.DSF)

create binary data set
tenseness_small_binary <- tenseness_small

tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2
fit and cross-validate Rasch model

```r
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE,
                   control = ctrl_GPCMlasso(l.lambda = 10))
rm.cv
plot(rm.cv)
```

End(Not run)

predict.GPCMlasso

Predict function for GPCMlasso

Description

Predict function for a GPCMlasso object. Predictions can be linear predictors or probabilities separately for each person and each item.

Usage

```r
## S3 method for class 'GPCMlasso'
predict(
  object,
  coefs = NULL,
  newdata = NULL,
  type = c("link", "response"),
  ...
)
```

Arguments

- **object**: GPCMlasso object
- **coefs**: Optional vector of coefficients, can be filled with a specific row from `object$coefficients`. If not specified, `coefs` are specified to be the BIC-optimal coefficients or, if cross-validation was performed, the optimal coefficients according to cross-validation.
- **newdata**: List possibly containing slots `Y`, `X`, `Z1` and `Z2` to use new data for prediction.
- **type**: Type "link" gives vectors of linear predictors for separate categories (of length $k_i - 1$) and type "response" gives the respective probabilities (of length k_i).
- **...**: Further predict arguments.

Details

Results are lists of vectors with length equal to the number of response categories k_i in case of probabilities (type="response") or k_i-1 in case of linear predictors (type="link").
Author(s)
Gunther Schauberger
<gunther@stat.uni-muenchen.de>

See Also
GPCMlasso

Examples

data(tenseness_small)

formula for simple model without covariates
form.0 <- as.formula(paste("cbind\(" , paste(colnames(tenseness_small)[1:5], collapse=",") , "\)~0"))

####
fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM", control= ctrl_GPCMlasso(cores=2))
rsm.0

Not run:
formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind\(" , paste(colnames(tenseness_small)[1:5], collapse=",") , ",."))

#####
fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM",
 control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)

#####
fit RSM, detect differential step functioning (DSF)
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
 control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
plot(rsm.DSF)

create binary data set
tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2

#####
fit and cross-validate Rasch model
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE,
 control = ctrl_GPCMlasso(l.lambda = 10))
rm.cv
plot(rm.cv)
Description

Print function for a GPCMlasso object. Prints parameters estimates for all model components for the optimal model chosen by a specific criterion (by default BIC).

Usage

```r
## S3 method for class 'GPCMlasso'
print(x, select = c("BIC", "AIC", "cAIC", "cv"), ...)
```

Arguments

- `x`: GPCMlasso object
- `select`: Specifies which criterion to use for the optimal model, we recommend the default value "BIC". If cross-validation was performed, automatically the optimal model according to cross-validation is used. Only the parameter estimates from the chosen optimal model are printed.
- `...`: Further print arguments.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

References

See Also

GPCMlasso

Examples

```r
data(tenseness_small)

## formula for simple model without covariates
form.0 <- as.formula(paste("cbind(" ,paste(colnames(tenseness_small)[1:5],collapse="","" ) ,"-0"))
```

```
```
fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores

```r
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM",
control = ctrl_GPCMlasso(cores=2))
rsm.0
```

Not run:

formula for model with covariates (and DIF detection)

```r
form <- as.formula(paste("cbind(\".,paste(colnames(tenseness_small)[1:5],collapse=\","\")\")
```

####

fit GPCM model with 10 different tuning parameters

```r
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM",
control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
```

```r
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)
```

####

fit RSM, detect differential step functioning (DSF)

```r
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
```

```r
plot(rsm.DSF)
```

create binary data set

```r
tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2
```

####

fit and cross-validate Rasch model

```r
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE,
control = ctrl_GPCOMlasso(l.lambda = 10))
```

```r
rm.cv
```

```r
plot(rm.cv)
```

End(Not run)

tenseness

Tenseness data from the Freiburg Complaint Checklist

Description

Data from the Freiburg Complaint Checklist. The data contain all 8 items corresponding to the scale *Tenseness* for 2042 participants of the standardization sample of the Freiburg Complaint Checklist.

Format

A data frame containing data from the Freiburg Complaint Checklist with 1847 observations. All items refer to the scale *Tenseness* and are measured on a 5-point Likert scale where low numbers
correspond to low frequencies or low intensities of the respective complaint and vice versa.

Clammy hands Do you have clammy hands?

Sweat attacks Do you have sudden attacks of sweating?

Clumsiness Do you notice that you behave clumsy?

Wavering hands Are your hands wavering frequently, e.g. when lightning a cigarette or when holding a cup?

Restless hands Do you notice that your hands are restless?

Restless feet Do you notice that your feet are restless?

Twitching eyes Do you notice unvoluntary twitching of your eyes?

Twitching mouth Do you notice unvoluntary twitching of your mouth?

Gender Gender of the person

Household Does the person live alone in a household or together with somebody?

Income Income, categorized to levels from 1 (low income) to 11(high income). For simplicity, due to the high number of categories income can be treated as a metric variable.

WestEast Is the person from East Germany (former GDR)?

Abitur Does the person have Abitur (A-levels)?

Age Age of the person

Source

Examples

data(tenseness)

<table>
<thead>
<tr>
<th>tenseness_small</th>
<th>Subset of tenseness data from the Freiburg Complaint Checklist</th>
</tr>
</thead>
</table>

Description

Data from the Freiburg Complaint Checklist. The data contain 5 items (out of 8) corresponding to the scale *Tenseness* for a subset of 200 participants of the standardization sample of the Freiburg Complaint Checklist.
Format

A data frame containing data from the Freiburg Complaint Checklist a subset of 200 observations. The complete data set with 1847 observations can be found in `tenseness`. All items refer to the scale `Tenseness` and are measured on a 5-point Likert scale where low numbers correspond to low frequencies or low intensities of the respective complaint and vice versa.

Clammy_hands Do you have clammy hands?

Sweat_attacks Do you have sudden attacks of sweating?

Clumsiness Do you notice that you behave clumsy?

Wavering_hands Are your hands wavering frequently, e.g. when lightning a cigarette or when holding a cup?

Restless_hands Do you notice that your hands are restless?

Gender Gender of the person

Age Age of the person

Source

See Also

`GPCMlasso`, `ctrl_GPCMlasso`, `trait.posterior`

Examples

data(tenseness_small)

formula for simple model without covariates
form.0 <- as.formula(paste("cbind(".,paste(colnames(tenseness_small)[1:5],collapse="","\n"),"~-0")\n
"## fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM",
control = ctrl_GPCMlasso(cores=2))
rsm.0

Not run:
formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind(".,paste(colnames(tenseness_small)[1:5],collapse="","\n"),"-\n"))

"## fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM",
control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
trait.posterior <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)

fit RSM, detect differential step functioning (DSF)
rsms.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
 control = ctrl_GPCMlasso(l.lambda = 10))
rsms.DSF
plot(rsms.DSF)

create binary data set
tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2

fit and cross-validate Rasch model
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RSM", cv = TRUE,
 control = ctrl_GPCMlasso(l.lambda = 10))
rm.cv
plot(rm.cv)

End(Not run)

trait.posterior

Calculate Posterior Estimates for Trait Parameters

Description

Calculates posterior estimates for trait/person parameters using the assumption of Gaussian distributed parameters.

Usage

trait.posterior(model, coefs = NULL, cores = 25, tol = 1e-04)

Arguments

- **model**: Object of class GPCMlasso.
- **coefs**: Vector of coefficients to be used for prediction. If coefs = NULL, the parameters from the BIC-optimal model will be used. If cross-validation was performed, automatically the parameters from the optimal model according to cross-validation are used.
- **cores**: Number of cores to be used in parallelized computation.
- **tol**: The maximum tolerance for numerical integration, for more details see pcubature.

Value

Vector containing all estimates of trait/person parameters.
Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>

References

Schauberger, Gunther and Mair, Patrick (2019): A Regularization Approach for the Detection of Differential Item Functioning in Generalized Partial Credit Models, Behavior Research Methods,

See Also

GPCMlasso GPCMlasso-package

Examples

data(tenseness_small)

formula for simple model without covariates
form.0 <- as.formula(paste("cbind\("\paste\("colnames\(tenseness_small\)[1:5],collapse="\,"\),\"\)\~0\")\))

fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM",
control= ctrl_GPCMlasso(cores=2))
rsm.0

formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind\("\paste\("colnames\(tenseness_small\)[1:5],collapse="\,"\),\"\)\~.\")\))

fit GPCM model with 10 different tuning parameters
GPCM <- GPCMlasso(form, tenseness_small, model = "GPCM",
control = ctrl_GPCMlasso(l.lambda = 10))

GPCM
plot(GPCM)
pred.GPCM <- predict(GPCM)
trait.GPCM <- trait.posterior(GPCM)

fit RSM, detect differential step functioning (DSF)
RSM.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
RSM.DSF
plot(RSM.DSF)

create binary data set
Tenseness_small_binary <- tenseness_small
Tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2

Not run:
fit and cross-validate Rasch model

set.seed(1860)

rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE,
 control = ctrl_GPCMlasso(l.lambda = 10))

rm.cv

plot(rm.cv)

End(Not run)
Index

* Credit
 GPCMlasso-package, 2
* DIF
 GPCMlasso-package, 2
* DSF
 GPCMlasso-package, 2
* GPCMlasso
 GPCMlasso, 6
 GPCMlasso-package, 2
 tenseness_small, 15
 trait.posterior, 17
* GPCM
 GPCMlasso-package, 2
* Partial
 GPCMlasso-package, 2
* datasets
 tenseness, 14
* package
 GPCMlasso-package, 2

cat_control, 4
ctrl_GPCMlasso, 3, 7, 8, 16

GPCMlasso, 2, 4, 6, 10, 12, 13, 16, 18
GPCMlasso-package, 2

nml, 4, 5

pcubature, 17
plot.GPCMlasso, 8, 9
predict.GPCMlasso, 8, 11
print.GPCMlasso, 8, 13

tenseness, 14, 16
tenseness_small, 15
trait.posterior, 8, 16, 17