Package ‘GRNNs’

October 12, 2022

Title General Regression Neural Networks Package
Version 0.1.0
Description This General Regression Neural Networks Package uses various distance functions. It was motivated by Specht (1991, ISBN:1045-9227), and updated from previous published paper Li et al. (2016) <doi:10.1016/j.palaeo.2015.11.005>. This package includes various functions, although "euclidean" distance is used traditionally.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports cvTools, rdist, scales, stats, vegan
Depends R (>= 3.5.0)
Suggests rmarkdown, knitr, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Shufeng LI [aut, cre] (<https://orcid.org/0000-0002-5144-4432>)
Maintainer Shufeng LI <lisf@xtbg.org.cn>
Repository CRAN
Date/Publication 2021-09-08 09:30:04 UTC

R topics documented:

findSpread 2
findSpreadRdist 2
findSpreadVegan 3
grnn .. 4
grn.distance 5
grn.kfold 5
met .. 6
physg ... 7
veg.distance 8
findSpread

Description

Find best spread

Usage

```r
findSpread(p_train, v_train, k, fun, scale = TRUE)
```

Arguments

- `p_train`: The dataframe of training predictor dataset
- `v_train`: The dataframe of training response variables
- `k`: The numeric number of k folds
- `fun`: The distance function
- `scale`: The logic statements (TRUE/FALSE)

Value

Best spread

Examples

```r
data("met")
data("physg")
## Not run: best.spread<-findSpread(physg,met,10,"bray",scale=TRUE)
```

findSpreadRdist

Description

find best spreads using Rdist

Usage

```r
findSpreadRdist(x, y, k, fun, scale = TRUE)
```
findSpreadVegan

Arguments

x The dataframe of training predictor dataset
y The dataframe of training response variables
k The numeric number of k folds
fun The distance function
scale The logic statements (TRUE/FALSE)

Value

The vector of best spreads

findSpreadVegan Find best spread using vegan function

Description

Find best spread using vegan function

Usage

findSpreadVegan(x, y, k, fun, scale = TRUE)

Arguments

x The dataframe of training predictor dataset
y The dataframe of training response variables
k The numeric number of k folds
fun The distance function
scale The logic statements (TRUE/FALSE)

Value

The vector of best spreads
General Regression Neural Networks (GRNNs)

Description

Usage

grnn(p_input, p_train, v_train, fun = "euclidean", best.spread, scale = TRUE)

Arguments

p_input The dataframe of input predictors
p_train The dataframe of training predictor dataset
v_train The dataframe of training response variables
fun The distance function
best.spread The vector of best spreads
scale The logic statements (TRUE/FALSE)

Value

The predictions

Examples

data("met")
data("physg")
best.spread<-c(0.33,0.33,0.31,0.34,0.35,0.35,0.32,0.31,0.29,0.35,0.35)
predict<-physg[1,]
physg.train<-physg[-1,]
met.train<-met[-1,]
prediction<-grnn(predict,physg.train,met.train,fun="euclidean",best.spread, scale=TRUE)
grnn.distance

Description
grnn distance

Usage
grnn.distance(x, y, fun)

Arguments
x The dataframe of training predictor dataset
y The dataframe of training response variables
fun The distance function

Value
The matrix of distance between a and b

Examples
data("physg")
physg.train<-physg[1:10,]
physg.test<-physg[11:30,]
distance<-grnn.distance(physg.test,physg.train,"bray")

grnn.kfold

General Regression Neural Networks (GRNNs)

Description
General Regression Neural Networks (GRNNs)

Usage
grnn.kfold(x, y, k, fun, scale = TRUE)

Arguments
x The dataframe of training predictor dataset
y The dataframe of training response variables
k The numeric number of k folds
fun The distance function
scale The logic statements (TRUE/FALSE)
Value

rmse, stdae, stdev, mae, r, pvalue, best spread

Examples

data("met")
data("physg")
results_kfold<-grnn.kfold(physg, met, 10, "euclidean", scale=TRUE)

met
meteorological dataset

Description

Data from a global collection by Robert A. Spicer. It includes 11 climate variables from 378 sites.

Usage

met

Format

A data frame with 378 rows and 11 variables:

- MAT double COLUMN_DESCRIPTION
- WMMT double COLUMN_DESCRIPTION
- CMMT double COLUMN_DESCRIPTION
- GROWSEAS double COLUMN_DESCRIPTION
- GSP double COLUMN_DESCRIPTION
- MMGSP double COLUMN_DESCRIPTION
- Three_WET double COLUMN_DESCRIPTION
- Three_DRY double COLUMN_DESCRIPTION
- RH double COLUMN_DESCRIPTION
- SH double COLUMN_DESCRIPTION
- ENTHAL double COLUMN_DESCRIPTION

Details

DETAILS
Description
Data from a global collection by Robert A. Spicer. It includes 31 leaf physiognomies variables from 378 sites.

Usage
physg

Format
A data frame with 378 rows and 31 variables:

- Lobed double COLUMN_DESCRIPTION
- No.Teeth double COLUMN_DESCRIPTION
- Regular.teeth double COLUMN_DESCRIPTION
- Close.teeth double COLUMN_DESCRIPTION
- Round.teeth double COLUMN_DESCRIPTION
- Acute.teeth double COLUMN_DESCRIPTION
- Compound.teeth double COLUMN_DESCRIPTION
- Nanophyll double COLUMN_DESCRIPTION
- Leptophyll.1 double COLUMN_DESCRIPTION
- Leptophyll.2 double COLUMN_DESCRIPTION
- Microphyll.1 double COLUMN_DESCRIPTION
- Microphyll.2 double COLUMN_DESCRIPTION
- Microphyll.3 double COLUMN_DESCRIPTION
- Mesophyll.1 double COLUMN_DESCRIPTION
- Mesophyll.2 double COLUMN_DESCRIPTION
- Mesophyll.3 double COLUMN_DESCRIPTION
- Emarginate.apex double COLUMN_DESCRIPTION
- Round.apex double COLUMN_DESCRIPTION
- Acute.apex double COLUMN_DESCRIPTION
- Attenuate.apex double COLUMN_DESCRIPTION
- Cordate.base double COLUMN_DESCRIPTION
- Round.base double COLUMN_DESCRIPTION
- Acute.base double COLUMN_DESCRIPTION
- L.W..1.1 double COLUMN_DESCRIPTION
veg.distance

Details

Description
distance using vegdist

Usage
veg.distance(a, b, fun = "bray")

Arguments

a The dataframe of training predictor dataset
b The dataframe of validation predictor dataset
fun The distance function

Value
The matrix of distance between a and b

Examples
data("physg")
physg.train<-physg[1:10,]
physg.test<-physg[11:30,]
distance<-veg.distance(physg.test,physg.train,"bray")
Index

* datasets
 met, 6
 physg, 7
findSpread, 2
findSpreadRdist, 2
findSpreadVegan, 3

grnn, 4
grnn.distance, 5
grrn.kfold, 5

met, 6

physg, 7

veg.distance, 8