Package ‘GWASinlps’

February 2, 2018

Type Package

Title Nonlocal Prior Based Iterative SNP Selection Tool for Genome-Wide Association Studies

Version 1.1

Date 2018-02-01

Author Nilotpal Sanyal [aut, cre]

Maintainer Nilotpal Sanyal <nisanyal@ucsd.edu>

Depends mombf

Imports horseshoe

Suggests glmnet

Description Performs variable selection with data from Genome-wide association studies (GWAS) combining, in an iterative variable selection framework, the computational efficiency of the screen-and-select approach based on some association learning and the parsimonious uncertainty quantification provided by the use of nonlocal priors, as described in Sanyal et al. (2018) [submitted].

License GPL (>= 2)

URL https://www.r-project.org

NeedsCompilation no

Repository CRAN

Date/Publication 2018-02-02 18:31:00 UTC

R topics documented:

GWASinlps-package .. 2
GWASinlps .. 2
nlpsLM ... 5

Index 8
GWASinlps

Nonlocal prior based iterative SNP selection tool for genome-wide association study data

Description

Performs variable selection with data from Genome-wide association studies (GWAS) combining, in an iterative variable selection framework, the computational efficiency of the screen-and-select approach based on some association learning and the parsimonious uncertainty quantification provided by the use of nonlocal priors, as described in Sanyal et al. (2018) [submitted].

Details

- **Package:** GWASinlps
- **Type:** Package
- **Version:** 1.1
- **Date:** 2017-07-06
- **License:** GPL (>= 2)

Author(s)

Nilotpal Sanyal <nisanyal@ucsd.edu>

Maintainer: Nilotpal Sanyal <nisanyal@ucsd.edu>

References

Sanyal et al. (2018), "GWASinlps: Nonlocal prior based iterative SNP selection tool for genome-wide association studies" [submitted].
GWASinlps

Usage

GWASinlps(y, x, prior, tau, priorDelta = modelbbprior(1,1), k0, m, rxx,
nskip = 3, niter = 2000, verbose = F, skip.return = F, seed = NULL,
tau.hs.method = "halfCauchy", sigma.hs.method = "Jeffreys")

Arguments

y The vector of the continuous phenotype values.
x The SNP genotype matrix with subjects represented by rows and SNPs represented by columns. The elements of x should be of numeric type. Missing values are currently not accepted.
prior "mom" for pMOM prior, "imom" for piMOM prior, "zellner" for Zellner’s g-prior, "horseshoe" for horseshoe prior.
tau the value of the scale parameter tau of the nonlocal prior.
priorDelta Prior for model space. Defaults to modelbbprior(1,1), which is beta-binomial(1,1) prior.
k0 GWASinlps tuning parameter, denoting the number of leading SNPs (see References).
m GWASinlps tuning parameter, denoting the maximum number of SNPs to be selected.
rxx GWASinlps tuning parameter, denoting the correlation threshold to determine leading sets (see References)
nskip GWASinlps tuning parameter, denoting the maximum allowed count of skipping an iteration selecting no SNPs (see References).
niter Number of MCMC iterations for nonlocal prior based Bayesian variable selection. Defaults to 2000.
verbose If TRUE, prints some details. FALSE by default.
skip.return False by default. If True, returns the set of selected variables after each skipping, else returns the final set of selected variables.
seed Optional. If supplied, the random seed is set to this value at the beginning for reproducibility.
tau.hs.method Optional. Necessary only when prior=="horseshoe".
sigma.hs.method Optional. Necessary only when prior=="horseshoe".

Details

The GWASinlps method selects SNPs iteratively. The procedure starts with an initial set of SNPs, a SNP genotype matrix x and a phenotype vector y. An iteration proceeds by determining the k0 leading SNPs having the highest association with y. The measure of association is absolute value of the Pearson’s correlation coefficient for continuous phenotype. These k0 leading SNPs, in turn, determine k0 leading sets, where each leading set consists of all SNPs with absolute correlation coefficient more than or equal to rxx with the corresponding leading SNP. Then within each leading set, non-local prior based Bayesian variable selection is run (using package mombf) and the
predictors appearing in the HPPM are considered selected in the current iteration. Thus, a single SNP can be selected from multiple leading sets. The selected predictors are regressed out from y. The predictors which are included in one or more leading sets but do not appear in any HPPM are dropped from further analysis. With updated y and SNP set, next iteration follows similarly. The procedure continues until the stopping point, determined by the GWASinlps tuning parameters m, rxx, and nskip, is reached. For more details, see the References.)

Value

If skip.return == F (default), then

selected The vector of GWASinlps selected predictors, in the iterational order they were selected.

If skip.return == T, then a list

selected A list, whose length is equal to the number of times skipping took place, and whose elements are the vectors of selected predictors, in the iterational order they were selected, after every skipping.

Author(s)

Nilotpal Sanyal <nisanyal@ucsd.edu>

References

Sanyal et al. (2018), "GWASinlps: Nonlocal prior based iterative SNP selection tool for genome-wide association studies" [submitted].

Examples

```r
# Generate SNP genotype matrix
set.seed(1)
f = runif( p, .1, .2 ) # simulate minor allele frequency
x = matrix( nrow = n, ncol = p )
colnames(x) = 1:p
for(j in 1:p)
  x[,j] = rbinom( n, 2, f[j] )

# Generate data
causal_snps = sample( 1:p, m )
beta = rep( 0, p )
set.seed(1)
beta[causal_snps] = rnorm(m, mean = 0, sd = 2 )
y = x %*% beta + rnorm(n, 0, 1)

# Fix scale parameter tau
tau = 0.2
```
nlpsLM

Nonlocal prior based single-step SNP selection for Genome-wide association study data with continuous phenotype

Description

Performs variable selection for continuous phenotypes in a single iteration, combining the computational efficiency of the screen-and-select approach based on some association learning and the parsimonious uncertainty quantification provided by the use of nonlocal priors, as described in Sanyal et al. (2018) [submitted]

Usage

nlpsLM(y, x, prior, tau, priorDelta = modelbbprior(1,1), k0, rxx, niter = 2000, verbose = F, tau.hs.method = "halfCauchy", sigma.hs.method = "Jeffreys")

Arguments

y The vector of the continuous phenotype values.

x The SNP genotype matrix with subjects represented by rows and SNPs represented by columns. The elements of x should be of numeric type. Missing values are currently not accepted.

prior "mom" for pMOM prior, "imom" for piMOM prior, "zellner" for Zellner’s g-prior, "horseshoe" for horseshoe prior.

tau the value of the scale parameter tau of the nonlocal prior.
Prior for model space. Defaults to modelbbprior(1,1), which is beta-binomial(1,1) prior.

GWASinlps tuning parameter, denoting the number of leading SNPs (see References).

GWASinlps tuning parameter, denoting the correlation threshold to determine leading sets (see References).

Number of MCMC iterations for nonlocal prior based Bayesian variable selection. Defaults to 2000.

If TRUE, prints some details. FALSE by default.

Optional. Necessary only when prior=="horseshoe".

Optional. Necessary only when prior=="horseshoe".

The nlpsLM function performs SNP selection in one iteration for continuous phenotypes. The GWASinlps function repeatedly calls the nlpsLM function. The nlpsLM procedure starts by determining the k0 leading SNPs having the highest association with y. The measure of association is absolute value of the Pearson's correlation coefficient. These k0 leading SNPs, in turn, determine the k0 leading sets, where each leading set consists of all SNPs with absolute correlation coefficient more than or equal to rxx with the corresponding leading SNP. Then non-local prior based Bayesian variable selection is run within each leading set (using package mombf), and the predictors appearing in the HPPM are considered selected. For more details, see the References. For horseshoe prior, package horseshoe is used.

A list with elements

The set of predictors appearing in the HPPM of at least one leading set.

The set of predictors appearing in at least one leading set, but in none of the HPPMs.

Nilotpal Sanyal <nisanyal@ucsd.edu>

Sanyal et al. (2018), "GWASinlps: Nonlocal prior based iterative SNP selection tool for genome-wide association studies" [submitted].

See Also

GWASinlps
Examples

```r
p = 1000; n = 100
m = 10
# Generate SNP genotype matrix
set.seed(1)
f = runif(p, .1, .2) # simulate minor allele frequency
x = matrix(nrow = n, ncol = p)
colnames(x) = 1:p
for(j in 1:p)
  x[,j] = rbinom(n, 2, f[j])
# Generate data
causal_snps = sample(1:p, m)
beta = rep(0, p)
set.seed(1)
beta[causal_snps] = rnorm(m, mean = 0, sd = 2)
y = x %*% beta + rnorm(n, 0, 1)
# Fix scale parameter tau
tau = 0.02
# Perform GWASinlps
out = nlopsLM(y, x, prior = "mom", tau = tau, k0 = 10, rxx = .5, niter = 10000, verbose = TRUE)
out```

Index

GWASinlps, 2, 6
GWASinlps-package, 2

nlpsLM, 5