Package ‘GSelection’

November 4, 2019

Type Package
Title Genomic Selection
Version 0.1.0
Author Sayanti Guha Majumdar, Anil Rai, Dwijesh Chandra Mishra
Maintainer Sayanti Guha Majumdar <sayanti23gm@gmail.com>
Description Genomic selection is a specialized form of marker assisted selection. The package contains functions to select important genetic markers and predict phenotype on the basis of fitted training data using integrated model framework (Guha Majumdar et. al. (2019) <doi:10.1089/cmb.2019.0223>) developed by combining one additive (sparse additive models by Ravikumar et. al. (2009) <doi:10.1111/j.1467-9868.2009.00718.x>) and one non-additive (hsic lasso by Yamada et. al. (2014) <doi:10.1162/NECO_a_00537>) model.
License GPL-3
Encoding UTF-8
LazyData true
Imports SAM, penalized, gdata, stats, utils
RoxygenNote 6.1.1
Depends R (>= 3.5)
NeedsCompilation no
Repository CRAN
Date/Publication 2019-11-04 16:30:27 UTC

R topics documented:

GSelection-package .. 2
feature.selection .. 3
genomic.prediction ... 4
GS ... 6
hsic.var.ensemble .. 7
hsic.var.rcv ... 8
RED .. 9
spam.var.ensemble ... 10
spam.var.rcv .. 12
Description

Genomic selection is a specialized form of marker assisted selection. The package contains functions to select important genetic markers and predict phenotype on the basis of fitted training data using integrated model framework (Guha Majumdar et. al. (2019) <doi:10.1089/cmb.2019.0223>) developed by combining one additive (sparse additive models by Ravikumar et. al. (2009) <doi:10.1111/j.1467-9868.2009.00718.x>) and one non-additive (hsic lasso by Yamada et. al. (2014) <doi:10.1162/NECO_a_00537>) model.

Details

The DESCRIPTION file:

Package: GSelection
Type: Package
Title: Genomic Selection
Version: 0.1.0
Author: Sayanti Guha Majumdar, Anil Rai, Dwijesh Chandra Mishra
Maintainer: Sayanti Guha Majumdar <sayanti23gm@gmail.com>
Description: Genomic selection is a specialized form of marker assisted selection. The package contains functions to select important genetic markers and predict phenotype on the basis of fitted training data using integrated model framework (Guha Majumdar et. al. (2019) <doi:10.1089/cmb.2019.0223>) developed by combining one additive (sparse additive models by Ravikumar et. al. (2009) <doi:10.1111/j.1467-9868.2009.00718.x>) and one non-additive (hsic lasso by Yamada et. al. (2014) <doi:10.1162/NECO_a_00537>) model.
License: GPL-3
Encoding: UTF-8
LazyData: true
Imports: SAM, penalized, gdata, stats, utils
RoxygenNote: 6.1.1
Depends: R (>= 3.5)
NeedsCompilation: no
Packaged: 2019-10-26 10:25:25 UTC; user6

Index of help topics:

- GS: Genotypic and phenotypic simulated dataset
- GSelection-package: Genomic Selection
- RED: Redundancy Rate
- feature.selection: Genomic Feature Selection
- genomic.prediction: Genomic Prediction
- hsic.var.ensemble: Error Variance Estimation in Genomic Prediction
- hsic.var.rcv: Error Variance Estimation in Genomic Prediction
- spam.var.ensemble: Error Variance Estimation in Genomic Prediction
- spam.var.rcv: Error Variance Estimation in Genomic Prediction
Description

Feature (marker) selection in case of genomic prediction with integrated model framework using both additive (Sparse Additive Models) and non-additive (HSIC LASSO) statistical models.

Usage

feature.selection(x, y, d)

Arguments

x a matrix of markers or explanatory variables, each column contains one marker and each row represents an individual.

y a column vector of response variable.

d number of variables to be selected from x.

Details

Integrated model framework was developed by combining one additive model (Sparse Additive Model) and one non-additive model (HSIC LASSO) for selection of important markers from whole genome marker data.
genomic.prediction

Value

Returns a LIST containing

- spam_selected_feature_index
 returns index of selected markers from x using Sparse Additive Model
- coefficient.spam
 returns coefficient values of selected markers using Sparse Additive Model.
- hsic_selected_feature_index
 returns index of selected markers from x using HSIC LASSO.
- coefficient.hsic
 returns coefficient values of selected markers using HSIC LASSO.
- integrated_selected_feature_index
 returns index of selected markers from x using integrated model framework.

Author(s)

Sayanti Guha Majumdar <<sayanti23gm@gmail.com>>, Anil Rai, Dwijesh Chandra Mishra

References

Examples

```r
library(GSelection)
data(GS)
x_trn <- GS[1:40,1:110]
y_trn <- GS[1:40,111]
x_tst <- GS[41:60,1:110]
y_tst <- GS[41:60,111]
fit <- feature.selection(x_trn,y_trn,d=10)
```

geno.mic.prediction

Genomic Prediction

Description

Prediction of phenotypic values based on selected markers with integrated model framework using both additive (Sparse Additive Models) and non-additive (HSIC LASSO) statistical models.
genomic.prediction

Usage

genomic.prediction(x,spam_error_var,hsic_error_var,
spam_selected_feature_index,hsic_selected_feature_index,
coefficient.spam,coefficient.hsic)

Arguments

x a matrix of markers or explanatory variables for which phenotype will be pre-
dicted. Each column contains one marker and each row represents an individual.

spam_error_var estimated error variance of genomic prediction by Sparse Additive Model.

hsic_error_var estimated error variance of genomic prediction by HSIC LASSO.

spam_selected_feature_index

index of selected markers from x using Sparse Additive Model

hsic_selected_feature_index

index of selected markers from x using HSIC LASSO.

coefficient.spam

coefficient values of selected markers using Sparse Additive Model.

coefficient.hsic

coefficient values of selected markers using HSIC LASSO.

Details

Phenotypic values will be predicted for given genotype of markers by using previously fitted model
object. Integrated model framework is used for this purpose which is developed by combining
selected features from SpAm and HSIC LASSO.

Value

Integrated_y returns predicted phenotype

Author(s)

Sayanti Guha Majumdar <<sayanti23gm@gmail.com>>, Anil Rai, Dwijesh Chandra Mishra

References

doi:10.1089/cmb.2019.0223

the Royal Statistical Society: Series B (Statistical Methodology), 71(5), 1009-1030. doi:10.1111/j.1467-
9868.2009.00718.x

Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P. and Sugiyama, M. (2014). High-Dimensional Fea-
ture Selection by Feature-Wise Kernelized Lasso. Neural Computation, 26(1):185-207. doi:10.1162/NECO_a_00537
Examples

```r
library(GSelection)
data(GS)
x_trn <- GS[1:40,1:110]
y_trn <- GS[1:40,111]
x_tst <- GS[41:60,1:110]
y_tst <- GS[41:60,111]

## estimate spam_var from function spam.var.ensemble or spam.var.rcv
spam_var <- 2.681972
## estimate hsic_var from function hsic.var.ensemble or hsic.var.rcv
hsic_var <- 10.36974

fit <- feature.selection(x_trn,y_trn,d=10)
pred_y <- genomic.prediction(x_tst,spam_var,hsic_var,
fit$spam_selected_feature_index,fit$hsic_selected_feature_index,
fit$coefficient.spam,fit$coefficient.hsic)
```

GS
Genotypic and phenotypic simulated dataset

Description

This dataset is simulated with the R package "qtlbim" where 10 are true features associated with the trait of study and remaining 100 are random markers. We consider 10 chromosomes each containing 10 markers. Each chromosome have 1 qtl which is the true feature.

Usage

data("GS")

Format

A data frame with 60 rows as genotypes with 111 columns (i.e. contains information of genotyped markers and phenotypic traits).

Details

It has total 60 rows which represents 200 individuals genotypes and a total of 111 of columns, in which first 110 columns contain information of genotyped markers and last column represents value of phenotypic trait associated with genotype under study.

Source

Examples

```r
library(GSelection)
data(GS)
X<-GS[,1:110]  ## Extracting Genotype
Y<-GS[,111]   ## Extracting Phenotype
```

Description

Estimation of error variance using Ensemble method which combines bootstrapping and sampling
with srswor in HSIC LASSO.

Usage

```r
hsic.var.ensemble(x,y,b,d)
```

Arguments

- `x` a matrix of markers or explanatory variables, each column contains one marker
 and each row represents an individual.
- `y` a column vector of response variable.
- `b` number of bootstrap samples.
- `d` number of variables to be selected from `x`.

Details

In this method, both bootstrapping and simple random sampling without replacement are combined
to estimate error variance. Variables are selected using HSIC LASSO from the original datasets
and all possible samples of a particular size are taken from the selected variables set with simple
random sampling without replacement. With these selected samples error variance is estimated
from bootstrap samples of the original datasets using least squared regression method. Finally the
average of all the estimated variances is considered as the final estimate of the error variance.

Value

Error variance

Author(s)

Sayanti Guha Majumdar <<sayanti23gm@gmail.com>>, Anil Rai, Dwijesh Chandra Mishra

References

Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P. and Sugiyama, M. (2014). High-Dimensional Fea-
Examples

```r
library(GSelection)
data(GS)
x_trn <- GS[1:40,1:110]
y_trn <- GS[1:40,111]
x_tst <- GS[41:60,1:110]
y_tst <- GS[41:60,111]
hsic_var <- hsic.var.ensemble(x_trn,y_trn,2,10)
```

hsic.var.rcv

Error Variance Estimation in Genomic Prediction

Description

Estimation of error variance using Refitted Cross Validation in HSIC LASSO.

Usage

`hsic.var.rcv(x,y,d)`

Arguments

- `x`
a matrix of markers or explanatory variables, each column contains one marker and each row represents an individual.

- `y`
a column vector of response variable.

- `d`
number of variables to be selected from x.

Details

Refitted cross validation method (RCV) which is a two step method, is used to get the estimate of the error variance. In first step, dataset is divided into two sub-datasets and with the help of HSIC LASSO most significant markers(variables) are selected from the two sub-datasets. This results in two small sets of selected variables. Then using the set selected from 1st sub-dataset error variance is estimated from the 2nd sub-dataset with ordinary least square method and using the set selected from the 2nd sub-dataset error variance is estimated from the 1st sub-dataset with ordinary least square method. Finally the average of those two error variances are taken as the final estimator of error variance with RCV method.

Value

Error variance

Author(s)

Sayanti Guha Majumdar <<sayanti23gm@gmail.com>>, Anil Rai, Dwijesh Chandra Mishra
References

Examples

```r
library(GSelection)
data(GS)
x_trn <- GS[1:40,1:110]
y_trn <- GS[1:40,111]
x_tst <- GS[41:60,1:110]
y_tst <- GS[41:60,111]
hsic_var <- hsic.var.rcv(x_trn,y_trn,10)
```

RED

<table>
<thead>
<tr>
<th>RED</th>
<th>Redundancy Rate</th>
</tr>
</thead>
</table>

Description

Calculate the redundancy rate of the selected features (markers). Value will be high if many redundant features are selected.

Usage

```r
RED(x,spam_selected_feature_index,hsic_selected_feature_index,
    integrated_selected_feature_index)
```

Arguments

- `x`: a matrix of markers or explanatory variables, each column contains one marker and each row represents an individual.
- `spam_selected_feature_index`: index of selected markers from `x` using Sparse Additive Model.
- `hsic_selected_feature_index`: index of selected markers from `x` using HSIC LASSO.
- `integrated_selected_feature_index`: index of selected markers from `x` using integrated model framework

Details

The RED score (Zhao et al., 2010) is determined by average of the correlation between each pair of selected markers. A large RED score signifies that selected features are more strongly correlated to each other which means many redundant features are selected. Thus, a small redundancy rate is preferable for feature selection.
Value

Returns a LIST containing
RED_spam returns redundancy rate of features selected by using Sparse Additive Model.
RED_hsic returns redundancy rate of features selected by using HSIC LASSO.
RED_I returns redundancy rate of features selected by using integrated model framework.

Author(s)

Sayanti Guha Majumdar <<sayanti23gm@gmail.com>>, Anil Rai, Dwijesh Chandra Mishra

References

Examples

library(GSelection)
data(GS)
x_trn <- GS[1:40,1:110]
y_trn <- GS[1:40,111]
x_tst <- GS[41:60,1:110]
y_tst <- GS[41:60,111]
fit <- feature.selection(x_trn,y_trn,d=10)
red <- RED(x_trn,fit$spam_selected_feature_index,fit$hsic_selected_feature_index,
fit$integrated_selected_feature_index)

spam.var.ensemble Error Variance Estimation in Genomic Prediction

Description

Estimation of error variance using Ensemble method which combines bootstrapping and sampling with srswor in Sparse Additive Models.

Usage

spam.var.ensemble(x,y,b,d)
Arguments

x a matrix of markers or explanatory variables, each column contains one marker and each row represents an individual.

y a column vector of response variable.

b number of bootstrap samples

d number of variables to be selected from x.

Details

In this method, both bootstrapping and simple random sampling without replacement are combined to estimate error variance. Variables are selected using Sparse Additive Models (SpAM) from the original datasets and all possible samples of a particular size are taken from the selected variables set with simple random sampling without replacement. With these selected samples error variance is estimated from bootstrap samples of the original datasets using least squared regression method. Finally the average of all the estimated variances is considered as the final estimate of the error variance.

Value

Error variance

Author(s)

Sayanti Guha Majumdar <sayanti23gm@gmail.com>, Anil Rai, Dwijesh Chandra Mishra

References

Examples

```r
library(GSelection)
data(GS)
x_trn <- GS[1:40,1:110]
y_trn <- GS[1:40,111]
x_tst <- GS[41:60,1:110]
y_tst <- GS[41:60,111]
spam_var <- spam.var.ensemble(x_trn,y_trn,2,10)
```
Description

Estimation of error variance using Refitted cross validation in Sparse Additive Models.

Usage

spam.var.rcv(x, y, d)

Arguments

x a matrix of markers or explanatory variables, each column contains one marker and each row represents an individual.

y a column vector of response variable.

d number of variables to be selected from x.

Details

Refitted cross validation method (RCV) which is a two step method, is used to get the estimate of the error variance. In first step, dataset is divided into two sub-datasets and with the help of Sparse Additive Models (SpAM) most significant markers(variables) are selected from the two sub-datasets. This results in two small sets of selected variables. Then using the set selected from 1st sub-dataset error variance is estimated from the 2nd sub-dataset with ordinary least square method and using the set selected from the 2nd sub-dataset error variance is estimated from the 1st sub-dataset with ordinary least square method. Finally the average of those two error variances are taken as the final estimator of error variance with RCV method.

Value

Error variance

Author(s)

Sayanti Guha Majumdar <<sayanti23gm@gmail.com>>, Anil Rai, Dwijesh Chandra Mishra

References

Examples

```r
library(GSelection)
data(GS)
x_trn <- GS[1:40,1:110]
y_trn <- GS[1:40,111]
x_tst <- GS[41:60,1:110]
y_tst <- GS[41:60,111]
spam_var <- spam.var.rcv(x_trn,y_trn,10)
```
Index

*Topic **Ensemble**
 - hsic.var.ensemble, 7
 - spam.var.ensemble, 10

*Topic **Genomic Prediction**
 - genomic.prediction, 4

*Topic **HSIC LASSO**
 - feature.selection, 3
 - genomic.prediction, 4
 - hsic.var.ensemble, 7
 - hsic.var.rcv, 8

*Topic **Integrated Model**
 - feature.selection, 3
 - genomic.prediction, 4
 - RED, 9

*Topic **RCV**
 - hsic.var.rcv, 8
 - spam.var.rcv, 12

*Topic **Redundancy rate**
 - RED, 9

*Topic **SpAM**
 - feature.selection, 3
 - genomic.prediction, 4
 - spam.var.ensemble, 10
 - spam.var.rcv, 12

feature.selection, 3

genomic.prediction, 4

GS, 6

GSelection (GSelection-package), 2
GSelection-package, 2

hsic.var.ensemble, 7
hsic.var.rcv, 8

RED, 9

spam.var.ensemble, 10
spam.var.rcv, 12