Package ‘GROAN’

November 28, 2022

Type Package
Title Genomic Regression Workbench
Version 1.3.1
Date 2022-11-28
Author Nelson Nazzicari & Filippo Biscarini
Maintainer Nelson Nazzicari <nelson.nazzicari@gmail.com>
Description Workbench for testing genomic regression accuracy on (optionally noisy) phenotypes.
License GPL-3 | file LICENSE
Depends R (>= 2.10)
Imports plyr, rrBLUP
Suggests BGLR, e1071, ggplot2, knitr, randomForest, rmarkdown
VignetteBuilder knitr
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2022-11-28 12:30:02 UTC

R topics documented:

addRegressor ... 2
are.compatible ... 3
createNoisyDataset 4
createRunId ... 5
createWorkbench 6
getNoisyPhenotype 7
GROAN.AI .. 8
GROAN.KI .. 8
addRegressor

Add an extra regressor to a Workbench

Description

This function adds a regressor to an existing GROAN.Workbench object.

Usage

addRegressor(wb, regressor, regressor.name = regressor, ...)

Arguments

wb
regressor
regressor.name
... the GROAN.Workbench instance to be updated
regressor function
string that will be used in reports. Keep in mind that when deciding names.
extra parameters are passed to the regressor function

Value

an updated instance of the original GROAN.Workbench
are.compatible

See Also
createWorkbench GROAN.run

Examples

#creating a Workbench with all default arguments
wb = createWorkbench()
#adding a second regressor
wb = addRegressor(wb, regressor = phenoRegressor.dummy, regressor.name = 'dummy')

Not run:
#trying to add again a regressor with the same name would result in a naming conflict error
wb = addRegressor(wb, regressor = phenoRegressor.dummy, regressor.name = 'dummy')
End(Not run)

are.compatible(nds1, nds2, verbose = FALSE)

Description

This function verifies that the two passed GROAN.NoisyDataSet objects have the same dimensions and can thus be used in the same experiment (typically training models on one and testing on the other). The function returns a TRUE/FALSE. In verbose mode the function also prints messages detailing the comparisons.

Usage

are.compatible(nds1, nds2, verbose = FALSE)

Arguments

nds1 the first GROAN.NoisyDataSet to be tested
nds2 the second GROAN.NoisyDataSet to be tested
verbose boolean, if TRUE the function prints messages detailing the comparison.

Value

TRUE if the passed GROAN.NoisyDataSet are dimensionally compatible, FALSE otherwise
createNoisyDataset | Noisy Data Set Constructor

Description

This function creates a GROAN.NoisyDataset object (or fails trying). The class will contain all noisy data set components: genotypes and/or covariance matrix, phenotypes, strata (optional), a noise injector function and its parameters.

You can have a general description of the created object using the overridden print.GROAN.NoisyDataset function.

Usage

createNoisyDataset(
 name,
 genotypes = NULL,
 covariance = NULL,
 phenotypes,
 strata = NULL,
 extraCovariates = NULL,
 ploidy = 2,
 allowFractionalGenotypes = FALSE,
 noiseInjector = noiseInjector.dummy,
 ...
)

Arguments

name | A string defining the dataset name, used later do identify this particular instance in reports and result files. It is advisable for it to be it somewhat meaningful (to you, GROAN simply reports it as it is)
genotypes | Matrix or dataframe containing SNP genotypes, one row per sample (N), one column per marker (M), 0/1/2 format (for diploids) or 0/1/2.../ploidy in case of polyploids
covariance | matrix of covariances between samples of this dataset. It is usually a square (NxN) matrix, but rectangular matrices (NxW) are accepted to encapsulate covariances between samples in this set and samples of other sets. Please note that some regression models expect the covariance to be square and will fail on rectangular ones
phenotypes | numeric array, N slots
strata | array of M slots, describing the strata each data point belongs to. This is used for stratified crossvalidation (see createWorkbench)
extraCovariates | dataframe of optional extra covariates (N lines, one column per extra covariate). Numeric ones will be normalized, string and categorical ones will be transformed in stub TRUE/FALSE variables (one per possible value, see model.matrix)
createRunId

Generate a random run id

Description

This function returns a partially random alphanumeric string that can be used to identify a single run.

Usage

```r
createRunId()
```

Value

a partially random alphanumeric string
createWorkbench

Workbench constructor

Description

This function creates a GROAN.Workbench instance (or fails trying). The created object contains:
- a) one regressor with its own specific configuration
- b) the experiment parameters (number of repetitions, number of folds in case of crossvalidation, stratification...)

You can have a general description of the created object using the overridden `print.GROAN.Workbench` function.

It is possible to add other regressors to the created GROAN.Workbench object using `addRegressor`. Once the GROAN.Workbench is created it must be passed to `GROAN.run` to start the experiment.

Usage

```r
createWorkbench(
  folds = 10,
  reps = 5,
  stratified = FALSE,
  outfolder = NULL,
  outfile.name = "accuracy.csv",
  saveHyperParms = FALSE,
  saveExtraData = FALSE,
  regressor = phenoRegressor.rrBLUP,
  regressor.name = "default regressor",
  ...
)
```

Arguments

- `folds` number of folds for crossvalidation, defaults to 10. If NULL no crossvalidation happens and all training data will be used. In this case a second dataset, for test, is needed (see `GROAN.run` for details)
- `reps` number of times the whole test must be repeated, defaults to 5
- `stratified` boolean indicating whether GROAN should take into account data strata. This have two effects. First, the crossvalidation becomes stratified, meaning that folds will be split so that training and test sets will contain the same proportions of each data stratum. Second, prediction accuracy will be assessed (also) by strata. If no strata are present in the GROAN.NoisyDataSet object and stratified==TRUE all samples will be considered belonging to the same strata ("dummyStrata"). If stratified is FALSE (the default) GROAN will simply ignore the strata, even if present in the GROAN.NoisyDataSet.
- `outfolder` folder where to save the data. If NULL (the default) nothing will be saved. File- names are standardized. If existing, accuracy and hyperparameter files will be
getNoisyPhenotype Generate an instance of noisy phenotypes

Description

Given a Noisy Dataset object, this function applies the noise injector to the data and returns a noisy version of it. It is useful for inspecting the noisy injector effects.

Usage

getNoisyPhenotype(nds)

Arguments

nds a Noisy Dataset object

Value

the phenotypes contained in nds with added noise.
GROAN.AI
Example data for pea AI lines

Description

This list contains all data required to run GROAN examples. It refers to a pea experiment with 105 lines coming from a biparental Attika x Isard cross.

Usage

GROAN.AI

Format

A list with the following fields:

- "GROAN.AI$yield": named array with 105 slots, containing data on grain yield [t/ha]
- "GROAN.AI$SNPs": data frame with 105 rows and 647 variables. Each row is a pea AI line, each column a SNP marker. Values can either be 0, 1, or 2, representing the three possible genotypes (AA, Aa, and aa, respectively).
- "GROAN.AI$kinship": square dataframe containing the realized kinships between all pairs of each of the 105 pea AI lines. Values were computed following the Astle & Balding metric. Higher values represent a higher degree of genetic similarity between lines. This metric mainly accounts for additive genetic contributions (as an alternative to dominant contributions).

Source

Annicchiarico et al., *GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal Drought*, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

GROAN.KI
Example data for pea KI lines

Description

This list contains all data required to run GROAN examples. It refers to a pea experiment with 103 lines coming from a biparental Kaspa x Isard cross.

Usage

GROAN.KI
GROAN.pea.kinship

Format

A list with the following fields:

- "GROAN.KI$yield": named array with 103 slots, containing data on grain yield [t/ha]
- "GROAN.KI$SNPs": data frame with 103 rows and 647 variables. Each row is a pea KI line, each column a SNP marker. Values can either be 0, 1, or 2, representing the three possible genotypes (AA, Aa, and aa, respectively).
- "GROAN.KI$kinship": square dataframe containing the realized kinships between all pairs of each of the 103 pea KI lines. Values were computed following the Astle & Balding metric. Higher values represent a higher degree of genetic similarity between lines. This metric mainly accounts for additive genetic contributions (as an alternative to dominant contributions).

Source

Annicchiarico et al., *GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal Drought*, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

GROAN.pea.kinship
[DEPRECATED]

Description

This piece of data is deprecated and will be dismissed in next release. Please use GROAN.KI instead.

Usage

GROAN.pea.kinship

Format

A data frame with 103 rows and 103 variables. Row and column names are pea KI lines.

Source

Annicchiarico et al., *GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal Drought*, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072
GROAN.pea.SNPs

[DEPRECATED]

Description

This piece of data is deprecated and will be dismissed in next release. Please use GROAN.KI instead.

Usage

GROAN.pea.SNPs

Format

A data frame with 103 rows and 647 variables. Each row represent a pea KI line, each column a SNP marker.

Source

Annicchiarico et al., *GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal Drought*, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

GROAN.pea.yield

[DEPRECATED]

Description

This piece of data is deprecated and will be dismissed in next release. Please use GROAN.KI instead.

Usage

GROAN.pea.yield

Format

A named array with 103 slots.

Source

Annicchiarico et al., *GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal Drought*, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072
GROAN.run

Compare Genomic Regressors on a Noisy Dataset

Description

This function runs the experiment described in a `GROAN.Workbench` object, training regressor(s) on the data contained in a `GROAN.NoisyDataSet` object via parameter `nds`. The prediction accuracy is estimated either through crossvalidation or on separate test dataset supplied via parameter `nds.test`. It returns a `GROAN.Result` object, which have a `summary` function for quick inspection and can be fed to `plotResult` for visual comparisons. In case of crossvalidation the test dataset in the result object will report the `[CV]` suffix.

The experiment statistics are computed via `measurePredictionPerformance`. Each time this function is invoked it will refer to a `runId` - an alphanumeric string identifying each specific run. The `runId` is usually generated internally, but it is possible to pass it if the intention is to join results from different runs for analysis purposes.

Usage

```r
GROAN.run(nds, wb, nds.test = NULL, run.id = createRunId())
```

Arguments

- `nds`: a `GROAN.NoisyDataSet` object, containing the data (genotypes, phenotypes and so forth) plus a `noiseInjector` function
- `wb`: a `GROAN.Workbench` object, containing the regressors to be tested together with the description of the experiment
- `nds.test`: either a `GROAN.NoisyDataSet` or a list of `GROAN.NoisyDataSet`. The regression model(s) trained on `nds` will be tested on `nds.test`
- `run.id`: an alphanumeric string identifying this specific run. If not passed it is generated using `createRunId`

Value

A `GROAN.Result` object

See Also

`measurePredictionPerformance`

Examples

```r
## Not run:
#Complete examples are found in the vignette
vignette("GROAN.vignette", package="GROAN")

#Minimal example
#1) creating a noisy dataset with normal noise
```
nds = createNoisyDataset(
 name = 'PEA KI, normal noise',
 genotypes = GROAN.KI$SNPs,
 phenotypes = GROAN.KI$yield,
 noiseInjector = noiseInjector.norm,
 mean = 0,
 sd = sd(GROAN.KI$yield) * 0.5
)

#2) creating a GROAN.WorkBench using default regressor and crossvalidation preset
wb = createWorkbench()

#3) running the experiment
res = GROAN.run(nds, wb)

#4) examining results
summary(res)
plotResult(res)

End(Not run)

measurePredictionPerformance

Measure Performance of a Prediction

Description

This method returns several performance metrics for the passed predictions.

Usage

```
measurePredictionPerformance(truevals, predvals)
```

Arguments

- **truevals**
 - true values
- **predvals**
 - predicted values

Value

A named array with the following fields:

- **pearson**
 - Pearson's correlation
- **spearman**
 - Spearmans' correlation (order based)
- **rmse**
 - Root Mean Square Error
- **mae**
 - Mean Absolute Error
- **coeff_det**
 - Coefficient of determination
- **ndcg10, ndcg20, ndcg50, ndcg100**
 - mean Normalized Discounted Cumulative Gain with k equal to 0.1, 0.2, 0.5 and 1
ndcg
Function to calculate mean Normalized Discounted Cumulative Gain (NDCG)

Description

This function calculates NDCG from the vectors of observed and predicted values and the chosen proportion k of top observations (rank).

Usage

```
ndcg(y, y_hat, k = 0.2)
```

Arguments

- `y` : true values
- `y_hat` : predicted values
- `k` : relevant proportion of rank (top)

Value

a real value in [0,1]

noiseInjector.dummy
Noise Injector dummy function

Description

This noise injector does not add any noise. Passed phenotypes are simply returned. This function is useful when comparing different regressors on the same dataset without the effect of extra injected noise.

Usage

```
noiseInjector.dummy(phenotypes)
```

Arguments

- `phenotypes` : input phenotypes. This object will be returned without checks.

Value

the same passed phenotypes
See Also

Other noiseInjectors: noiseInjector.norm(), noiseInjector.swapper(), noiseInjector.unif()

Examples

```r
phenos = rnorm(10)
all(phenos == noiseInjector.dummy(phenos)) #TRUE
```

noiseInjector.norm

Inject Normal Noise

Description

This function adds to the passed phenotypes array noise sampled from a normal distribution with the specified mean and standard deviation. The function can interest the totality of the passed phenotype array or a random subset of it (commanded by `subset` parameter).

Usage

```r
noiseInjector.norm(phenotypes, mean = 0, sd = 1, subset = 1)
```

Arguments

- `phenotypes`: an array of numbers.
- `mean`: mean of the normal distribution.
- `sd`: standard deviation of the normal distribution.
- `subset`: integer in [0,1], the proportion of original dataset to be injected.

Value

An array, of the same size as phenotypes, where normal noise has been added to the original phenotype values.

See Also

Other noiseInjectors: noiseInjector.dummy(), noiseInjector.swapper(), noiseInjector.unif()

Examples

```r
# a sinusoid signal
phenos = sin(seq(0,5, 0.1))
plot(phenos, type='p', pch=16, main='Original (black) vs. Injected (red), 100% affected')

# adding normal noise to all samples
phenos.noise = noiseInjector.norm(phenos, sd = 0.2)
points(phenos.noise, type='p', col='red')
```
adding noise only to 30% of the samples
plot(phenos, type='p', pch=16, main='Original (black) vs. Injected (red), 30% affected')
phenos.noise.subset = noiseInjector.norm(phenos, sd = 0.2, subset = 0.3)
points(phenos.noise.subset, type='p', col='red')

noiseInjector.swapper
Swap phenotypes between samples

Description

This function introduces swap noise, i.e. a number of couples of samples will have their phenotypes swapped. The number of couples is computed so that the total fraction of interested phenotypes approximates `subset`.

Usage

```r
noiseInjector.swapper(phenotypes, subset = 0.1)
```

Arguments

- `phenotypes`: an array of numbers
- `subset`: fraction of phenotypes to be interested by noise.

Value

the same passed phenotypes, but with some elements swapped

See Also

Other `noiseInjectors`: `noiseInjector.dummy()`, `noiseInjector.norm()`, `noiseInjector.unif()`

Examples

```r
# a set of phenotypes
phenos = 1:10
# swapping two elements
phenos.sw2 = noiseInjector.swapper(phenos, 0.2)
# swapping four elements
phenos.sw4 = noiseInjector.swapper(phenos, 0.4)
# swapping four elements again, since 30% of 10 elements is rounded to 4 (two couples)
phenos.sw4.again = noiseInjector.swapper(phenos, 0.3)
```
noiseInjector.unif

Inject Uniform Noise

Description

This function adds to the passed phenotypes array noise sampled from a uniform distribution with the specified range.

The function can interest the totality of the passed phenotype array or a random subset of it (commanded by `subset` parameter).

Usage


```
noiseInjector.unif(phenotypes, min = 0, max = 1, subset = 1)
```

Arguments

- **phenotypes**
an array of numbers.
- **min, max**
lower and upper limits of the distribution. Must be finite.
- **subset**
integer in [0,1], the proportion of original dataset to be injected

Value

An array, of the same size as phenotypes, where uniform noise has been added to the original phenotype values.

See Also

Other noiseInjectors: `noiseInjector.dummy()`, `noiseInjector.norm()`, `noiseInjector.swapper()`

Examples

```
# a sinusoid signal
phenos = sin(seq(0,5, 0.1))
plot(phenos, type='p', pch = 16, main='Original (black) vs. Injected (red), 100% affected')

# adding normal noise to all samples
phenos.noise = noiseInjector.unif(phenos, min=0.1, max=0.3)
points(phenos.noise, type='p', col='red')

# adding noise only to 30% of the samples
plot(phenos, type='p', pch = 16, main='Original (black) vs. Injected (red), 30% affected')
phenos.noise.subset = noiseInjector.unif(phenos, min=0.1, max=0.3, subset = 0.3)
points(phenos.noise.subset, type='p', col='red')
```
phenoRegressor.BGLR

Regression using BGLR package

Description
This is a wrapper around BGLR. As such, it won’t work if BGLR package is not installed. Genotypes are modeled using the specified type. If type is 'RKHS' (and only in this case) the covariance/kinship matrix covariances is required, and it will be modeled as matrix K in BGLR terms. In all other cases genotypes and covariances are put in the model as X matrices. Extra covariates, if present, are modeled as FIXED effects.

Usage
phenoRegressor.BGLR(
 phenotypes,
 genotypes,
 covariances,
 extraCovariates,
 type = c("FIXED", "BRR", "BL", "BayesA", "BayesB", "BayesC", "RKHS"),
 ...
)

Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted
genotypes SNP genotypes, one row per phenotype (n), one column per marker (m), values in 0/1/2 for diploids or 0/1/2...ploidy for polyploids. Can be NULL if covariances is present.
covariances square matrix (n x n) of covariances. Can be NULL if genotypes is present.
extraCovariates extra covariates set, one row per phenotype (n), one column per covariate (w). If NULL no extra covariates are considered.
type character literal, one of the following: FIXED (Flat prior), BRR (Gaussian prior), BL (Double-Exponential prior), BayesA (scaled-t prior), BayesB (two component mixture prior with a point of mass at zero and a scaled-t slab), BayesC (two component mixture prior with a point of mass at zero and a Gaussian slab)
...

Value
The function returns a list with the following fields:

• predictions : an array of (n) predicted phenotypes, with NAs filled and all other positions repredicted (useful for calculating residuals)
• hyperparams : empty, returned for compatibility
• extradata : list with information on trained model, coming from BGLR
See Also

BGLR

Other phenoRegressors: phenoRegressor.RFR(), phenoRegressor.SVR(), phenoRegressor.dummy(), phenoRegressor.rrBLUP(), phenoRegressor.BGLR.multikinships()

Examples

```r
## Not run:
# using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA

# calling the regressor with Bayesian Lasso
results = phenoRegressor.BGLR(
  phenotypes = phenos,
  genotypes = GROAN.KI$SNPs,
  covariances = NULL,
  extraCovariates = NULL,
  type = 'BL', nIter = 2000 # BGLR-specific parameters
)

# examining the predictions
plot(GROAN.KI$yield, results$predictions,
  main = 'Train set (black) and test set (red) regressions',
  xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')
points(GROAN.KI$yield[1:10], results$predictions[1:10], pch=16, col='red')

# printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results$predictions[-(1:10)])
writelines(paste(  
  'test-set correlation :', test.set.correlation,
  'train-set correlation:', train.set.correlation
))

## End(Not run)
```

phenoregressor.BGLR.multikinships

Multi-matrix GBLUP using BGLR

Description

This regressor implements Genomic BLUP using Bayesian methods from BGLR package, but allows to use more than one covariance matrix.
Usage

phenoregressor.BGLR.multikinships(
 phenotypes,
 genotypes = NULL,
 covariances,
 extraCovariates,
 type = "RKHS",
 ...
)

Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted
genotypes added for compatibility with the other GROAN regressors, must be NULL
covariances square matrix (n x n) of covariances.
extracovariates the extra covariance matrices to be added in the GBLUP model, collated in a
 single matrix-like structure, with optionally first column as an ignored intercept
 (supported for compatibility). See details, below.
type character literal, one of the following: FIXED (Flat prior), BRR (Gaussian
 prior), BL (Double-Exponential prior), BayesA (scaled-t prior), BayesB (two
 component mixture prior with a point of mass at zero and a scaled-t slab),
 BayesC (two component mixture prior with a point of mass at zero and a Gaussian
 slab), RKHS (Gaussian processes, default)
 ...
 extra parameters are passed to BGLR

Details

In its simplest form, GBLUP is defined as:

\[y = 1\mu + Zu + e \]

with

\[\text{var}(y) = K \sigma_u^2 + I \sigma_e^2 \]

Where \(\mu \) is the overall mean, \(K \) is the incidence matrix relating individual weights \(u \) to \(y \), and \(e \) is a vector of residuals with zero mean and covariance matrix \(I \sigma_e^2 \).

It is possible to extend the above model to include different types of kinship matrices, each capturing different links between genotypes and phenotypes:

\[y = 1\mu + Z_1 u_1 + Z_2 u_2 + \cdots + e \]

with

\[\text{var}(y) = K_1 \sigma_{u_1}^2 + K_2 \sigma_{u_2}^2 + \cdots + I \sigma_e^2 \]

This function receives the first kinship matrix \(K_1 \) via the covariances argument and an arbitrary number of extra matrices via the extracovariates built as follow:
#given the following defined variables
y = <some values, Nx1 array>
K1 = <NxN kinship matrix>
K2 = <another NxN kinship matrix>
K3 = <a third NxN kinship matrix>

#invoking the multi kinship GBLUP
y_hat = phenoregressor.BGLR.multikinships(
 phenotypes = y,
 covariances = K1,
 extraCovariates = cbind(K2, K3)
)

Value

The function returns a list with the following fields:

- predictions: an array of (n) predicted phenotypes, with NAs filled and all other positions repredicted (useful for calculating residuals)
- hyperparams: empty, returned for compatibility
- extradata: list with information on trained model, coming from BGLR

See Also

BGLR

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.RFR(), phenoRegressor.SVR(), phenoRegressor.dummy(), phenoRegressor.rrBLUP()
covariances

extraCovariates

easy covariates set, one row per phenotype (n), one column per covariate (w).
If NULL no extra covariates are considered.

Value

The function should return a list with the following fields:

• predictions : an array of (k) predicted phenotypes
• hyperparams : named array of hyperparameters selected during training
• extradata : any extra information

See Also

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.RFR(), phenoRegressor.SVR(), phenoRegressor.rrBLUP(), phenoregressor.BGLR.multikinships()

Examples

#genotypes are not really investigated. Only
#number of test phenotypes is used.
phenoRegressor.dummy(
 phenotypes = c(1:10, NA, NA, NA),
 genotypes = matrix(nrow = 13, ncol=30)
)

Description

This is a wrapper around randomForest and related functions. As such, this function will not work if randomForest package is not installed. There is no distinction between regular covariates (genotypes) and extra covariates (fixed effects) in random forest. If extra covariates are passed, they are put together with genotypes, side by side. Same thing happens with covariances matrix. This can bring to the scientifically questionable but technically correct situation of regressing on a big matrix made of SNP genotypes, covariances and other covariates, all collated side by side. The function makes no distinction, and it’s up to the user understand what is correct in each specific experiment.

WARNING: this function can be *very* slow, especially when called on thousands of SNPs.
Usage

phenoRegressor.RFR(
 phenotypes,
 genotypes,
 covariances,
 extraCovariates,
 ntree = ceiling(length(phenotypes)/5),
 ...
)

Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted

genotypes SNP genotypes, one row per phenotype (n), one column per marker (m), values in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if covariances is present.

covariances square matrix (n x n) of covariances. Can be NULL if genotypes is present.

extraCovariates extra covariates set, one row per phenotype (n), one column per covariate (w). If NULL no extra covariates are considered.

ntree number of trees to grow, defaults to a fifth of the number of samples (rounded up). As per randomForest documentation, it should not be set to too small a number, to ensure that every input row gets predicted at least a few times

... any extra parameter is passed to randomForest::randomForest()

Value

The function returns a list with the following fields:

- predictions: an array of (k) predicted phenotypes
- hyperparams: named vector with the following keys: ntree (number of grown trees) and mtry (number of variables randomly sampled as candidates at each split)
- extradata: the object returned by randomForest::randomForest(), containing the full trained forest and the used parameters

See Also

randomForest

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.SVR(), phenoRegressor.dummy(), phenoRegressor.rrBLUP(), phenoregressor.BGLR.multikinships()

Examples

Not run:
using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA

phenoRegressor.RFR
calling the regressor with random forest
results = phenoRegressor.RFR(
 phenotypes = phenos,
 genotypes = GROAN.KI$SNPs,
 covariances = NULL,
 extraCovariates = NULL,
 ntree = 20,
 mtry = 200 # randomForest-specific parameters
)

examining the predictions
plot(GROAN.KI$yield, results$predictions,
 main = 'Train set (black) and test set (red) regressions',
 xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')
points(GROAN.KI$yield[1:10], results$predictions[1:10], pch=16, col='red')

printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results$predictions[-(1:10)])
writeLines(paste('test-set correlation : ', test.set.correlation,
 '\ntrain-set correlation: ', train.set.correlation))

End(Not run)

phenoRegressor.rrBLUP *SNP-BLUP or G-BLUP using rrBLUP package*

Description

This is a wrapper around rrBLUP function `mixed.solve`. It can either work with genotypes (in form of a SNP matrix) or with kinships (in form of a covariance matrix). In the first case the function will implement a SNP-BLUP, in the second a G-BLUP. An error is returned if both SNPs and covariance matrix are passed.

In rrBLUP terms, genotypes are modeled as random effects (matrix Z), covariances as matrix K, and extra covariates, if present, as fixed effects (matrix X).

Please note that this function won’t work if rrBLUP package is not installed.

Usage

```r
phenoRegressor.rrBLUP(
    phenotypes,
    genotypes = NULL,
    covariances = NULL,
    extraCovariates = NULL,
    ...
)
```
Arguments

- **phenotypes**
 - phenotypes, a numeric array (n x 1), missing values are predicted

- **genotypes**
 - SNP genotypes, one row per phenotype (n), one column per marker (m), values in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if covariances is present.

- **covariances**
 - square matrix (n x n) of covariances.

- **extraCovariates**
 - optional extra covariates set, one row per phenotype (n), one column per covariate (w). If NULL no extra covariates are considered.

- **...**
 - extra parameters are passed to rrBLUP::mixed.solve

Value

The function returns a list with the following fields:

- **predictions**
 - an array of (k) predicted phenotypes

- **hyperparams**
 - named vector with the following keys: Vu, Ve, beta, LL

- **extradata**
 - list with information on trained model, coming from `mixed.solve`

See Also

- `mixed.solve`

Other phenoRegressors: `phenoRegressor.BGLR()`, `phenoRegressor.RFR()`, `phenoRegressor.SVR()`, `phenoRegressor.dummy()`, `phenoregressor.BGLR.multikinships()`

Examples

```r
## Not run:
# using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA

# calling the regressor with ridge regression BLUP on SNPs and kinship
results.SNP.BLUP = phenoRegressor.rrBLUP(
  phenotypes = phenos,
  genotypes = GROAN.KI$SNPs,
  SE = TRUE, return.Hinv = TRUE #rrBLUP-specific parameters
)
results.G.BLUP = phenoRegressor.rrBLUP(
  phenotypes = phenos,
  covariances = GROAN.KI$kinship,
  SE = TRUE, return.Hinv = TRUE #rrBLUP-specific parameters
)

# examining the predictions
plot(GROAN.KI$yield, results.SNP.BLUP$predictions,
     main = 'SNP- BLUP] Train set (black) and test set (red) regressions',
     xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')
abline(a=0, b=1)
```
phenoRegressor.SVR

Support Vector Regression using package e1071

Description

This is a wrapper around several functions from e1071 package (as such, it won’t work if e1071 package is not installed). This function implements Support Vector Regressions, meaning that the data points are projected in a transformed higher dimensional space where linear regression is possible.

phenoRegressor.SVR can operate in three modes: run, train and tune.
In run mode you need to pass the function an already tuned/trained SVR model, typically obtained either directly from e1071 functions (e.g. from svm, best.svm and so forth) or from a previous run of phenoRegressor.SVR in a different mode. The passed model is applied to the passed dataset and predictions are returned.

In train mode a SVR model will be trained on the passed dataset using the passed hyper parameters. The trained model will then be used for predictions.

In tune mode you need to pass one or more sets of hyperparameters. The best combination of hyperparameters will be selected through crossvalidation. The best performing SVR model will be used for final predictions. This mode can be very slow.

There is no distinction between regular covariates (genotypes) and extra covariates (fixed effects) in Support Vector Regression. If extra covariates are passed, they are put together with genotypes, side by side. Same thing happens with covariances matrix. This can bring to the scientifically questionable but technically correct situation of regressing on a big matrix made of SNP genotypes, covariances and other covariates, all collated side by side. The function makes no distinction, and
it’s up to the user understand what is correct in each specific experiment.

Usage

phenoRegressor.SVR(
 phenotypes,
 genotypes,
 covariances,
 extraCovariates,
 mode = c("tune", "train", "run"),
 tuned.model = NULL,
 scale.pheno = TRUE,
 scale.geno = FALSE,
 ...
)

Arguments

- **phenotypes**: phenotypes, a numeric array (n x 1), missing values are predicted
- **genotypes**: SNP genotypes, one row per phenotype (n), one column per marker (m), values in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if covariances is present.
- **covariances**: square matrix (n x n) of covariances. Can be NULL if genotypes is present.
- **extraCovariates**: extra covariates set, one row per phenotype (n), one column per covariate (w). If NULL no extra covariates are considered.
- **mode**: this parameter decides what will happen with the passed dataset
 - mode = "tune": hyperparameters will be tuned on a grid (you may want to specify its values using extra params) with a call to e1071::tune.svm. Use this option if you have no idea about the optimal choice of hyperparameters. This mode can be very slow.
 - mode = "train": an SVR will be trained on the train dataset using the passed hyperparameters (if you know them). This more invokes e1071::train
 - mode = "run": you already have a tuned and trained SVR (put it into tuned.model) and want to use it. The fastest mode.
- **tuned.model**: a tuned and trained SVR to be used for prediction. This object is only used if mode is equal to "run".
- **scale.pheno**: if TRUE (default) the phenotypes will be scaled and centered (before tuning or before applying the passed tuned model).
- **scale.geno**: if TRUE the genotypes will be scaled and centered (before tuning or before applying the passed tuned model. It is usually not a good idea, since it leads to worse results. Defaults to FALSE.
- **...**: all extra parameters are passed to e1071::svm or e1071::tune.svm
Value

The function returns a list with the following fields:

- **predictions**: an array of (n) predicted phenotypes
- **hyperparams**: named vector with the following keys: gamma, cost, coef0, nu, epsilon. Some of the values may not make sense given the selected model, and will contain default values from e1071 library.
- **extradata**: depending on mode parameter, extradata will contain one of the following: 1) a SVM object returned by e1071::tune.svm, containing both the best performing model and the description of the training process 2) a newly trained SVR model 3) the same object passed as tuned.model

See Also

svm, tune.svm, best.svm from e1071 package

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.RFR(), phenoRegressor.dummy(), phenoRegressor.rrBLUP(), phenoregressor.BGLR.multikinships()

Examples

```r
## Not run:
### WARNING ###
# The 'tuning' part of the example can take quite some time to run,
# depending on the computational power.

# using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA

#--------- TUNE ---------
# tuning the SVR on a grid of hyperparameters
results.tune = phenoRegressor.SVR(
  phenotypes = phenos,
  genotypes = GROAN.KI$SNPs,
  covariances = NULL,
  extraCovariates = NULL,
  mode = 'tune',
  kernel = 'linear',
  cost = 10^(-3:+3) # SVR-specific parameters
)

# examining the predictions
plot(GROAN.KI$yield, results.tune$predictions,
     main = 'Mode = TUNING
Train set (black) and test set (red) regressions',
     xlab = 'Original phenotypes',
     ylab = 'Predicted phenotypes')
points(GROAN.KI$yield[1:10], results.tune$predictions[1:10], pch=16, col='red')

# printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results.tune$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results.tune$predictions[-(1:10)])
writelines(paste(
```

'test-set correlation:', test.set.correlation,
'\ntrain-set correlation:', train.set.correlation)
})

#--------- TRAIN ---------
#training the SVR, hyperparameters are given
results.train = phenoRegressor.SVR(
 phenotypes = phenos,
 genotypes = GROAN.KI$SNPs,
 covariances = NULL,
 extraCovariates = NULL,
 mode = 'train',
 kernel = 'linear',
 cost = 0.01 #SVR-specific parameters
)

#examining the predictions
plot(GROAN.KI$yield, results.train$predictions,
 main = 'Mode = TRAIN\nTrain set (black) and test set (red) regressions',
 xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')
points(GROAN.KI$yield[1:10], results.train$predictions[1:10], pch=16, col='red')

#printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results.train$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results.train$predictions[-(1:10)])
writeLines(paste(
 'test-set correlation:', test.set.correlation,
 '\ntrain-set correlation:', train.set.correlation)
))

#--------- RUN ---------
#we recover the trained model from previous run, predictions will be exactly the same
results.run = phenoRegressor.SVR(
 phenotypes = phenos,
 genotypes = GROAN.KI$SNPs,
 covariances = NULL,
 extraCovariates = NULL,
 mode = 'run',
 tuned.model = results.train$extradata
)

#examining the predictions
plot(GROAN.KI$yield, results.run$predictions,
 main = 'Mode = RUN\nTrain set (black) and test set (red) regressions',
 xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')
points(GROAN.KI$yield[1:10], results.run$predictions[1:10], pch=16, col='red')

#printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results.run$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results.run$predictions[-(1:10)])
writeLines(paste(
 'test-set correlation:', test.set.correlation,
 '\ntrain-set correlation:', train.set.correlation
))
Description

This function uses ggplot2 package (which must be installed) to graphically render the result of a run. The function receive as input the output of GROAN.run and returns a ggplot2 object (that can be further customized). Currently implemented types of plot are:

- **box**: boxplot, showing the distribution of repetitions. See `geom_boxplot`
- **bar**: barplot, showing the average over repetitions. See `stat_summary`
- **bar_conf95**: same as 'bar', but with 95% confidence intervals

Usage

```r
plotResult(
  res,
  variable = c("pearson", "spearman", "rmse", "time_per_fold", "coeff_det", "mae"),
  x.label = c("both", "train_only", "test_only"),
  plot.type = c("box", "bar", "bar_conf95"),
  strata = c("no_strata", "avg_strata", "single")
)
```

Arguments

- **res**: a result data frame containing the output of GROAN.run
- **variable**: name of the variable to be used as y values
- **x.label**: select what to put on x-axis between both train and test dataset (default), train dataset only or test dataset only
- **plot.type**: a string indicating the type of plot to be obtained
- **strata**: string determining behaviour toward strata. If 'no_strata' will plot accuracies not considering strata. If 'avg_strata' will average single strata accuracies. If 'single' each strata will be represented separately.

Value

a ggplot2 object
print.GROAN.NoisyDataset

Print a GROAN Noisy Dataset object

Description

Short description for class GROAN.NoisyDataset, created with `createNoisyDataset`.

Usage

```r
## S3 method for class 'GROAN.NoisyDataset'
print(x, ...)  
```

Arguments

- `x` object of class GROAN.NoisyDataset.
- `...` ignored, put here to match S3 function signature

Value

This function returns the original GROAN.NoisyDataset object invisibly (via `invisible(x)`)

print.GROAN.Workbench

Print a GROAN Workbench object

Description

Short description for class GROAN.Workbench, created with `createWorkbench`.

Usage

```r
## S3 method for class 'GROAN.Workbench'
print(x, ...)  
```

Arguments

- `x` object of class GROAN.Workbench.
- `...` ignored, put here to match S3 function signature

Value

This function returns the original GROAN.Workbench object invisibly (via `invisible(x)`)
summary.GROAN.NoisyDataset

Summary for GROAN Noisy Dataset object

Description
Returns a dataframe with some description of an object created with createNoisyDataset.

Usage
S3 method for class 'GROAN.NoisyDataset'
summary(object, ...)

Arguments
- object: instance of class GROAN.NoisyDataset.
- ...: additional arguments ignored, added for compatibility to generic summary function

Value
a data frame with GROAN.NoisyDataset stats.

summary.GROAN.Result

Summary of GROAN.Result

Description
Performance metrics are averaged over repetitions, so that a data.frame is produced with one row per dataset/regressor/extra_covariates/strata/samples/markers/folds combination.

Usage
S3 method for class 'GROAN.Result'
summary(object, ...)

Arguments
- object: an object returned from GROAN.run
- ...: additional arguments ignored, added for compatibility to generic summary function

Value
a data.frame with averaged statistics
Index

* datasets
 GROAN.AI, 8
 GROAN.KI, 8
 GROAN.pea.kinship, 9
 GROAN.pea.SNPs, 10
 GROAN.pea.yield, 10
* noiseInjectors
 noiseInjector.dummy, 13
 noiseInjector.norm, 14
 noiseInjector.swapper, 15
 noiseInjector.unif, 16
* phenoRegressors
 phenoRegressor.BGLR, 17
 phenoregressor.BGLR.multikinships, 18
 phenoRegressor.dummy, 20
 phenoRegressor.RFR, 21
 phenoRegressor.rrBLUP, 23
 phenoRegressor.SVR, 25

addRegressor, 2, 6, 7
are.compatible, 3
best.svm, 25, 27
BGLR, 17–20

createNoisyDataset, 4, 7, 30, 31
createRunId, 5, 11
createWorkbench, 3–5, 6, 30

gem.boxplot, 29
getNoisyPhenotype, 7
GROAN.AI, 8
GROAN.KI, 8, 9, 10
GROAN.NoisyDataSet, 6, 11
GROAN.pea.kinship, 9
GROAN.pea.SNPs, 10
GROAN.pea.yield, 10
GROAN.run, 3, 5–7, 11, 31
GROAN.Workbench, 2, 11

invisible(x), 30
measurePredictionPerformance, 11, 12
mixed.solve, 23, 24
model.matrix, 4
ndcg, 13
noiseInjector.dummy, 5, 13, 14–16
noiseInjector.norm, 14, 15, 16
noiseInjector.swapper, 14, 15, 16
noiseInjector.unif, 14, 15, 16

phenoRegressor.BGLR, 17, 20–22, 24, 27
phenoregressor.BGLR.multikinships, 18, 18, 21, 22, 24, 27
phenoRegressor.dummy, 18, 20, 20, 22, 24, 27
phenoRegressor.RFR, 18, 20, 21, 21, 24, 27
phenoRegressor.rrBLUP, 7, 18, 20–22, 23, 27
phenoRegressor.SVR, 18, 20–22, 24, 25
plotResult, 11, 29
print.GROAN.NoisyDataset, 4, 30
print.GROAN.Workbench, 6, 30

randomForest, 21, 22

save, 7
stat_summary, 29
summary, 11
summary.GROAN.NoisyDataset, 31
summary.GROAN.Result, 31
svm, 25, 27

tune.svm, 27