Description

Statistical functions to fit, validate and describe a Generalized Waring Regression Model (GWRM).

Details

The DESCRIPTION file:

Package: GWRM
Type: Package
Title: Generalized Waring Regression Model for Count Data
Version: 2.0
Date: 2015-04-07
Authors@R: c(person("Antonio Jose", "Saez-Castillo", role = c("aut", "cre"), email = "ajsaez@ujaen.es"), person("Silverio Vilchez-Lopez", "aut"), person("Maria Jose Olmo-Jimenez", "aut"), person("Jose Rodriguez-Avi", "aut"), person("Antonio Conde-Sanchez", "aut"), person("Ana Maria Martinez-Rodriguez", "aut"))
Maintainer: Antonio Jose Saez-Castillo <ajsaez@ujaen.es>
Depends: R (>= 3.0.0)
Imports: SuppDists
Description: Statistical functions to fit, validate and describe a Generalized Waring Regression Model (GWRM).
License: GPL-2 | GPL-3
LazyData: true
Author: Antonio Jose Saez-Castillo [aut, cre], Silverio Vilchez-Lopez [aut], Maria Jose Olmo-Jimenez [aut], Jose Rodriguez-Avi [aut], Antonio Conde-Sanchez [aut], Ana Maria Martinez-Rodriguez [aut]

Index of help topics:

GWRM-package Generalized Waring Regression Model for Count Data
add1.gw Add All Possible Single Terms to a GWRM Model
drop1.gw Drop All Possible Single Terms to a GWRM Model
goals Goals scored by footballers in the first division of the Spanish league
gw Fitting GWRM Models
partvar Partition of the variance in a GWRM model
predict.gw GWRM Predictions
residuals.gw Extract and Visualize Model Residuals

GWRM is a package for fitting and computing Generalized Waring Regression Models. It includes functions for fitting the model to data, for diagnosis and for computing important statistics, as those related to the partition of the variance. It also includes the dataset and the example of Rodriguez-Avi et al. (2009).

Author(s)

Maintainer: Antonio Jose Saez-Castillo <ajsaez@ujaen.es>
add1

References

add1 Add All Possible Single Terms to a GWRM Model

Description
Compute all the single terms in the scope argument that can be added to the GWRM model, fit those models and compute a table of the changes in fit.

Usage
S3 method for class 'gw'
add1(object, scope, test = c("none", "Chisq"), k = 2, trace = FALSE, ...)

Arguments
- object: a fitted "gw" object.
- scope: a formula giving the terms to be considered for adding.
- test: "none", which considers the AIC criterion, or Chisq, which is the likelihood-ratio test.
- k: the penalty constant in AIC / Cp.
- trace: if TRUE, print out progress reports.
- ... further arguments passed to or from other methods.

Details
The method is commonly used by step.
In a scope formula . means 'what is already there'.
The default output table gives AIC, defined as minus twice log likelihood plus 2p where p is the rank of the model (the number of effective parameters).

Value
An object of class "anova" summarizing the differences in fit between the models.

Author(s)
The design was inspired by the R function of the same name.
drop1

See Also

step, drop1.gw, gw

Examples

data(goals)

fit0 <- gw(goals ~ offset(log(played)), data = goals)
summary(fit0)

fit1 <- step(fit0, ~ position)
summary(fit1)

Description

Compute all the single terms in the scope argument that can be dropped from the GWRM model, fit those models and compute a table of the changes in fit.

Usage

S3 method for class 'gw'
drop1(object, scope, test = c("none", "Chisq"), k = 2, trace = FALSE, ...)

Arguments

object a fitted "gw" object.
scope a formula giving the terms to be considered for dropping.
test "none", which considers the AIC criterion, or Chisq, which is the likelihood-ratio test.
k the penalty constant in AIC / Cp.
trace if TRUE, print out progress reports.
... further arguments passed to or from other methods.

Details

The method is commonly used by step.

In a scope formula, means 'what is already there'.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p is the rank of the model (the number of effective parameters).

Value

An object of class "anova" summarizing the differences in fit between the models.
goals

Author(s)

The design was inspired by the R function of the same name.

See Also

step, add1.gw, gw

Examples

data(goals)

fit0 <- gw(goals ~ offset(log(played)), data = goals)
summary(fit0)

fit1 <- step(fit0, ~ position)
summary(fit1)

Description

The response variable goals, is the number of goals scored by the footballers (excluding goalkeepers) in the first division of the Spanish league from the 2000/2001 to the 2006/2007 seasons. Since there are footballers who played more than one season, the season in which each one has played more matches has been selected. The covariates considered are the final classification of the team in each season, the position in the field (forward, midfielder and defender) and the number of matches played.

Usage

data("goals")

Format

A data frame with 1224 observations on the following 4 variables.

clasif	a numeric vector
position	a factor with levels Defender Forward Midfielder
played	a numeric vector
goals	a numeric vector

Source

MARCA sports paper
References

gw

Fitting GWRM Models

Description

`gw` is used to fit Generalized Waring Regression Models (GWRM), specified by giving a symbolic description of the linear predictor.

Usage

```r
gw(formula, data, weights, k=NULL, subset, na.action, kstart=1, rostart=2, 
   betastart=NULL, offset, control = list(...), method = NULL, hessian=TRUE, 
   model = TRUE, x = FALSE, y = TRUE, ...)
```

Arguments

- `formula`: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `data`: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula).
- `weights`: an optional vector of 'prior weights' to be used in the fitting process. Should be `NULL` or a numeric vector.
- `k`: optional value for the `k` parameter. If `NULL`, it is estimated.
- `subset`: an optional vector specifying a subset of observations to be used in the fitting process.
- `na.action`: a function which indicates what should happen when the data contain NAs. See `glm`.
- `kstart`: starting value for the `k` parameter.
- `rostart`: starting value for the `ro` parameter.
- `betastart`: starting values for the vector of means.
- `offset`: this can be used to specify an `a priori` known component to be included in the linear predictor during fitting. This should be `NULL` or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See `model.offset`.
- `control`: a list of parameters for controlling the fitting process.
method

the method to be used in fitting the model. The default method initially uses non-linear minimization (\texttt{nlm}) and Nelder-Mead optimization (\texttt{optim}) to fit a model which is then re-fitted by "L-BFGS-B" (\texttt{optim}). In this way, SE estimates for all the model parameters are provided. "\texttt{nlm}" and "\texttt{Nelder-Mead}" are also possible values, but they do not provide SE estimates for \textit{k} and \textit{ro}.

\texttt{hessian} if \texttt{TRUE}, the hessian of \textit{f} at the minimum is returned.

\texttt{model} a logical value indicating whether \textit{model frame} should be included as a component of the returned value.

\texttt{x, y} logical values indicating whether the response vector and model matrix used in the fitting process should be returned as components of the returned value.

... further arguments.

Details

The GWRM is fully described in Rodriguez-Avi et al. (2009).

Value

gw returns an object of class "gw". The function \texttt{summary} can be used to obtain or print a summary of the results. An object of class "gw" is a list containing the following components:

\begin{itemize}
 \item \texttt{Y} if requested (the default), the \textit{y} vector used.
 \item \texttt{W} the weights supplied, a vector of 1s if none were.
 \item \texttt{covars} names of the covariates in the model.
 \item \texttt{nobs} number of observations.
 \item \texttt{covoffset} a logical value specifying if an offset is present.
 \item \texttt{loglik} the maximized log-likelihood.
 \item \texttt{aic} a version of Akaike’s \textit{An Information Criterion}, minus twice the maximized log-likelihood plus twice the number of parameters.
 \item \texttt{bic} Bayesian Information Criterion, minus twice the maximized log-likelihood plus the number of parameters multiplied by the logarithm of the number of observations.
 \item \texttt{df.residual} the residual degrees of freedom.
 \item \texttt{residuals} the residuals in the final iteration of the fit.
 \item \texttt{coefficients} a named vector of coefficients.
 \item \texttt{betaIIpars} parameters estimates of the BetaII distribution.
 \item \texttt{betascoefs} a vector of coefficients.
 \item \texttt{fitted.values} the fitted mean values, obtained by transforming the linear predictors by the inverse of the link function.
 \item \texttt{hessian} a symmetric matrix giving an estimate of the Hessian at the solution found in the optimization of the log-likelihood function.
 \item \texttt{cov} an estimate of the covariance matrix of the model coefficients.
 \item \texttt{se} a vector of the standard errors estimates of the estimated coefficients.
\end{itemize}
corr
an estimate of the correlation matrix of the model coefficients.

code
a code that indicates successful convergence of the fitter function used (see nlm and optim helps).

method
the name of the fitter function used.

k
if requested, the k value used.

kBool
a logical value specifying whether there is a k value or it is estimated.

call
the matched call.

formula
the formula supplied.

terms
the terms object used.

data
the data argument.

offset
the offset vector used.

control
the value of the control argument used.

method
the name of the fitter function used.

contrasts
(where relevant) the contrasts used.

xlevels
(where relevant) a record of the levels of the factors used in fitting.

Author(s)

The design was inspired by the glm R function.

References

See Also

residuals.gw, partvar

Examples

```r
data(goals)
fit <- gw(goals ~ position + offset(log(played)), data = goals)
summary(fit)
```
Description

In a GWRM model, the variance may be split into three terms. The first component of this decomposition represents the variability due to randomness and it comes from the underlying Poisson model. The other two components refer to the variability that is not due to randomness but is explained by the presence of liability and proneness, respectively.

Usage

```
## Default S3 method:
partvar(object, newdata = NULL, ...)
```

Arguments

- `object` an object class "gw" for which the partition is desired.
- `newdata` optionally, a data frame in which to look for variables with which to obtain the partition. If omitted, all the cases are used.
- `...` further arguments passed to or from other methods.

Details

One of the main drawbacks of using the Univariate Generalized Waring Distribution with parameters \(a\), \(k\) and \(ro\) is that the parameters \(a\) and \(k\) are interchangeable when there is no auxiliary information given by the covariates. This identification problem prevents liability and proneness components from being distinguished in the univariate fits. To solve it, Irwin (1968) proposed that the expert should deduce which of these components is which from their own knowledge of the phenomenon. Xekalaki (1984) proposed a less subjective solution, developing a bivariate model that divides the observation period into two non-overlapping subperiods in which the model for proneness does not change. In the GWRM with, at least, one covariate, the parameters \(a\) and \(k\) are not interchangeable because, as in Xekalaki’s bivariate model, the random model for proneness does not change. So, the identification problem of the non-random components is solved.

Value

Two data frames, with ratio of sources of variation and sources of variation in which variance is split.

Author(s)

References

See Also
gw, predict.gw

Examples

data(goals)

fit <- gw(goals ~ position + offset(log(played)), data = goals)

pos <- factor(c("Defender", "Midfielder"), levels = c("Defender", "Midfielder", "Forward"))
lev <- data.frame(position = pos, played = c(17, 21))

partvar(fit, newdata = lev)

predict

GWRM Predictions

Description

Obtains predictions from a fitted GWRM object.

Usage

S3 method for class 'gw'
predict(object = NULL, newdata = NULL, ...)

Arguments

object a fitted object of class inheriting from "gw".
newdata optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.
... further arguments passed to or from other methods.

Value

A data frame with newdata and their fitted means.
See Also

gw, partvar

Examples

data(goals)

fit <- gw(goals ~ position + offset(log(played)), data = goals)

pos <- factor(c("Defender", "Midfielder"), levels = c("Defender", "Midfielder", "Forward"))
lev <- data.frame(position = pos, played = c(17, 21))
predict(fit, newdata = lev)

_dataframe residuals

Extract and Visualize Model Residuals

Description

residuals is a method which extracts model residuals from "gw", commonly returned by gw function. Optionally, it produces a normal plot with simulated envelope of the residual.

Usage

S3 method for class 'gw'
residuals(object, type = "pearson", rep = 19,
envelope = TRUE, title = "Simulated Envelope of Residuals", trace = FALSE, ...)

Arguments

object object of class "gw" holding the fitted model

type type of residuals to be extracted. Default is pearson. response and deviance are also available.

rep number of replications for envelope construction. Default is 19, that is the smallest 95% band that can be build

envelope a logical value to specify if the envelope is required.

title a title for the envelope.

trace if TRUE a sort of information is printed during the running time.

... further arguments.

Details

The usual Q-Q plot may show an unsatisfactory pattern of the residuals of a model fitted: then we are led to think that the model is badly specified. The normal plot with simulated envelope indicates that under the distribution of the response variable the model is OK if only a few points fall off the envelope.
Value

- **type**: residuals type ("pearson", "deviance" or "response") required
- **residuals**: actual residuals of the model
- **sim.residuals**: simulated residuals

Author(s)

The design was inspired by the `envelope.pgam` R function of `pgam` package.

Examples

```r
data(goals)
fit <- gw(goals ~ position + offset(log(played)), data = goals)
res <- residuals(fit, envelope = FALSE, type = "deviance")
normal.score <- qnorm(1:fit$nobs / (fit$nobs + 1))
plot(normal.score, res$residuals, type = "l",
     xlab = "Standard normal quantiles",
     ylab = "Residuals (deviance)"
)
```
Index

*Topic count data regression
 GWRM-package, 2
*Topic datasets
 goals, 5
*Topic package
 GWRM-package, 2

add1, 3
add1.gw, 5

drop1, 4
drop1.gw, 4

glm, 6, 8
goals, 5
gw, 4, 5, 6, 10, 11
GWRM (GWRM-package), 2
GWRM-package, 2

model.offset, 6

partvar, 8, 9, 11
predict, 10
predict.gw, 10

residuals, 11
residuals.gw, 8

step, 3–5

terms, 8