Package ‘GPoM’

October 12, 2022

Type Package

Title Generalized Polynomial Modelling

Version 1.3

Date 2020-02-13

Maintainer Mireille Huc <mireille.huc@cesbio.cnes.fr>

Description Platform dedicated to the Global Modelling technique. Its aim is to obtain ordinary differential equations of polynomial form directly from time series. It can be applied to single or multiple time series under various conditions of noise, time series lengths, sampling, etc. This platform is developed at the Centre d’Etudes Spatiales de la Biosphere (CESBIO), UMR 5126 UPS/CNRS/CNES/IRD, 18 av. Edouard Belin, 31401 TOULOUSE, FRANCE. The developments were funded by the French program Les Enveloppes Fluides et l’Environnement (LEFE, MANU, projets GloMo, SpatioGloMo and MoMu). The French program Défi InFiNiTi (CNRS) and PNTS are also acknowledged (projects Crops’IChaos and Musc & SlowFast).

License CeCILL-2

LazyData TRUE

RoxygenNote 7.0.2

Depends R (>= 3.6), deSolve, rgl

Imports float

Suggests signal, knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Sylvain Mangiarotti [aut],
Mireille Huc [cre, aut],
Flavie Le Jean [ctb],
Malika Chassan [ctb],
Laurent Drapeau [ctb],
Institut de Recherche pour le Développement [fnd],
Centre National de la Recherche Scientifique [fnd]
Repository CRAN
Date/Publication 2020-02-18 14:20:06 UTC

R topics documented:

 GPoM-package .. 3
 allMod_nVar3_dMax2 data set 4
 allToTest ... 5
 autoGPoMoSearch ... 6
 autoGPoMoTest .. 7
 bDrvFilt .. 10
 cano2M .. 10
 combiEq .. 11
 compDeriv ... 13
 concat .. 14
 concatMulTS .. 15
 d2pMax ... 16
 data_vignetteIII data set 17
 data_vignetteVI data set 18
 data_vignetteVII data set 18
 derivODE2 ... 19
 derivODEwMultiX ... 19
 detectP1limCycl .. 21
 drvSucc ... 22
 findAllSets ... 24
 gloMoId .. 25
 gPoMo .. 28
 GSproc .. 33
 NDVI ... 34
 numicano ... 35
 numiMultiX .. 37
 numinoisy .. 39
 odeBruitMult2 .. 42
 P1FxCh ... 43
 P1FxChP2 ... 44
 p2dMax .. 44
 paramId .. 45
 poLabs .. 46
 predictab .. 47
 pTimEv .. 48
 regOrd .. 50
 regSeries .. 51
 Rossler-1976 data set 52
 RosYco .. 52
 subSysD .. 53
 svrlTS .. 54
 testP ... 55
GPoM-package

TS ... 56
TSallMod_nVar3_dMax2 data set 56
visuEq .. 57
visuOutGP .. 59
wInProd .. 60

Index 62

GPoM-package
GPoM package: Generalized Polynomial Modelling

Description

GPoM is a platform dedicated to the Global Modelling technique. Its aim is to obtain deterministic models of Ordinary Differential Equations from observational time series. It applies to single and to multiple time series. With single time series, it can be used: to detect low-dimensional determinism and low-dimensional (deterministic) chaos. It can also be used to characterize the observed behavior, using the obtained models as a proxy of the original dynamics, as far as the model validation could be checked. With multiple time series, it can be used: to detect couplings between observed variables, to infer causal networks, and to reformulate the original equations of the observed system (retro-modelling). The present package focuses on models in Ordinary Differential Equations of polynomial form. The package was designed to model weakly predictable dynamical behaviors (such as chaotic behaviors). Of course, it can also apply to more of fully predictable behavior, either linear or nonlinear. Several vignettes are associated to the package which can be used as a tutorial, and it also provides an overlook of the diversity of applications and at the performances of the tools. Users are kindly asked to quote the corresponding references when using the package (see hereafter).

Note

FOR USERS
This package was developped at Centre d’Etudes Spatiales de la Biosphere (Cesbio, UMR 5126, UPS-CNRS-CNES-IRD, http://www.cesbio.ups-tlse.fr). An important part of the developments were funded by the French program Les Envoloppes Fluides et l’Environnement (LEFE, MANU, projets GloMo, SpatioGloMo and MoMu). The French program Défi InFiNiTi (CNRS) and PNTS are also acknowledged (projects Crops’IChaos and Musc & SlowFast).
If you apply this package to single time series, please quote [6]. If you apply it to multivariate time series, please quote [10]. If you apply it to infer couplings among time series, please quote [8]. If you apply it to classification, please quote [11].

HISTORICAL BACKGROUND
The global modelling technique was initiated during the early 1990s [1-3]. It takes its background from the Theory of Nonlinear Dynamical Systems. Earlier investigations can also be found in the fields of Electrical Engineering and Statistics but these mainly focused on linear problems [4]. The approach became applicable to the analysis of real world environmental behaviours by the end of the 2000s [5-7]. Recent works have shown that the approach could be applied to numerous other dynamical behaviors [8-10]. Global modelling aims to obtain deterministic models directly from observed time series.
allMod_nVar3_dMax2 data set

Numerical description of a list of eighteen three-dimensional chaotic systems (see vignette 7_Retro-Modelling)

Description

A list named allMod_nVar3_dMax2 of matrix providing the numerical description of eighteen three-dimensional chaotic systems:
Lorenz-1963 (L63), Rössler-1976 (R76), Burke & shaw 1981 (BS81), Lorenz-1984 (L84), Nosé
allToTest

& Hooer 1986 ($NH86$), Genesio & Tosi 1992 ($GT92$), Spott systems 1994 ($SprF$, $SprH$, $SprK$, $SprG$, $SprO$, $SprP$, $SprG$, $SprM$, $SprQ$, $SprS$), Chlouverakis & Sprott 2004 ($CS2004$), Li 2007 ($Li2007$) and the Cord system by Aguirre & Letellier 2012 ($Cord2012$). Each dynamical system is provided as a matrix: each column corresponds to one equation, each lines to the polynomial coefficients which order is following the convention defined by function poLabs(nVar = 3, dMax = 2).

Usage

allMod_nVar3_dMax2

Format

An object of class list of length 18.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

References

All the references are provided in vignette 7_retro-modelling.
Examples

###########
example
###########
data("allToTest")
6 models are available in this list:
names(allToTest)
The parameter of their formulation (nVar and dMax)
can be retrieved:
nVar <- dim(allToTest$mToTest6)[2]
dMax <- p2dMax(nVar = 3, pMaxKnown = dim(allToTest$mToTest6)[1])
Their equation can be edited as follows:
visuEq(allToTest$mToTest6, nVar, dMax, approx = 2)

autoGPoMoSearch Automatic search of polynomial Equations

Description

This algorithm aims to get an ensemble of possible models which integrability will be tested later
with function autoGPoMoTest. By default, all the terms are considered available (Some of the terms
can be excluded intentionally using the option filterReg). The maximum size of the equation de-
pends on the model dimension nVar, and on the maximum polynomial degree dMax. The algorithm
removes polynomial terms one by one using a leave-one-out method.

Usage

autoGPoMoSearch(
 data,
 dt,
 nVar = nVar,
 dMax = dMax,
 weight = NULL,
 show = 0,
 underSamp = NULL,
 filterReg = NULL
)

Arguments

data Input Time series: Each column is one time series that corresponds to one vari-
 able.

dt Time sampling of the input series.
nVar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
autoGPoMoTest

weight A vector providing the binary weighting function of the input data series (0 or 1). By default, all the values are set to 1.

show Provide (2) or not (0-1) visual output during the running process.

undersamp Number of points used for undersampling the data. For undersamp = 1 the complete time series is used. For undersamp = 2, only one data out of two is kept, etc.

filterReg A vector that specifies the template for the equation structure (for one single equation). The convention defined by poLabs is used. Value is 1 if the regressor is available, 0 if it is not.

Value

A list of two matrices:

filtMemo describes the selected terms (1 if the term is used, 0 if not)

KMemo provides the corresponding coefficients

Author(s)

Sylvain Mangiarotti, Flavie Le Jean

See Also

cuo autoGPoMoTest, gPoMo, findAllSets, poLabs

Examples

Load data
data('RosYco')
Search for potential models
filt = autoGPoMoSearch(RosYco[,2], nVar = 3, dMax = 2,
dt = 1/125, show = 1)
As an example, the equations of the fourth line has the following terms:
poLabs(nVar = 3, dMax = 2)[filt$filtMemo[5,] != 0]
which coefficients correspond to
cbind(filt$KMemo[5,], poLabs(nVar = 3, dMax = 2))[filt$filtMemo[5,] != 0,]

autoGPoMoTest Tests the numerical integrability of models and classify their dynamical regime

Description

Tests the numerical integrability of provided models (these may have been obtained with function autoGPoMoSearch), and classify these models as Divergent, Fixed Points, Periodic or not Unclassified (potentially chaotic).
Usage

```
autoGPoMoTest(
  data,
  tin = NULL,
  dt = NULL,
  nVar = nVar,
  dMax = dMax,
  show = 1,
  verbose = 1,
  allKL = allKL,
  numValidIC = 1,
  weight = NULL,
  IstepMin = 10,
  IstepMax = 10000,
  tooFarThr = 4,
  FxPThr = 1e-08,
  LimCyclThr = 1e-06,
  method = "rk4"
)
```

Arguments

data Input Time series: Each column is one time series that corresponds to one variable.
in Input date vector which length should correspond to the input time series.
dt Sampling time of the input time series.
nVar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
show Provide (2) or not (0-1) visual output during the running process.
verbose Gives information (if set to 1) about the algorithm progress and keeps silent if set to 0.
allKL A list of all the models $mToTest1, $mToTest2, etc. to be tested. Each model is provided as a matrix.
numValidIC Line number of the first valid initial conditions, that is, such as weight is not equal to zero.
weight A vector providing the binary weighting function of the input data series (0 or 1). By default, all the values are set to 1.
IstepMin The minimum number of integration step to start of the analysis (by default IstepMin = 10).
IstepMax The maximum number of integration steps for stopping the analysis (by default IstepMax = 10000).
tooFarThr Divergence threshold, maximum value of the model trajectory compared to the data standard deviation. By default a trajectory is too far if the distance to the center is larger than four times the variance of the input data.
autoGPoMoTest

FxPtThr Threshold used to detect fixed points.
LimCyclThr Threshold used to detect the limit cycle.
method The integration technique used for the numerical integration. By default, the fourth-order Runge-Kutta method (method = 'rk4') is used. Other methods such as 'ode45' or 'lsoda' may also be chosen. See package deSolve for details.

Value
A list containing:
$okMod A vector classifying the models: diverging models (0), periodic models of period-1 (-1), unclassified models (1).
$okMod A matrix classifying the model variables: diverging variable (0), period-1 variable (-1), period-2 variable (-2), fixed point variable (2), unclassified models (1).
$coeff A matrix with the coefficients of one selected model
$models A list of all the models to be tested $mToTest1, $mToTest2, etc. and of all selected models $model1, $model2, etc.
$out The time vector of the output time series (vector length corresponding to the longest numerical integration duration)
$stockoutreg A list of matrices with the integrated trajectories (variable $X1 in column 1, $X2 in 2, etc.) for all the models $model1, $model2, etc.

Author(s)
Sylvain Mangiarotti, Flavie Le Jean

See Also
autoGPoMoSearch, gPoMo, poLabs

Examples

Example
Load data:
data('RosYco')
Structure choice
data('allToTest')
Test the models
outGPT <- autoGPoMoTest(RosYco, nVar= 3, dMax = 2, dt = 1/125, show=1, allKL = allToTest, IstepMax = 60)
bDrvFilt
Builds the derivative filter

Description
Build the Savitzky-Golay derivative filter (Savitzky-Golay, 1964).

Usage
```r
bDrvFilt(nDrv, tstep, winL = 9)
```

Arguments
- `nDrv` The number of derivatives to be computed.
- `tstep` Sampling time.
- `winL` The local window length to be used for computing the derivatives [1].

Author(s)
Sylvain Mangiarotti

References

cano2M
cano2M : Converts a model in canonical form into a matrix form

Description
Converts the vectorial formulation of canonical models into a matrix formulation (that is, including explicitly all the equations). For both input, the list of terms follows the convention defined by poLabs.

Usage
```r
cano2M(nVar, dMax, poly)
```

Arguments
- `nVar` The number of variables
- `dMax` The maximum degree allowed in the formulation
- `poly` A vector of coefficients corresponding to the regressor of the canonical function
combiEq

Author(s)
Sylvain Mangiarotti, Mireille Huc

See Also
drvSucc, gPoMo, poLabs

Examples

```r
# A vector of polynomial terms corresponding to a canonical form:
polyTerms <- c(0.2,0,-1,0.5,0,0,0,0,0,0)
# Convert this vector into a matrix formulation with all the equations:
K <- cano2M(3,2,polyTerms)
# Visualize the equations:
visuEq(K,3,2)
```

combiEq

combiEq : Combine Equations from different sources

Description

Combines equations of different sources into a single system. During this combination, the polynomial maximal degree can be either imposed or optimized to reduce the model size. All the input have to follow the convention defined by poLabs.

Usage

```r
combiEq(
inK,  
inXnote = NULL,  
eqNum = NULL,  
XnoteOut = NULL,  
nVarOut = NULL,  
dMaxOut = NULL
)
```

Arguments

- `inK`: A list of models, each provided as a matrix. A single matrix can also be provided, it will be transformed into a list containing a single matrix.
- `inXnote`: A list of vectors with the names of the input variables for each model. If not provided, default notation is used: "X1", "X2", etc. A single matrix can also be provided, it will be transformed into a list containing a single matrix.
- `eqNum`: A list of vector, providing each the equations number (relating to the input models) to be kept in the output equation system. If not provided, all the equations are kept. A single matrix can also be provided, it will be transformed into a list containing a single matrix.
XnoteOut A vector with the names of the output variables. If not provided, default notation is used considering that the variables of the input models are all different

nVarOut The dimension of the output equation system (if not provided, this degree is deduced from the input models)

dMaxOut The maximal polynomial degree of the output equation system (if not provided, this degree is deduced from the input models)

Author(s)

Sylvain Mangiarotti

See Also
gPoMo, poLabs

Examples

Load models
data("allMod_nVar3_dMax2")

Display equations of system 1
visuEq(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$NH86, substit = 1)

Display equations of system 2
visuEq(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$R76, substit = 1)

put the two systems in a list
allK <- list()
allK[[1]] <- allMod_nVar3_dMax2$NH86
allK[[2]] <- allMod_nVar3_dMax2$R76

Example 1: reformulate two autonomous system in a single matrix
Knew <- combiEq(allK)
visuEq(K = Knew, substit = c("u", "v", "w", "X", "Y", "Z"))

Example 2
inXnote = list()
inXnote[[1]] <- c("u", "v", "w")
inXnote[[2]] <- c("X", "Y", "Z")

visuEq(K = allK[[1]], substit = inXnote[[1]])
visuEq(K = allK[[2]], substit = inXnote[[2]])

XnoteOut = c("X", "Y", "Z", "u", "v", "w")

Knew2 <- combiEq(allK, inXnote = inXnote, XnoteOut = XnoteOut)
visuEq(K = Knew2, substit = XnoteOut)

Example 3
inXnote = list()
inXnote[[1]] <- c("u", "v", "w")
inXnote[[2]] <- c("X", "Y", "Z")

visuEq(K = allK[[1]], substit = inXnote[[1]])
visuEq(K = allK[[2]], substit = inXnote[[2]])

XnoteOut = c("u", "X", "v", "Y", "w", "Z")
Knew3 <- combiEq(allK, inXnote = inXnote, XnoteOut = XnoteOut, dMaxOut = 3)
visuEq(K = Knew3, substit = XnoteOut)

Example 4
dim(Knew3)
inXnote = c('x', 'X', 'y', 'Y', 'z', 'Z')
visuEq(K = Knew3, substit = inXnote)
XnoteOut = c('X', 'Y', 'Z')
Knew4 <- combiEq(Knew3, inXnote = inXnote, XnoteOut = XnoteOut)
dim(Knew4)
visuEq(K = Knew4, substit = XnoteOut)

compDeriv

Computes the successive derivatives of a time series

Description

Computes the successive derivatives from one single time series, with the Savitzky-Golay approach (1964).

Usage

```r
compDeriv(TS, nDrv, tstep, winL = 9)
```

Arguments

- `TS`: A single time series provided as a single vector.
- `nDrv`: The number of derivatives to be computed from the input series. The resulting number of output time series will thus be `nVar = nDrv + 1`.
- `tstep`: Sampling Time of the input time series `TS`.
- `winL`: The local window length used for computing the derivatives [1-2].

Value

A matrix containing the original variable (smoothed by the filtering process) and its `nDrv` first derivatives (note that `winL` values of the original time series will be lost both at the beginning and the end of the time series due to boundary effect).

Author(s)

Sylvain Mangiarotti

References

See Also
gloMoId, gPoMo, poLabs

concat

Concat Concatenates separated time series

Description

The aim of this code is to provide, from a set of multiple time series, a single concatenated time series for applying the global modeling technique to all the time time series in association.

Usage

concat(svrlTS, winL = 9)

Arguments

svrlTS All separated time series.

winL Total number of points used for computing the derivatives of the input time series. This parameter will be used as an input in function drvSucc to compute the derivatives.

Value

concaTS The concatenated time series.

Author(s)

Sylvain Mangiarotti, Mireille Huc

References

Examples

load data
data("svrlTS")
Concatenate the data set into a single time series
winL = 55
concaTS <- concat(svrlTS, winL = winL)
Plot the concatenated time series
plot(concaTS$sglTS$TS[,1], concaTS$sglTS$TS[,2],

main = 'Concatenated time series',

xlab = 'Time (concatenated)', ylab = 'y(t)',

type = 'l', col = 'gray')

lines(concaTS$sglTS$TS[concaTS$sglTS$W == 1,1],

concatMulTS

concatMulTS$sglTS$TS[concatMulTS$sglTS$W == 1,2], type = 'p', col = 'green', cex = 0.5)
lines(concatMulTS$sglTS$TS[concatMulTS$sglTS$W == 0,1],
 concatMulTS$sglTS$TS[concatMulTS$sglTS$W == 0,2], type = 'p', col = 'red', cex = 0.5)
lines(concatMulTS$sglTS$TS[,1], concatMulTS$sglTS$W, type = 'l')

Not run:
The concatenated data set can be used for global modelling:
GPout1 <- gPoMo(data = concatMulTS$sglTS$TS[,2], tin = concatMulTS$sglTS$TS[,1],
 dMax = 2, nS = 3, winL = winL, weight = concatMulTS$sglTS$W, show = 1,
 IstepMin = 10, IstepMax = 6000, nPmin = 11, nPmax = 11, method = 'rk4')

End(Not run)

concatMulTS

ConcatMulTS Concatenates separated time series (of single or multiples variables)

Description

The aim of this code is to provide, from multiple sets of (single or multiple) time series, a single concatenated set of time series for applying the global modeling technique to all the time series in association.

Usage

concatMulTS(svrlTS, winL = 9)

Arguments

- **svrlTS**: All separated sets of time series.
- **winL**: Total number of points used for computing the derivatives of the input time series. This parameter will be used as an input in function `drvSucc` to compute the derivatives.

Value

concatTS A single set of concatenated time series.

Author(s)

Sylvain Mangiarotti, Mireille Huc

References

Examples

```r
# load data
data("svrlTS")
# Concatenate the data set into a single time series
winL = 55
concaTS <- concat(svrlTS, winL = winL)
# Plot the concatenated time series
plot(concaTS$sglTS$TS[,1], concaTS$sglTS$TS[,2],
     main = 'Concatenated time series',
     xlab = 'Time (concatenated)', ylab = 'y(t)',
     type = 'l', col = 'gray')
lines(concaTS$sglTS$TS[concaTS$sglTS$W == 1,1],
     concaTS$sglTS$TS[concaTS$sglTS$W == 1,2], type = 'p', col = 'green', cex = 0.5)
lines(concaTS$sglTS$TS[concaTS$sglTS$W == 0,1],
     concaTS$sglTS$TS[concaTS$sglTS$W == 0,2], type = 'p', col = 'red', cex = 0.5)
lines(concaTS$sglTS$TS[,1], concaTS$sglTS$W, type = 'l')
## Not run:
# The concatenated data set can be used for global modelling:
GPout1 <- gPoMo(data = concaTS$sglTS$TS[,2], tin = concaTS$sglTS$TS[,1],
     dMax = 2, nS = 3, winL = winL, weight = concaTS$sglTS$W, show = 1,
     IstepMin = 10, IstepMax = 6000, nPmin = 11, nPmax = 11, method = 'rk4')
## End(Not run)
```

d2pMax

Provides the number of polynomial terms pMax given dMax and nVar

Description

Computes the number of polynomial terms pMax used to formulate an equation given the maximal polynomial degree dMax and the number of variables nVar following the conventions as defined by function poLabs.

Usage

d2pMax(nVar, dMaxKnown)

Arguments

- **nVar**: Number of variables considered in the polynomial formulation.
- **dMaxKnown**: The maximum polynomial degree dMax

Value

The number pMax of polynomial terms used to code a polynomial equation
Author(s)
Sylvain Mangiarotti

See Also
gloMoId, gPoMo, poLabs

Examples

###########
Example 1
###########
Maximum polynomial degree ?
number of variables:
nVar <- 3
polynomial degree:
dMax <- 3
The maximal polynomial degree used for coding the polynomial is:
d2pMax(nVar,dMax)

Description
To reduce the computation time, the outputs of the simulations presented in vignette VI have been run beforehand and saved in this file.

Usage
data_vignetteIII

Format
An object of class list of length 12.

Author(s)
Sylvain Mangiarotti, Mireille Huc.
data_vignetteVI data set

Output of the vignette VI_Sensitivity

Description

To reduce the computation time, the outputs of the simulations presented in vignette VI have been run beforehand and saved in this file.

Usage

```r
data_vignetteVI
```

Format

An object of class `list` of length 6.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

data_vignetteVII data set

Output of the vignette VII_Retro-Modelling

Description

To reduce the computation time, the outputs of the simulations presented in vignette VII have been run beforehand and saved in this file.

Usage

```r
data_vignetteVII
```

Format

An object of class `list` of length 29.

Author(s)

Sylvain Mangiarotti, Mireille Huc.
derivODE2

A subfonction for the numerical integration of polynomial equations provided in a generic form following the convention defined by function poLabs.

Description

This function provides the one step integration of polynomial Ordinary Differential Equations (ODE). This function requires the function ode (deSolve package).

Usage

derivODE2(t, x, K, regS = NULL)

Arguments

t All the dates for which the result of the numerical integration of the model must be provided

x Current state vector (input from which the next state will be estimated)

K A matrix providing the model description: each column corresponds to one equation which polynomial organisation is following the convention defined by function poLabs.

regS Current states of each polynomial terms used in poLabs. These states can be deduced from the current state vector x (using the function regSeries). When available, it can be provided as an input to avoid unnecessary computation.

Author(s)

Sylvain Mangiarotti

See Also

numicano, numinoisy

derivODEwMultiX

deriveODEwMultiX : A Subfonction for the numerical integration of polynomial equations in the generic form defined by function poLabs and with External Forcing F(t)

Description

This function provides the one step integration of polynomial Ordinary Differential Equations (ODE). This function requires the function ode ("deSolve" package). This function has to be run with the Runge-Kutta method (method = ‘rk4’).
derivODEwMultiX

Usage

derivODEwMultiX(t, x, K, extF, regS = NULL)

Arguments

t
All the dates for which the result of the numerical integration of the model will have to be provided

x
Current state vector (input from which the next state will be estimated)

K
is the model: each column corresponds to one equation which organisation is following the convention given by function poLabs which requires the definition of the model dimension nVar (i.e. the number of variables) and the maximum polynomial degree dMax allowed. The last Equation correspond to the forcing variable that is artificially set to 0.

extF
is the external forcing. It is defined by two columns. The first column correspond to time t. The second column to F(t) the forcing at time t. Note that when launching the integration function ode, the forcing F(t) should be provided with a sampling time twice the sampling time used in t (because rk4 method will always use an intermediate time step).

regS
Current states of each polynomial terms used in poLabs. These states can be deduced from the current state vector x (using function regSeries). When available, it can be provided as an input to avoid unnecessary computation.

Author(s)

Sylvain Mangiarotti

Examples

build a non autonomous model
nVar = 4
dMax = 3
omega = 0.2
gamma = 0.05
KDF = matrix(0, nrow = d2pMax(nVar = nVar, dMax = dMax), ncol = nVar)
KDF[11,1] = 1
KDF[2,2] = 1
KDF[5,2] = 1
KDF[11,2] = -gamma
KDF[35,2] = -1
KDF[2,3] = NA
KDF[2,4] = NA
visuEq(K = KDF, substit = c('x', 'y', 'u', 'v'))

Prepare the external forcing
number of integration time step
Istep <- 500
time step
smpl <- 1 / 20
output time vector
```r
dater <- (0:Istep) * smpl
# half step time vector (for Runge-Kutta integration)
daterdbl <- (0:(Istep*2 + 1)) * smpl / 2
# generate the forcing (here variables u and v)
extF = cbind(daterdbl, -0.1 * cos(daterdbl * omega), 0.05 * cos(daterdbl * 16/3*omega))
# Initial conditions to be used (external variables can be set to 0)
etatInit <- c(-0.616109362 , -0.126882584 , 0, 0)
# Numerical integration
reconstr2 <- ode(etatInit, dater, derivODEwMultiX,
                  KDF, extF = extF, method = 'rk4')
# Reconstruction of the output
nVarExt <- dim(extF)[2] - 1
reconstr2[,,(nVar - nVarExt + 2):(nVar + 1)] <- extF[(0:Istep+1)*2, 2:(nVarExt+1)]
```

detectP1limCycl

Detection of limit cycles of period-1

Description

This algorithm aims to detect period-1 limit cycles from trajectories in the phase space considered in a bidimensional projection.

Usage

detectP1limCycl(data, LimCyclThreshold = 0.01, show = 2)

Arguments

data
A matrix of the trajectory in a 2D space (if more than two columns are provided, only the two first columns are considered)

LimCyclThreshold
The detection threshold

show
Indicates the depth of the feedback (from 0 to 2)

Value

Indicates if a limit cycle is detected (1) or not (0)

Author(s)

Sylvain Mangiarotti

See Also

autoGPoMoTest
drvSucc

drvSucc : Computes the successive derivatives of a time series

Description

Computes the successive derivatives from one single time series, using the Savitzky-Golay algorithm (1964).

Usage

`drvSucc(tin = NULL, serie, nDeriv, weight = NULL, tstep = NULL, winL = 9)`

Arguments

- **tin**: Input date vector which length should correspond to the input time series.
- **serie**: A single time series provided as a single vector.
- **nDeriv**: The number of derivatives to be computed from the input time series. The resulting number of time series obtained in output will be `nDeriv + 1`.
- **weight**: A vector providing the binary weighting function of the input data series (0 or 1). By default, all the values are set to 1.
- **tstep**: Sampling time of the input time series. Used only if time vector `tin` is not provided.
- **winL**: Number (exclusively odd number) of points of the local window used for computing the derivatives along the input time series. The Savitzky-Golay filter is used for this purpose [1,2].

Value

A list containing:
- **$serie**: The original time serie
- **$tin**: The time vector containing the dates corresponding to the original time series
- **$tstep**: The time step (assumed to be regular)
- **$out**: The time vector of the output series
- **seriesDeriv**: A matrix containing the original time series (smoothed by the filtering process) in the first column and its `nDeriv + 1` successive derivatives in the next ones. Note that `winL` values of the original time series will be lost, that is \((\text{winL} - 1)/2 \) at the beginning and \((\text{winL} - 1)/2 \) at the end of the time series due to a computation boundary effect.

Author(s)

Sylvain Mangiarotti, Mireille Huc
References

See Also
gloMoId, gPoMo, poLabs, compDeriv

Examples

#############
Example 1
#############
Generate a time series:
tin <- seq(0, 5, by = 0.01)
data <- 2 * sin(5*tin)
dev.new()
par(mfrow = c(3, 1))
Compute its derivatives:
drv <- drvSucc(tin = tin, nDeriv = 2, serie = data, winL = 5)

plot original and filtered series
plot(tin, data, type='l', col = 'black', xlab = 't', ylab = 'x(t)')
lines(drv$tout, drv$seriesDeriv[,1], lty = 3, lwd = 3, col = 'green')

analytic 1st derivative
firstD <- 10 * cos(5 * tin)
plot both
plot(tin, firstD, type = 'l', col = 'black', xlab = 't', ylab = 'dx/dt')
lines(drv$tout, drv$seriesDeriv[,2], lty = 3, lwd = 3, col = 'green')

analytic 2nd derivative
scdD <- -50 * sin(5 * tin)
plot both
plot(tin, scdD, type = 'l', col = 'black', xlab = 't', ylab = 'd2x/dt2')
lines(drv$tout, drv$seriesDeriv[,3], lty=3, lwd = 3, col = 'green')

#############
Example 2
#############
load data:
data("Ross76")
tin <- Ross76[,1]
data <- Ross76[,2]

Compute the derivatives
drvOut <- drvSucc(tin, data, nDeriv=4)
dev.new()
par(mfrow = c(3, 1))
findAllSets

Find all possible sets of equation combinations considering an ensemble of possible equation.

Description

For each equation to be retrieved, an ensemble of potential formulation is given. For instance, if three possible formulations are provided for equation (1), one for equation (2) and two for equation (3). In this case, six (i.e. 3*1*2) possible sets of equations can be obtained from these potential formulations. The aim of this program is to formulate all the potential systems from the individual formulations provided of the individual equations.

Usage

findAllSets(allFilt, nS = c(3), nPmin = 1, nPmax = 14)

Arguments

allFilt A list with: (1) A matrix allFilt$Xi of possible formulations for each equation (corresponding to variable Xi); And (2) a vector allFilt$Npi providing the number of polynomial terms contained in each formulation.

nS A vector providing the number of dimensions used for each input variables (see Examples 1 and 2). The dimension of the resulting model will be nVar = sum(nS).

nPmin Corresponds to the minimum number of parameters (and thus of polynomial term) allowed.

nPmax Corresponds to the maximum number of parameters (and thus of polynomial) allowed.

Author(s)

Sylvain Mangiarotti
See Also

autoGpomoSearch

Examples

We build an example

```
allFilt <- list()
# For equation 1 (variable X1)
allFilt$Np1 <- 1  # only one formulation with one single parameter
# For equation 2 (variable X2)
allFilt$Np2 <- c(3, 4)  # two potential formulations, with respectively three and four parameters
# For equation 3 (variable X3)
allFilt$Np3 <- c(2, 4)  # two potential formulations, with respectively two and four parameters
# Formulations for variables Xi:
# For X1:
allFilt$X1 <- t(as.matrix(c(0,0,0,1,0,0,0,0,0,0)))
# For X2:
allFilt$X2 <- t(matrix(c(0,-0.85,0,-0.27,0,0,0,0.46,0,0,
                         0,-0.64,0,0,0,0,0,0.43,0,0),
                         ncol=2, nrow=10))
# For X3:
allFilt$X3 <- t(matrix(c(0, 0.52, 0, -1.22e-05, 0, 0, 0.99, 5.38e-05, 0, 0,
                         0, 0.52, 0, 0, 0, 0.99, 0, 0, 0),
                         ncol=2, nrow=10))
```

From these individual we can retrieve all possible formulations

```
findAllSets(allFilt, nS=c(3), nPmin=1, nPmax=14)
```

if only formulations with seven maximum number of terms are expected:

```
findAllSets(allFilt, nS=c(3), nPmin=1, nPmax=7)
```

Description

Algorithm for global modelling in polynomial and canonical formulation of Ordinary Differential Equations. Univariate Global modeling aims to obtain multidimensional models from single time series (Gouesbet & Letellier 1994, Mangiarotti et al. 2012). An example of such application can be found in Mangiarotti et al. (2014) For a multivariate application, see GPomo (Mangiarotti 2015, Mangiarotti et al. 2016).

Example:

For a model dimension nVar=3, the global model will read:

\[
\begin{align*}
\frac{dX1}{dt} &= X2 \\
\frac{dX2}{dt} &= X3 \\
\frac{dX3}{dt} &= P(X1, X2, X3).
\end{align*}
\]
Usage

gloMoId(
 series,
 tin = NULL,
 dt = NULL,
 nVar = NULL,
 dMax = 1,
 weight = NULL,
 show = 1,
 filterReg = NULL,
 winL = 9
)

Arguments

- **series**: The original data set: either a single vector corresponding to the original variable; Or a matrix containing the original variable in the first column and its successive derivatives in the next columns. In the latter case, for the construction of n-dimensional model, `series` should have `nVar + 1` columns since one more derivative will be necessary to identify the model parameters. Variable `nVar` will be set equal to `n`. In the former case, that is when only a single vector is provided, the derivatives will be automatically recomputed. Therefore, the dimension `nVar` expected for the model has to be provided.
- **tin**: Input date vector which length should correspond to the input time series.
- **dt**: Sampling time of the input time series.
- **nVar**: Number of variables considered in the polynomial formulation.
- **dMax**: Maximum degree of the polynomial formulation.
- **weight**: A vector providing the binary weighting function of the input data series (0 or 1). By default, all the values are set to 1.
- **show**: Provide (2) or not (0-1) visual output during the running process.
- **filterReg**: A vector that specifies the template for the equation structure (for one single equation). The convention defined by `poLabs` is used. Value is 1 if the regressor is available, 0 if it is not.
- **winL**: Total number of points used for computing the derivatives of the input time series. This parameter will be used as an input in function `drvSucc` to compute the derivatives.

Value

A list of five elements:

- **$init**: The original time series and the successive derivatives used for the modeling.
- **$filterReg**: The structure of the output model. Value is 1 if the regressor is available, 0 if it is not. The terms order is given by function `poLabs`.
K Values of the identified coefficients corresponding to the regressors defined in `filterReg`.

$resTot$ The variance of the residual signal of the model.

$resSsMod$ The variance of the residual signal of the closer submodels.

$finalWeight$ Weighting series after boundary values were removed.

Author(s)

Sylvain Mangiarotti, Laurent Drapeau, Mireille Huc

References

See Also

`gPoMo`, `autoGPoMoSearch`, `autoGPoMoTest`, `poLabs`

Examples

```r
# Example 1
# load data
data("Ross76")
tin <- Ross76[,1]
data <- Ross76[,2:3]

# Polynomial identification
reg <- gloMoId(data[0:500,2], dt=1/100, nVar=2, dMax=2, show=0)
```

```r
# Example 2
# load data
data(NDVI)
```
Description

Algorithm for a Generalized Polynomial formulation of multivariate Global Modeling. Global modeling aims to obtain multidimensional models from single time series [1-2]. In the generalized
(polynomial) formulation provided in this function, it can also be applied to multivariate time series [3-4].

Example:
Note that nS provides the number of dimensions used from each variable

case I
For nS=c(2,3) means that 2 dimensions are reconstructed from variable 1: the original variable \(X_1 \) and its first derivative \(X_2 \), and 3 dimensions are reconstructed from variable 2: the original variable \(X_3 \) and its first and second derivatives \(X_4 \) and \(X_5 \). The generalized model will thus be such as:

\[
\begin{align*}
\frac{dX_1}{dt} &= X_2 \\
\frac{dX_2}{dt} &= P_1(X_1, X_2, X_3, X_4, X_5) \\
\frac{dX_3}{dt} &= X_4 \\
\frac{dX_4}{dt} &= X_5 \\
\frac{dX_5}{dt} &= P_2(X_1, X_2, X_3, X_4, X_5).
\end{align*}
\]

case II
For nS=c(1,1,1,1) means that only the original variables \(X_1 \), \(X_2 \), \(X_3 \) and \(X_4 \) will be used. The generalized model will thus be such as:

\[
\begin{align*}
\frac{dX_1}{dt} &= P_1(X_1, X_2, X_3, X_4) \\
\frac{dX_2}{dt} &= P_2(X_1, X_2, X_3, X_4) \\
\frac{dX_3}{dt} &= P_3(X_1, X_2, X_3, X_4) \\
\frac{dX_4}{dt} &= P_4(X_1, X_2, X_3, X_4).
\end{align*}
\]

Usage

```r
gPoMo(
data, tin = NULL, dtFixe = NULL, dMax = 2, nS = c(3), winL = 9, weight = NULL, show = 1, verbose = 1, underSamp = NULL, EqS = NULL, AndManda = NULL, OrMandaPerEq = NULL, IstepMin = 2, IstepMax = 2000, nPmin = 1, nPmax = 14, tooFarThr = 4, FxPtThr = 1e-08, LimCyclThr = 1e-06, nPminPerEq = 1, nPmaxPerEq = NULL,
```
method = "rk4"
)

Arguments

data Input Time series: Each column is one time series that corresponds to one variable.
tin Input date vector which length should correspond to the input time series.
dtFixe Time step used for the analysis. It should correspond to the sampling time of the input data. Note that for very large and very small time steps, alternative units may be used in order to stabilize the numerical computation.
dMax Maximum degree of the polynomial formulation.
nS A vector providing the number of dimensions used for each input variables (see Examples 1 and 2). The dimension of the resulting model will be nVar = sum(nS).
winL Total number of points used for computing the derivatives of the input time series. This parameter will be used as an input in function drvSucc to compute the derivatives.
weight A vector providing the binary weighting function of the input data series (0 or 1). By default, all the values are set to 1.
show Provide (2) or not (0-1) visual output during the running process.
verbose Gives information (if set to 1) about the algorithm progress and keeps silent if set to 0.
undersamp Number of points used for undersampling the data. For undersamp = 1 the complete time series is used. For undersamp = 2, only one data out of two is kept, etc.
EqS Model template including all allowed regressors. Each column corresponds to one equation. Each line corresponds to one polynomial term as defined by function poLabs.
AndManda AND-mandatory terms in the equations (all the provided terms should be in the equations).
OrMandaPerEq OR-mandatory terms per equations (at least one of the provided terms should be in each equation).
IstepMin The minimum number of integration step to start of the analysis (by default IstepMin = 10).
IstepMax The maximum number of integration steps for stopping the analysis (by default IstepMax = 10000).
nPmin Corresponds to the minimum number of parameters (and thus of polynomial term) allowed.
nPmax Corresponds to the maximum number of parameters (and thus of polynomial) allowed.
tooFarThr Divergence threshold, maximum value of the model trajectory compared to the data standard deviation. By default a trajectory is too far if the distance to the center is larger than four times the variance of the input data.
FxPtThr Threshold used to detect fixed points.

LimCyc1Thr Threshold used to detect the limit cycle.

nPminPerEq Corresponds to the minimum number of parameters (and thus of polynomial term) allowed per equation.

nPmaxPerEq Corresponds to the maximum number of parameters (and thus of polynomial) allowed per equation.

method The integration technique used for the numerical integration. By default, the fourth-order Runge-Kutta method (method = 'rk4') is used. Other methods such as 'ode45' or 'lsoda' may also be chosen. See package deSolve for details.

Value

A list containing:

tin The time vector of the input time series
$inputdata$ The input time series
$tfiltdata$ The time vector of the filtered time series (boundary removed)
$filtdata$ A matrix of the filtered time series with its derivatives
$okMod$ A vector classifying the models: diverging models (0), periodic models of period-1 (-1), unclassified models (1).
$coeff$ A matrix with the coefficients of one selected model
$models$ A list of all the models to be tested $mToTest1$, $mToTest2$, etc. and all selected models $model1$, $model2$, etc.
	$tout$ The time vector of the output time series (vector length corresponding to the longest numerical integration duration)
$stockoutreg$ A list of matrices with the integrated trajectories (variable $X1$ in column 1, $X2$ in 2, etc.) of all the models $model1$, $model2$, etc.

Author(s)

Sylvain Mangiarotti, Flavie Le Jean, Mireille Huc

References

See Also

gloMoId, autoGPoMoSearch, autoGPoMoTest
autoGPoMoSearch, autoGPoMoTest, visuOutGP, poLabs, predictab, drvSucc

Examples

#Example 1
data("Ross76")
tin <- Ross76[,1]
data <- Ross76[,3]
dev.new()
out1 <- gPoMo(data, tin = tin, dMax = 2, nS=c(3), show = 1,
 IstepMax = 1000, nPmin = 9, nPmax = 11)
visuEq(out1$models$model1, approx = 4)

Not run:
#Example 2

data("Ross76")
tin <- Ross76[,1]
data <- Ross76[,3]
if some data are not valid (vector 'weight' with zeros)
W <- tin * 0 + 1
W[1:100] <- 0
W[700:1500] <- 0
W[2000:2800] <- 0
W[3000:3500] <- 0
dev.new()
out2 <- gPoMo(data, tin = tin, weight = W,
 dMax = 2, nS=c(3), show = 1,
 IstepMax = 6000, nPmin = 9, nPmax = 11)
visuEq(out2$models$model3, approx = 4)

End(Not run)

Not run:
#Example 3

data("Ross76")
tin <- Ross76[,1]
data <- Ross76[,2:4]
dev.new()
out3 <- gPoMo(data, tin=tin, dMax = 2, nS=c(1,1,1), show = 1,
 IstepMin = 10, IstepMax = 3000, nPmin = 7, nPmax = 8)
the simplest model able to reproduce the observed dynamics is model #5
visuEq(out3$models$model5, approx = 3, substit = 1) # the original Rossler system is thus retrieved

End(Not run)

Not run:
#Example 4

data("Ross76")
tin <- Ross76[,1]
data <- Ross76[,2:3]

model template:
EqS <- matrix(1, ncol = 3, nrow = 10)
EqS[,1] <- c(0,0,0,1,0,0,0,0,0,0)
EqS[,2] <- c(1,1,0,1,0,1,1,1,1,1)
EqS[,3] <- c(0,1,0,0,0,1,1,0,0,0)
visuEq(EqS, substit = c("X","Y","Z"))

dev.new()
out4 <- gPoMo(data, tin=tin, dMax = 2, nS=c(2,1), show = 1,
 EqS = EqS, IstepMin = 10, IstepMax = 2000,
 nPmin = 9, nPmax = 11)
visuEq(out4$models$model2, approx = 2, substit = c("Y","Y2","Z"))

End(Not run)

Not run:
#Example 5
load data
data("TSallMod_nVar3_dMax2")
#multiple (six) time series

generalized Polynomial modelling
out5 <- gPoMo(data, tin = tin, dMax = 2, nS = c(1,1,1,1,1,1),
 show = 0, method = "rk4",
 IstepMin = 2, IstepMax = 3,
 nPmin = 13, nPmax = 13)

the original Rossler (variables x, y and z) and Sprott (variables u, v and w)
systems are retrieved:
visuEq(out5$models$model347, approx = 4,
 substit = c(’x’, ’y’, ’z’, ’u’, ’v’, ’w’))
to check the robustness of the model, the integration duration
should be chosen longer (at least IstepMax = 4000)

End(Not run)

GSproc

Gram-Schmidt procedure

Description

Computes regressors coefficients using the Gram-Schmidt procedure.
Usage

\[
\text{GSproc(polyK, ivec, weight = NULL)}
\]

Arguments

polyK \text{One list including} \ Y \text{and} \ phy \text{with:} \ Y \text{a matrix for which the} \ i \text{th column will be used to add one orthogonal vector to the} \ (i-1)\text{th vectors of the current orthogonal base;} \text{and} \ phy \text{such as the current orthogonal base is given by the} \ (i-1)\text{th first columns of matrix polyK}\phy.

ivec \text{Defines} \ i, \text{the current vector of} \ polyK\Y \text{and the current orthogonal base of} \ p\Param\phy.

weight \text{The weighing vector.}

Value

\(u_{\text{New}}\) \text{The model parameterization, that is: The residual orthogonal vector that can be included into the current orthogonal base. If the current base is empty,} \ u_{\text{New}} \text{is equal to the input vector of} \ Y; \text{if the base is complete,} \ u_{\text{New}} \text{equals} \ 0.

Author(s)

Sylvain Mangiarotti

NDVI

A time series of vegetation index measured from satellite

Description

A time series of 28 years of Normalized Difference Vegetation Index measured from space by the Advanced Very High Resolution Radiometer (AVHRR) sensor from 1982 to 2008 (see reference [1] for details).

Usage

NDVI

Format

An object of class \text{data.frame} \text{with 9618 rows and 4 columns.}

Author(s)

Sylvain Mangiarotti, Flavie Le Jean

References

numicano

Numerical Integration of models in ODE of polynomial form

Description

Function for the numerical integration of Ordinary Differential Equations of polynomial form.

Usage

numicano(
 nVar,
 dMax,
 Istep = 1000,
 onestep = 1/125,
 KL = NULL,
 PolyTerms = NULL,
 v0 = NULL,
 method = “rk4”
)

Arguments

nVar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
Istep The number of integration time steps
onestep Time step length
KL Matrix formulation of the model to integrate numerically
PolyTerms Vectorial formulation of the model (only for models of canonical form)
v0 The initial conditions (a vector which length should correspond to the model dimension nVar)
method The integration method (See package deSolve), by default method = 'rk4'.

Value

A list of two variables:

$KL The model in its matrix formulation

$reconstr The integrated trajectory (first column is the time, next columns are the model variables)

Author(s)

Sylvain Mangiarotti
See Also
drivODE2, numinoisy

Examples

#############
Example 1
#############
For a model of general form (here the rossler model)
model dimension:
nVar = 3
maximal polynomial degree
dMax = 2
Number of parameter number (by default)
pMax <- d2pMax(nVar, dMax)
convention used for the model formulation
poLabs(nVar, dMax)
Definition of the Model Function
a = 0.520
b = 2
c = 4
Eq1 <- c(0,-1, 0, -1, 0, 0, 0, 0, 0)
Eq2 <- c(0, 0, a, 0, 0, 1, 0, 0, 0)
Eq3 <- c(b,-c, 0, 0, 0, 0, 1, 0, 0)
K <- cbind(Eq1, Eq2, Eq3)
Edition of the equations
visuEq(K, nVar, dMax)
initial conditions
v0 <- c(-0.6, 0.6, 0.4)
model integration
reconstr <- numicano(nVar, dMax, Istep=1000, onestep=1/50, KL=K,
v0=v0, method="ode45")
Plot of the simulated time series obtained
dev.new()
plot(reconstr$reconstr[,2], reconstr$reconstr[,3], type='l',
main='phase portrait', xlab='x(t)', ylab = 'y(t)')

Not run:
#############
Example 2
#############
For a model of canonical form
model dimension:
nVar = 4
maximal polynomial degree
dMax = 3
Number of parameter number (by default)
pMax <- d2pMax(nVar, dMax)
Definition of the Model Function
PolyTerms <- c(281000, 0, 0, 0, -2275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
861, 0, 0, 0, -87300, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
terms used in the model
numiMultiX

Description

Function for the numerical integration of Ordinary Differential Equations of polynomial form including single or Multiple external forcing

Usage

numiMultiX(
 nVar,
 dMax,
 Istep = 1000,
 onestep = 1/125,
 KDf,
 extF = extF,
 v0 = NULL,
 method = "rk4"
)

Arguments

nVar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
Istep The number of integration time steps. By default, Istep = 1000
onestep The time step to be used for numerical integration
KDf The nonautonomous model in its matrix formulation, NA (i.e. not available) values should be provided for forcing variables provided as an external signal
extF A matrix providing the time vector in the first column, and time series of each forcing in the next ones
The initial conditions. Its length should be in agreement with the dynamical system dimension. Therefore, 0 or NA can be provided for external forcing method integration method. By default 'rk4' is used

Value

A list of two variables:

\mathbf{KDF} The nonautonomous model in its matrix formulation

$\mathbf{reconstr}$ The integrated trajectory (first column is the time, next columns are the model variables)

Author(s)

Sylvain Mangiarotti

See Also

derivODE2, numicano, numinoisy

Examples

```
# Example 1
nVar = 4
dMax = 3
gamma = 0.05
KDf = matrix(0, nrow = d2pMax(nVar = nVar, dMax = dMax), ncol = nVar)
KDf[1,1] = 1
KDf[2,2] = 1
KDf[5,2] = 1
KDf[1,2] = -gamma
KDf[35,2] = -1
KDf[2,3] = NA
KDf[2,4] = NA
visuEq(K = KDf, substit = c('x', 'y', 'u', 'v'))

# build an external forcing
# number of integration time step
Istep <- 500

tvec <- (0:(Istep-1)) * smpl

# angular frequency (for periodic forcing)
omega = 0.2
```
half step time vector (for Runge-Kutta integration)
tvecX <- (0:(Istep*2-2)) * smpl / 2
generate the forcing (here variables u and v)
extF = cbind(tvecX, -0.1 * cos(tvecX * omega), 0.05 * cos(tvecX * 16/3*omega))

decimate the data
extFrs <- extF[seq(1,dim(extF)[1],by=50),]
extFrs <- rbind(extFrs,extF[dim(extF)[1],])

Initial conditions to be used (external variables can be set to 0)
etatInit <- c(-0.616109362 , -0.126882584 , NA, NA)
model integration
out <- numiMultiX(nVar, dMax, Istep=Istep, onestep=smpl, KDf=KDf,
extF,
v0=etatInit, method="rk4")
outrs <- numiMultiX(nVar, dMax, Istep=Istep, onestep=smpl, KDf=KDf,
extFrs,
v0=etatInit, method="rk4")
dev.new()
par(mfrow = c(2, 2), # 2 x 2 pictures on one plot
pty = "s"
plot(out$reconstr[,2],out$reconstr[,3],
 xlab = 'x(t)', ylab = 'y(t)', type = 'l', col = 'red')
lines(outrs$reconstr[,2],outrs$reconstr[,3],
 xlab = 'x(t)', ylab = 'y(t)', type = 'l', col = 'green')
plot(out$reconstr[,2],out$reconstr[,4],
 xlab = 'x(t)', ylab = 'u(t)', type = 'l', col = 'red')
plot(out$reconstr[,4],out$reconstr[,5],
 xlab = 'u(t)', ylab = 'v(t)', type = 'l', col = 'red')
txVarBruitM = NULL,
varBruitA = NULL,
varBruitM = NULL,
taux = NULL,
freq = NULL,
variables = NULL,
method = NULL
)

Arguments

x0 The initial conditions. Should be a vector which size must be equal to the model
dimension dim(K)[2] (the number of variables of the model defined by matrix K).

t A vector providing all the dates for which the output are expected.

K The Ordinary Differential Equations used to model the dynamics. The number
of column should correspond to the number of variables, the number of lines to
the number of parameters following the convention defined by poLabs(nVar,dMax).

varData A vector of size nVar providing the caracteristic variances of each variable of the
dynamical systems in ODE defined by matrix K. If not provided, this variance is
automatically estimated.

txVarBruitA A vector defining the ratio of ADDITIVE noise for each variable of the dynamical
system in ODE. The additive noise is added at the end of the numerical
integration process. The ratio is defined relatively to the signal variance of each
variable.

txVarBruitM A vector defining the ratio of DYNAMICAL noise for each variable of the dy-
amical system in ODE. This noise is a perturbation added at each numerical
integration step. The ratio is defined relatively to the signal variance of each
variable.

varBruitA A vector defining the variance of ADDITIVE noise for each variable of the dyna-
mical system in ODE. The additive noise is added at the end of the numerical
integration process.

varBruitM A vector defining the variance of DYNAMICAL noise for each variable of the
dynamical system in ODE. This noise is a perturbation added at each numerical
integration step.

taux Generates random gaps in time series. Parameter taux defines the ratio of data
to be kept (e.g. for taux = 0.75, 75 percents of the data are kept).

freq Subsamples the time series. Parameter freq defines the periodicity of data kept
(e.g. for freq = 3, 1 data out of 3 is kept).

variables Defines which variables must be generated.

method Defines the numerical integration method to be used. The fourth-order Runge-
Kutta method is used by default (method = 'rk4'). Other method may be used
(such as 'ode45' or 'lsoda'), see function ode from package deSolve for
details.
Value

A list of two variables:

$donnees The integrated trajectory (first column is the time, next columns are the model variables)

$bruitM The level of dynamical noise

$bruitA The level of additive noise

$vectBruitM The vector of the dynamical noise used to produce the time series

$vectBruitA The vector of the additive noise used to produce the time series

$ecart_type The level standard deviation

Author(s)

Sylvain Mangiarotti, Malika Chassan

Examples

###########
Example 1
###########
Rossler Model formulation
The model dimension
nVar = 3
maximal polynomial degree
dMax = 2
a = 0.520
b = 26
= 4
Eq1 <- c(0, -1, 0, -1, 0, 0, 0, 0, 0, 0)
Eq2 <- c(0, 0, 0, a, 0, 0, 1, 0, 0, 0)
Eq3 <- c(b^-c, 0, 0, 0, 0, 1, 0, 0)
K <- cbind(Eq1, Eq2, Eq3)
Edit the equations
visuEq(K, nVar, dMax)
initial conditions
v0 <- c(-0.6, 0.6, 0.4)
output time required
timeOut = (0:800)/50
variance of additive noise
varBruitA = c(0, 0, 0)^2
variance of multiplicative noise
varBruitM = c(2E-2, 0, 2E-2)^2
numerical integration with noise
intgr <- numinoisy(v0, timeOut, K, varBruitA = varBruitA, varBruitM = varBruitM, freq = 1)
odeBruitMult2

For the numerical integration of ordinary differential equations with dynamical noise.

Description

A subfunction for the numerical integration of Ordinary Differential Equations provided in a generic polynomial form. Model formulation follows the convention defined by function poLabs.

Usage

odeBruitMult2(
 x0,
 t,
 K,
 varData = NULL,
 txVarBruitM = NULL,
 varBruitM = NULL,
 method = NULL
)

Arguments

x0
 Initial conditions

t
 All the dates for which the result of the numerical integration of the model must be provided

K
 A matrix providing the model description: each column corresponds to one equation which polynomial organisation is following the convention defined by function poLabs.
varData A vector of size nVar providing the characteristic variances of each variable of the dynamical systems in ODE defined by matrix K. If not provided, this variance is automatically estimated.

txVarBruitM A vector defining the ratio of DYNAMICAL noise for each variable of the dynamical system in ODE. This noise is a perturbation added at each numerical integration step. The ratio is defined relatively to the signal variance of each variable.

varBruitM A vector defining the variance of DYNAMICAL noise for each variable of the dynamical system in ODE. This noise is a perturbation added at each numerical integration step.

method Numerical method used in the integration process. (see ode function in deSolve package for details).

Author(s)

Sylvain Mangiarotti, Malika Chassan

See Also

numinoisy

P1FxCh A data set for testing periodicity

Description

A matrix of 6 columns corresponding to six time series, two resulting from a Period-1 limit cycle, two from regime converging to fixed point, and two relating to a chaotic behavior.

Usage

P1FxCh

Format

An object of class matrix with 1000 rows and 6 columns.

Author(s)

Sylvain Mangiarotti, Mireille Huc.
P1FxChP2

A data set for testing periodicity

Description

Trajectories for testing periodicity. The following regimes are made available: Period-1 in columns 1:2, Fixed Point in 3:4, chaotic in 5:6, Period-2 in 7:8

Usage

P1FxChP2

Format

An object of class matrix with 1000 rows and 8 columns.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

p2dMax

p2dMax : provides the maximum polynomial degree d_{Max} given the number of variables n_{Var} and the number of possible polynomial terms p_{Max}.

Description

Find the maximum polynomial degree d_{Max} given the number of polynomial terms p_{Max} and the system dimension n_{Var}.

Usage

p2dMax(nVar, pMaxKnown)

Arguments

n_{Var} Number of variables considered in the polynomial formulation.
p_{MaxKnown} The number of polynomial terms

Value

d_{\text{Max}} The maximum polynomial degree

Author(s)

Sylvain Mangiarotti, Laurent Drapeau
paramId

See Also
gloMoId, gPoMo, poLabs

Examples

Example 1
Maximum polynomial degree ?
number of variables:
size of the polynomial vector:
The maximal polynomial degree used for coding the polynomial is:
p2dMax(nVar, pMax)

Example 2
for pMax = 462 and nVar = 6, then dMax is:
p2dMax(6, 462)
indeed:
length(poLabs(nVar=6, dMax=5))

paramId For parameter Identification

Description

Estimate the polynomial coefficients.

Usage

paramId(allForK, drv, weight)

Arguments

allForK The list of input parameters
drv The derivative (on the equation left hand)
weight The weighting series

Value

allForK The initial list completed with the model parameters.

Author(s)

Sylvain Mangiarotti
Description

Defines the order of the polynomial labels given the number of variables `nVar` and the maximum polynomial degree `dMax`.

Usage

`poLabs(nVar, dMax, findIt = NULL, Xnote = "X")`

Arguments

- `nVar` The number of variables
- `dMax` The maximum degree allowed in the formulation
- `findIt` A vector of selected terms.
- `Xnote` Enables to defines the notation used for the variable, by default `Xnote = "X"`.

Value

`lbls` A vector of characters. Each element is the expression of one polynomial term, such as $X_1^2 X_3 X_4$

Author(s)

Sylvain Mangiarotti

See Also

`visuEq`

Examples

#Regressor order for three variables \(\text{eqn}\{(X1,X2,X3)\} \ (nVar = 3)\) for a maximum
#polynomial degree equal to 2 \(\text{eqn}\{dMax = 2\})\: \text{poLabs}(3,2)
#and for two variables only : \text{poLabs}(2,2)

For a quadratic equation of two variables,
the polynomial \(\text{eqn}\{P(X1,X2) = 0.5 + 0.3 \ X1 -0.25 \ X1 \ X2\}\)
could thus be written as a vector Pvec such as:
Pvec = c(0.5, 0, 0, 0.3, -0.25, 0)
considering the convention corresponding to
poLabs(2,2)
Indeed:
poLabs(2, 2, findIt = Pvec!=0)
An alternative notation can be used with parameter Xnote
poLabs(2, 2, findIt = Pvec!=0, Xnote = 'w')
predictab

or also
poLabs(2, 2, findIt = Pvec!=0, Xnote = c('x', 'y'))

predictab

Estimate the models performance obtained with GPoMo in term of predictability

Description

The algorithm aims to estimate automatically the forecasting performances of the models obtained with GPoMo.

Usage

```r
predictab(
  ogp,
  fullt = NULL,
  fulldata = NULL,
  hp = NULL,
  Nech = 50,
  show = 1,
  selecmo = NULL,
  id = 1,
  selV = 1,
  na.rm = FALSE
)
```

Arguments

- `ogp` The output list obtained from function GPoMo.
- `fullt` Time vector of the data set for which predictability will be tested
- `fulldata` Data set for which predictability will be tested
- `hp` Time vector of the horizon of prediction
- `Nech` Number of simulations
- `show` Provide (2) or not (0-1) visual output during the running process.
- `selecmo` A vector of the model selected.
- `id` The type of model to identify. `id = 1` corresponds to unidentified models, that is, potentialy chaotic.
- `selV` Selected variable for the analysis
- `na.rm` Indicates if the NA should be removed (na.rm = TRUE) or not (na.rm = FALSE).
Value

ErrmodAll A list of matrix $Predmod1$, $Predmod2$, etc. and $Errmod1$, $Errmod2$, etc. providing respectively the forecasting and the forecasting error of models 1, 2, etc. Each column corresponds to one simulation starting from a specific initial condition. Each line corresponds to one horizon of prediction. Vectors corresponding to the initial condition time tE and the horizon of prediction hpE are also provided in tE and hpE, respectively.

Author(s)

Sylvain Mangiarotti, Mireille Huc

Examples

```r
# load data
data("Ross76")
# time vector
tin <- Ross76[seq(1, 3000, by = 8), 1]
# single time series
data <- Ross76[seq(1, 3000, by = 8), 3]
# dev.new()
# plot(tin, data, xlab = 'time', ylab = 'y(t)')

# global modelling
# results are put in list outputGPoM
outputGPoM <- gPoMo(data[1:300], tin = tin[1:300], dMax = 2, nS=c(3),
   show = 0, method = 'rk4',
   nPmin = 10, nPmax = 12,
   IstepMin = 150, IstepMax = 151)

# visuOutGP(outputGPoM)

# and test predictability #
# outpred <- predictab(outputGPoM, hp = 15, Nech = 30)

# manual visualisation of the outputs (e.g. for model 1):
# dev.new()
image(outpred$tE, outpred$hpE, t(outpred$Errmod1),
xlab = 't', ylab = 'hp', main = 'Errmod1')
```

pTimEv

Model stationnary testing

Description

Estimate the parameters variations of a model of canonical form considering a sliding window on an external dataset.
Usage

```r
tpTimEv(
  TS,
  nVar,
  dMax,
  TSdate,
  whatTerms = NULL,
  wlength = 1000,
  onestep = 100,
  removeExtr = 1
)
```

Arguments

- **TS**: The time series to be tested.
- **nVar**: Number of variables considered in the polynomial formulation.
- **dMax**: Maximum degree of the polynomial formulation.
- **TSdate**: The time vector.
- **whatTerms**: The terms to be considered in the analysis. Note that these are organised following the convention defined by `poLabs(nVar,dMax)`. Since only the structure is required, if coefficients are provided, these are transformed to 1.
- **wlength**: The window length.
- **onestep**: Step length between two estimations.
- **removeExtr**: Ratio of estimated values to be removed (if chosen equal to 0.1, only 90 dispersion will be kept).

Value

A list containing:

- `$slidingoutGM`: An n*(pMax+1) matrix presenting the pMax estimated parameters p1(t), p2(t) etc. column by column. The residual signal epsilon(t) is provided in the last (i.e. pMax + 1) column. Each line correspond to one date provided in `$TSdate`.
- `$TSdate`: A time vector relating to the estimates presented in `$slidingoutGM`.
- `$W`: A vector providing the output values that can kept (=1) or must be removed (=0).
- `$whatTerms`: A vector recalling the terms taken into account in the analysis (their order refers to `poLabs(nVar,dMax)` function).
- `$param`: A vector with the parameter values used to apply the function: nVar, dMax, wlength, onestep, removeExtr.

Author(s)

Sylvain Mangiarotti

See Also

`autoGPOMoSearch`, `gPOMo`, `poLabs`
Examples

```r
# Example
data(TS)
plot(TS[,1], TS[,2], type='l')
nVar <- 3
dMax <- 2
pMax <- choose(nVar+dMax,dMax)
whatTerms <- c(1,1,0,1,1,1,1,1,1,1)

# apply pTimEv
statio <- pTimEv(TS[,2], nVar, dMax, TS[,1], whatTerms = whatTerms,
wlength = 1000, onestep = 20, removeExtr = 0.15)

# Plot the results
dev.new()
layout(matrix(1:12, nrow=4, ncol=3, byrow = TRUE))
what <- which(statio$whatTerms!=0)
for (i in what) {
  plot(statio$TSdate[statio$W==1], statio$slidingoutGM[statio$W==1,i],
xlab='TSdate', ylab='coeff', main=polabs(nVar,dMax)[i])
}
plot(statio$TSdate[statio$W==1], statio$slidingoutGM[statio$W==1,pMax+1],
xlab='date', ylab='Epsilon', main='Resid', log='y')
```

regOrd

Generate the conventional order for polynomial terms in a polynomial formulation

Description

Generate the conventional order of the polynomial terms for the polynomial description. It is formulated as a matrix of exponents: Each column of the matrix \((a,b,c,\ldots)\) corresponds to a product of the \(nVar\) available variables \(X_1, X_2, X_3, \text{etc.}\), that is, \(X_1^a X_2^b X_3^c, \text{etc.}\).

Usage

```r
regOrd(nVar, dMax)
```

Arguments

- **nVar**
 - The number of variables
- **dMax**
 - The maximum degree allowed in the formulation

Value

A matrix of exponents. Each column corresponds to one polynomial term. Each line corresponds to the exponent of one variable. For example, a column of three exponents \((0,2,1)\) corresponds to the monomial \(X_1^0 \times X_2^2 \times X_3^1\), that is \(X^2 X_3\).
regSeries

Author(s)
Sylvain Mangiarotti

See Also
poLabs

regSeries Estimates the monomial time series

Description
Creates time series by multiplying given time series among them.

Usage
regSeries(nVar, dMax, series, pReg = NULL)

Arguments
nVar Number of variables considered in the polynomial formulation.
dMax Maximum degree of the polynomial formulation.
series A matrix containing the original time series from which the monomials are built.
 Each column corresponds to one given variable.
pReg A matrix filled, for each column, with powers of time series used to create.

Value
rpFull A matrix of time series. Each column corresponds to one regressor such as $X_1^2X_3X_4$

Author(s)
Sylvain Mangiarotti

Examples
data(TSallMod_nVar3_dMax2)
sprottK <- as.matrix(TSallMod_nVar3_dMax2$SprK$reconstr)[,2:4]
dMax <- 2
nVar <- dim(sprottK)[2]

#Example 1
polySeries2 <- regSeries(nVar, dMax, sprottK)

#Example 2
p <- c(1,3,1)
polySeries2 <- regSeries(nVar, dMax, sprottK, pReg=p)

Description

The Rössler system is the 3-dimensional chaotic system

\[
\begin{align*}
\frac{dx}{dt} &= -y - z \\
\frac{dy}{dt} &= x + ay \\
\frac{dz}{dt} &= b + z(x - c),
\end{align*}
\]

discovered by Otto E. Rössler in 1976 [1]. The following parameters and initial conditions were used to produce the present data set:

- \(a = 0.520 \), \(b = 2 \), \(c = 4 \)
- \((x_0, y_0, z_0) = (-0.04298734, 1.025536, 0.09057987)\).

The following four columns are provided:

1. time \(t \),
2. \(x(t) \),
3. \(y(t) \) and
4. \(z(t) \).

For this parameterization, the Rössler system produces a chaotic behavior characterized by a regime non-coherent in phase (oscillations duration can be very different from one oscillation to another).

Usage

Ross76

Format

An object of class `deSolve` (inherits from `matrix`) with 4000 rows and 4 columns.

Author(s)

Sylvain Mangiarotti, Flavie Le Jean, Malika Chassan, Laurent Drapeau, Mireille Huc.

References

RosYco Twelve Rossler-1976 time series (exclusively variable y)

Description

Twelve independant Rossler-1976 time series (variable \(y \)). The parameters used to generate the time series correspond to a phase coherent behavior. Details can be found in [1]

Usage

RosYco
Format

An object of class `matrix` with 3000 rows and 12 columns.

Details

Another set of time series of the Rossler-1976 chaotic system

Author(s)

Sylvain Mangiarotti, Flavie Le Jean.

References

Description

Detect, disentangle and reformulate Sub-systems from an ensemble of equations.

Usage

```
subSysD(inK, inXnote = NULL)
```

Arguments

- `inK` A list of models, each provided as a matrix. A single matrix can also be provided, it will be transformed into a list containing a single matrix.
- `inXnote` A vector with the names of the input variables. If not provided, default notation is used: "X1", "X2", etc.

Author(s)

Sylvain Mangiarotti

See Also

`gPoMo`, `poLabs`, `combiEq`
Examples

Load models
data("allMod_nVar3_dMax2")

Display equations of system 1
visuEq(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$NH3, substit = 1)

Display equations of system 2
visuEq(nVar = 3, dMax = 2, K = allMod_nVar3_dMax2$R76, substit = 1)

put the two systems in a list
allK <- list()
allK[[1]] <- allMod_nVar3_dMax2$NH3
allK[[2]] <- allMod_nVar3_dMax2$R76

Example 1 (two independant subsystems)
take two separate systems and mix them
inXnote = list()
inXnote[[1]] <- c('u', 'v', 'w')
inXnote[[2]] <- c('X', 'Y', 'Z')
visuEq(K = allK[[1]], substit = inXnote[[1]])
visuEq(K = allK[[2]], substit = inXnote[[2]])
XnoteOut = c('u', 'X', 'v', 'Y', 'w', 'Z')
Knew3 <- combiEq(allK, inXnote = inXnote, XnoteOut = XnoteOut, dMaxOut = 3)
visuEq(K = Knew3, substit = XnoteOut)

Disentangle the subsystems from the mixed equations
dstgl <- subSysD(Knew3, inXnote = XnoteOut)
Optional
library(igraph)
g1<--graph.adjacency(dstgl$FM);
l <- layout_with_fr(g1)
plot(g1, edge.arrow.size = .4, edge.curved=.4, vertex.label=XnoteOut, layout = l)

Example 2 (one subsystem included in the other)
Kduff <- matrix(0, ncol = 4, nrow = 35)
Kduff[35,2] <- -1
Kduff[11,2] <- -0.05
Kduff[5,4] <- 2 * acos(-1) / 6.2
Xnote <- c("x", "y", "u", "v")
visuEq(Kduff, substit = Xnote)
dstgl2 <- subSysD(Kduff, inXnote = Xnote)

svrTS

A data set for the global modeling of time series in association

Description

This data set aims to test the global modelling technique when several time series of different sizes are available. Four time series are provided, all derived from the Rössler-1976 system.
testP

Usage

svr1TS

Format

An object of class list of length 4.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

References

Description

Tests if a trajectory is periodic.

Usage

testP(data, wthresh = 0.1, fxPtThresh = 1e-04, show = 0)

Arguments

data Input Time series: Each column is one time series that corresponds to one variable.
wthresh Threshold used to detect the limit cycle.
fxPtThresh Threshold used to detect fixed points.
show Provide (2) or not (0-1) visual output during the running process.

Value

periodic An integer classifying the models: diverging or unclassified trajectory (0), period-1 trajectory (-1), period-2 trajectory (-2) and fixed Point (2).

Author(s)

Sylvain Mangiarotti, Flavie Le Jean

See Also

autoGPoMoTest, gPoMo
Examples

```r
# Example
# Load data:
data("P1FxChP2")
# Test a period-1 trajectory
testP(P1FxChP2[,1:2], wthresh=0.1, fxPtThresh = 1e-6, show=0)
# Test a Fixed Point trajectory
testP(P1FxChP2[,3:4], wthresh=0.1, fxPtThresh = 1e-6, show=0)
# Test a chaotic trajectory
testP(P1FxChP2[,5:6], wthresh=0.1, fxPtThresh = 1e-6, show=0)
# Test a period-2 trajectory
testP(P1FxChP2[,7:8], wthresh=0.1, fxPtThresh = 1e-6, show=0)
```

TS

Time series resulting from the integration of a non stationary system

Description

A 2*6001 matrix with the time vector in column one and a time series resulting from the integration of a non stationary Rössler system – parameter a varying in time: a(t) – in colmn two.

Usage

TS

Format

An object of class `matrix` with 6001 rows and 2 columns.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

TSallMod_nVar3_dMax2 data set

Time series of three-dimensional chaotic sytems (for vignette VII_Retro-Modelling)

Description

A list of matrix providing the time series in a list named TSallMod_nVar3_dMax2 of eighteen three-dimensional chaotic systems: Lorenz-1963 ($L63$), Rössler-1976 ($R76$), Burke & shaw 1981 ($BS81$), Lorenz-1984 ($L84$), Nosé & Hooer 1986 ($NH86$), Genesio & Tosi 1992 ($GT92$), Spott systems 1994 ($SprF$, $SprH$, $SprK$, $SprO$, $SprP$, $SprG$, $SprM$, $SprQ$, $SprS$), Chlouverakis & Sprott 2004 ($CS2004$), Li 2007 ($Li2007$) and the Cord system by Aguirre & Letellier 2012 ($Cord2012$). Time series are provided in a matrix in which each column corresponds to one variable of the dynamical systems.
Usage

TSallMod_nVar3_dMax2

Format

An object of class list of length 18.

Author(s)

Sylvain Mangiarotti, Mireille Huc.

References

References for the systems are provided in vignette ‘VII_retro-modelling’.

visuEq | Displays the models Equations

Description

Displays the model equations for a polynomial model which description is provided as a matrix \(K \), each column corresponding to one equation. The coefficients of the polynomial terms are given following the order defined by function poLabs. The matrix can also be provided in a list \(K \), in this case, the matrix should be located in \(K\text{\$model[[selecmod]]} \) where selecmod should be provided as input parameter.

Usage

```r
visuEq(
  K,
  nVar = NULL,
  dMax = NULL,
  substit = 0,
  approx = FALSE,
  selecmod = NULL
)
```

Arguments

- **K**: A matrix providing the model description: each column corresponds to one equation which polynomial organisation is following the convention defined by function poLabs.
- **nVar**: The number of variables
- **dMax**: The maximum degree allowed in the formulation
substit: Applies substitutions to the default values: for substit = 0 (default value), variables are chosen as $X_1, X_2, ...$ for substit = 1, variable $X_1, X_2, ...$ will be replaced by $x, y, z, ...$ for substit = 2, the codes provides a LaTex-like formulation of the model. The variables name can also be defined explicitely as follows: for substit = c('x', 'H', 'T1'), variables $X_1, X_2, X_3 ...$ will be replaced by x, H and $T1$.

approx: The number of extra digits to be used: for approx = FALSE (default value) digits are edited with double precision; for approx = TRUE, only the minimum number of digits is edited (in order to have all the terms different from 0) for approx = 1, 2, etc. then respectively 1, 2, etc. digits are added to the minimum number of digits corresponding to approx = TRUE.

selecmod: An integer providing the number in the sublist when the model matrix is provided in a list. Should not be provided (or NULL) if the model matrix is provided directly.

Author(s)

Sylvain Mangiarotti

Examples

#EQUATIONS VISUALISATION
number of variables:
nVar <- 3
maximum polynomial degree:
dMax <- 2
polynomial organization:
poLabs(nVar,dMax)
model construction
KL = matrix(0, ncol = 3, nrow = 10)
KL[1,1] <- KL[2,2] <- 1
KL[4,1] <- -1
KL[5,3] <- -0.123456789
Equations visualisation:
(a) by default, variables names X1, X2, X3 are used
visuEq(KL, nVar, dMax)
(b) for susbstit=1, variables names x, y, y are used instead
visuEq(KL, nVar, dMax, approx = TRUE, substit=1)
(c) the name of the variables can also be chosen manually
visuEq(KL, nVar, dMax, approx = 3, substit=c('U', 'V', 'W'))

A canonical model can be provided as a single vector
polyTerms <- c(0.2,0,-1,0.5,0,0,0,0,0,0)
visuEq(KL, 3,2)
Description

The algorithm aims to get a quick information about the outputs obtained with gPoMo.

Usage

visuOutGP(
 ogp,
 selecmod = NULL,
 id = 1,
 prioMinMax = "data",
 opt3D = "TRUE",
 maxPages = NULL,
 seeEq = 1
)

Arguments

ogp
 The output list obtained from gPoMo.

selecmod
 A vector of the selected model. Maximum 24 models can be presented at the same time.

id
 The type of model to identify. id = 1 corresponds to the unidentified models, that is, potentially chaotic models.

prioMinMax
 Gives the priority for the plots among: "data", "model", "dataonly" and "modelonly".

opt3D
 Provides a 3D plot (x,y,z) when opt = 'TRUE' (the rgl library is required).

maxPages
 The maximum of pages to be displayed (4 by default, but this may be insufficient when too many models remain)

seeEq
 Indicates if equations should be displayed (seeEq = 1, by default) or not (seeEq = 0).

Value

A Matrix describing the terms composing each model by row. The first row corresponds to the model detection (1 unclarified, 2 diverging, 0 is fixed point, -n with n an integer, is period-n cycle’)

Author(s)

Sylvain Mangiarotti
Examples

load data
data("Ross76")
time vector
tin <- Ross76[seq(1, 3000, by = 8), 1]
single time series
data <- Ross76[seq(1, 3000, by = 8), 3]
dev.new()
plot(tin, data, type = 'l', main = 'Observed time series')
global modelling
results are put in list outputGPoM
outputGPoM <- gPoMo(data, tin=tin, dMax = 2, nS=c(3), show = 0,
 nPmin = 9, nPmax = 12, method = 'rk4',
 IstepMin = 200, IstepMax = 201)
visuOutGP(outputGPoM)

wInProd

Description

Computes weighted inner products.

Usage

wInProd(A1, A2, weight = NULL)

Arguments

- **A1**: The input matrix 1.
- **A2**: The input matrix 2.
- **weight**: The weighting vector.

Value

inP: The weighted inner product.

Examples

Example 1
A1 = c(0,1,2,0,1,3)
A2 = c(1,2,0,0,4,1)
wInProd(A1, A2)
#Example 2#

A1 = c(0,2,0,1,3)
A2 = c(1,2,0,0,4,1)
w = c(0,0,0,1,1,1)
wInProd(A1, A2, weight = w)
Index

* causal inference
 GPoM-package, 3
* chaos
 GPoM-package, 3
* data learning
 GPoM-package, 3
* data
 allMod_nVar3_dMax2 data set, 4
 allToTest, 5
 data_vignetteIII data set, 17
 data_vignetteVI data set, 18
 data_vignetteVII data set, 18
 NDVI, 34
 P1FxCh, 43
 P1FxChP2, 44
 Rossler-1976 data set, 52
 RosYco, 52
 svrlTS, 54
 TS, 56
 TSallMod_nVar3_dMax2 data set, 56
* global modeling
 GPoM-package, 3
* nonlinear dynamical systems
 GPoM-package, 3
* time series analysis
 GPoM-package, 3

allMod_nVar3_dMax2 data set, 4
allToTest, 5
autoGPoMoSearch, 6, 9, 25, 27, 32, 49
autoGPoMoTest, 7, 7, 21, 27, 32, 55

bDrvFilt, 10

cano2M, 10
combiEq, 11, 53
compDeriv, 13, 23
concat, 14

d2pMax, 16
data_vignetteIII (data_vignetteIII data set), 17
data_vignetteIII data set, 17
data_vignetteVI (data_vignetteVI data set), 18
data_vignetteVI data set, 18
data_vignetteVII (data_vignetteVII data set), 18
data_vignetteVII data set, 18
derivODE2, 19, 36, 38
derivODEwMultiX, 19
detectPlimCycl, 21
drvSucc, 11, 22, 32

findAllSets, 7, 24
gloMoId, 14, 17, 23, 25, 32, 45
GPoM-package, 3
gPoMo, 7, 9, 11, 12, 14, 17, 23, 27, 28, 45, 49, 53, 55
GSproc, 33
NDVI, 34
numicano, 19, 35, 38
numiMultiX, 37
numinoisy, 19, 36, 38, 39, 43

odeBruitMult2, 42
P1FxCh, 43
P1FxChP2, 44
p2dMax, 44
paramId, 45
polabs, 7, 9, 11, 12, 14, 17, 23, 27, 32, 45, 46, 49, 51, 53
predictab, 32, 47
pTimEv, 48
regOrd, 50
regSeries, 51
Ross76 (Rossler-1976 data set), 52
Rossler-1976 data set, 52
RosYco, 52
subSysD, 53
svrlTS, 54
testP, 55
TS, 56
TSallMod_nVar3_dMax2
 (TSallMod_nVar3_dMax2 data
 set), 56
TSallMod_nVar3_dMax2 data set, 56
visuEq, 46, 57
visuOutGP, 32, 59
wInProd, 60