Package ‘GWmodel’

July 29, 2024

Type Package
Version 2.3-3
Date 2024-07-29
Title Geographically-Weighted Models
Depends R (>= 3.0.0), robustbase, sp (> 1.4-0), Rcpp (>= 1.0.12)
Imports methods, sf, grDevices, spacetime, spdep, spatialreg, FNN
LinkingTo Rcpp, RcppArmadillo, RcppEigen
Suggests mvoutlier, RColorBrewer, gstat, spData
Description Techniques from a particular branch of spatial statistics, termed geographically-weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localised calibration provides a better description. ‘GWmodel’ includes functions to calibrate: GW summary statistics (Brunsdon et al., 2002) doi:10.1016/s0198-9715(01)00009-6, GW principal components analysis (Harris et al., 2011) doi:10.1080/13658816.2011.554838, GW discriminant analysis (Brunsdon et al., 2007) doi:10.1111/j.1538-4632.2007.00709.x and various forms of GW regression (Brunsdon et al., 1996) doi:10.1111/j.1538-4632.1996.tb00936.x; some of which are provided in basic and robust (outlier resistant) forms.

Maintainer Binbin Lu <binbinlu@whu.edu.cn>
License GPL (>= 2)
Repository CRAN
URL http://gwr.nuim.ie/
NeedsCompilation yes
SystemRequirements GNU make
Date/Publication 2024-07-29 12:40:02 UTC

Author Binbin Lu [aut, cre],
Paul Harris [aut],
Martin Charlton [aut],
Chris Brunsdon [aut],
Tomoki Nakaya [aut],
Daisuke Murakami [ctb],

1
Yigong Hu [ctb],
Fiona H Evans [ctb],
Hjalmar H<3><b6>glund [ctb]

Contents

GWmodel-package ... 3
bw.ggwr ... 4
bw.gtwr ... 5
bw.gwda ... 7
bw.gwpca ... 8
bw.gwr ... 10
bw.gwr.lcr .. 11
bw.gwss.average ... 13
DubVoter ... 14
EWHP .. 15
EWOutline ... 16
Georgia ... 16
GeorgiaCounties ... 17
ggwr.basic ... 18
ggwr.cv ... 20
ggwr.cv.contrib ... 21
gtwr .. 22
gw.dist ... 24
gw.pcplot ... 25
gw.weight .. 26
gwda .. 27
gwpca ... 29
gwpca.check.components .. 32
gwpca.cv ... 33
gwpca.cv.contrib ... 34
gwpca.glyph.plot ... 35
gwpca.montecarlo.1 ... 36
gwpca.montecarlo.2 ... 38
gwr.basic ... 40
gwr.bootstrap .. 44
gwr.collin.diagno ... 47
gwr.cv ... 49
gwr.cv.contrib .. 50
gwr.hetero ... 51
gwr.lcr ... 53
gwr.lcr.cv ... 55
gwr.lcr.cv.contrib ... 57
gwr.mink.approach ... 58
gwr.mink.matrixview .. 59
gwr.mink.pval .. 60
gwr.mixed ... 62
gwr.model.selection ... 64
In GWmodel, we introduce techniques from a particular branch of spatial statistics, termed geographically-weighted (GW) models. GW models suit situations when data are not described well by some global model, but where there are spatial regions where a suitably localised calibration provides a better description. GWmodel includes functions to calibrate: GW summary statistics, GW principal components analysis, GW discriminant analysis and various forms of GW regression; some of which are provided in basic and robust (outlier resistant) forms. In particular, the high-performance computing technologies, including multi-thread and CUDA techniques are started to be adopted for efficient calibrations.

Details

Package: GWmodel
Type: Package
Version: 2.3-3
Date: 2024-07-29
License: GPL (>=2)
LazyLoad: yes
bw.ggwr

Bandwidth selection for generalised geographically weighted regression (GWR)

Description

A function for automatic bandwidth selection to calibrate a generalised GWR model

Usage

bw.ggwr(formula, data, family = "poisson", approach = "CV",
 kernel = "bisquare", adaptive = FALSE, p = 2, theta = 0,
 longlat = F, dMat)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
family a description of the error distribution and link function to be used in the model,
 which can be specified by “poisson” or “binomial”
approach specified by CV for cross-validation approach or by AIC corrected (AICc) approach
kernel function chosen as follows:
gaussian: wgt = exp(-0.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practice a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

bw.gtwr (formula, data, obs.tv, approach="CV", kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, lamda=0.05, t.units = "auto", ksi=0, st.dMat, verbose=T)

Description

A function for automatic bandwidth selection to calibrate a GTWR model

Usage
Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp

obs.tv a vector of time tags for each observation, which could be numeric or of POSIXlt class

approach specified by CV for cross-validation approach or by AIC corrected (AICc) approach

kernel function chosen as follows:
 gaussian: wgt = exp(-.5*(vdist/bw)^2);
 exponential: wgt = exp(-vdist/bw);
 bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
 tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
 boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

lambda an parameter between 0 and 1 for calculating spatio-temporal distance

t.units character string to define time unit

ksi an parameter between 0 and PI for calculating spatio-temporal distance, see details in Wu et al. (2014)

st.dMat a pre-specified spatio-temporal distance matrix

verbose logical variable to define whether show the selection procedure

Value

Returns the adaptive or fixed distance bandwidth

Note

The function is developed according to the articles by Huang et al. (2010) and Wu et al. (2014).

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
References

bw.gwda

Bandwidth selection for GW Discriminant Analysis

Description

A function for automatic bandwidth selection for GW Discriminant Analysis using a cross-validation approach only

Usage

bw.gwda(formula, data, COV.gw = T, prior.gw = T, mean.gw = T,
 prior = NULL, wqda = F, kernel = "bisquare", adaptive
 = FALSE, p = 2, theta = 0, lonlat = F, dMat)

Arguments

formula Model formula of a formula object
data a Spatial*DataFrame for training, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
COV.gw if true, localised variance-covariance matrix is used for GW discriminant analysis; otherwise, global variance-covariance matrix is used
mean.gw if true, localised mean is used for GW discriminant analysis; otherwise, global mean is used
prior.gw if true, localised prior probability is used for GW discriminant analysis; otherwise, fixed prior probability is used
prior a vector of given prior probability
wqda if TRUE, a weighted quadratic discriminant analysis will be applied; otherwise a weighted linear discriminant analysis will be applied
kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisque: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxocar: wgt=1 if dist < bw, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidth.

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

bw.gw pca

Bandwidth selection for Geographically Weighted Principal Components Analysis (GWPCA)

Description

A function for automatic bandwidth selection to calibrate a basic or robust GWPCA via a cross-validation approach only

Usage

bw.gw pca(data, vars, k=2, robust=FALSE, scaling=T, kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, dMat)
Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
vars a vector of variable names to be evaluated
k the number of retained components, and it must be less than the number of variables
robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
scaling if TRUE, the data is scaled to have zero mean and unit variance (standardized); otherwise the data is centered but not scaled
kernel function chosen as follows:
 gaussian: wgt = exp(-.5*(vdist/bw)^2);
 exponential: wgt = exp(-vdist/bw);
 bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
 tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
 boxcar: wgt=1 if dist < bw, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a ‘fixed quantity that reflects local sample size’ (i.e. still an ‘adaptive’ distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
References

bw.gwr

Bandwidth selection for basic GWR

Description

A function for automatic bandwidth selection to calibrate a basic GWR model

Usage

bw.gwr(formula, data, approach="CV", kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, dMat, parallel.method=F, parallel.arg=NULL)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
approach specified by CV for cross-validation approach or by AIC corrected (AICc) approach
kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisque: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist
parallel.method FALSE as default, and the calibration will be conducted traditionally via the serial technique, "omp": multi-thread technique with the OpenMP API, "cluster": multi-process technique with the parallel package, "cuda": parallel computing technique with CUDA
if parallel.method is not FALSE, then set the argument by following: if parallel.method is "omp", parallel.arg refers to the number of threads used, and its default value is the number of cores - 1; if parallel.method is "cluster", parallel.arg refers to the number of R sessions used, and its default value is the number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the number of calibrations included in each group, but note a too large value may cause the overflow of GPU memory.

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a 'fixed quantity that reflects local sample size' (i.e. still an 'adaptive' distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
kernel function chosen as follows:

- **gaussian**: \(\text{wgt} = \exp(-0.5 \times (vdist/bw)^2) \);
- **exponential**: \(\text{wgt} = \exp(-vdist/bw) \);
- **bisquare**: \(\text{wgt} = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(\text{wgt}=0 \) otherwise;
- **tricube**: \(\text{wgt} = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(\text{wgt}=0 \) otherwise;
- **boxcar**: \(\text{wgt}=1 \) if \(\text{dist} < bw \), \(\text{wgt}=0 \) otherwise

\(p \) the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

\(\lambda \) option for a globally-defined (constant) ridge parameter. Default is \(\lambda=0 \), which gives a basic GWR fit

\(\lambda \text{.adjust} \) a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. \(\lambda=0 \), everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. \(\lambda \) is user-specified as some constant, other than 0 everywhere); if TRUE, use \(\text{cn.thresh} \) to set the maximum condition number. For locations with a condition number (for its local design matrix), above this user-specified threshold, a local ridge parameter is found

\(\text{cn.thresh} \) maximum value for condition number, commonly set between 20 and 30

\(\text{adaptive} \) if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

\(\theta \) an angle in radians to rotate the coordinate system, default is 0

\(\text{longlat} \) if TRUE, great circle distances will be calculated

\(d\text{Mat} \) a pre-specified distance matrix, it can be calculated by the function \(\text{gw.dist} \)

Value

Returns the adaptive or fixed distance bandwidth

Note

For a discontinuous kernel function, a bandwidth can be specified either as a fixed (constant) distance or as a fixed (constant) number of local data (i.e. an adaptive distance). For a continuous kernel function, a bandwidth can be specified either as a fixed distance or as a ‘fixed quantity that reflects local sample size’ (i.e. still an ‘adaptive’ distance but the actual local sample size will be the sample size as functions are continuous). In practise a fixed bandwidth suits fairly regular sample configurations whilst an adaptive bandwidth suits highly irregular sample configurations. Adaptive bandwidths ensure sufficient (and constant) local information for each local calibration. This note is applicable to all GW models

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

bw.gwss.average

Bandwidth selection for GW summary averages

Description

A function for automatic bandwidth selections to calculate GW summary averages, including means and medians, via a cross-validation approach.

Usage

bw.gwss.average(data, summary.locat, vars, kernel = "bisquare", adaptive = FALSE, p = 2, theta = 0, longlat = F, dMat)

Arguments

data: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
summary.locat: a Spatial*DataFrame object for providing summary locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
vars: a vector of variable names to be summarized
kernel: function chosen as follows:
 gaussian: wgt = exp(-.5*(vdist/bw)^2);
 exponential: wgt = exp(-vdist/bw);
 bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
 tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
 boxcar: wgt=1 if dist < bw, wgt=0 otherwise
adaptive: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta: an angle in radians to rotate the coordinate system, default is 0
longlat: if TRUE, great circle distances will be calculated
dMat: a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

Returns the adaptive or fixed distance bandwidths (in a two-column matrix) for calculating the averages of each variable.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
DubVoter

Voter turnout data in Greater Dublin(SpatialPolygonsDataFrame)

Description

Voter turnout and social characters data in Greater Dublin for the 2002 General election and the 2002 census. Note that this data set was originally thought to relate to 2004, so for continuity we have retained the associated variable names.

Usage

data(DubVoter)

Format

A SpatialPolygonsDataFrame with 322 electoral divisions on the following 11 variables.

- **DED_ID** a vector of ID
- **X** a numeric vector of x coordinates
- **Y** a numeric vector of y coordinates
- **DiffAdd** percentage of the population in each ED who are one-year migrants (i.e. moved to a different address 1 year ago)
- **LARent** percentage of the population in each ED who are local authority renters
- **SC1** percentage of the population in each ED who are social class one (high social class)
- **Unempl** percentage of the population in each ED who are unemployed
- **LowEduc** percentage of the population in each ED who are with little formal education
- **Age18_24** percentage of the population in each ED who are age group 18-24
- **Age25_44** percentage of the population in each ED who are age group 25-44
- **Age45_64** percentage of the population in each ED who are age group 45-64
- **GenEl2004** percentage of population in each ED who voted in 2004 election

Details

Variables are from DubVoter.shp.

References

Examples

data(DubVoter)
ls()
Not run:
spplot(Dub.voter, names(Dub.voter)[4:12])
End(Not run)

Description

A house price data set for England and Wales from 2001 with 9 hedonic (explanatory) variables.

Usage

data(EWHP)

Format

A data frame with 519 observations on the following 12 variables.

Easting a numeric vector, X coordinate
Northing a numeric vector, Y coordinate
PurPrice a numeric vector, the purchase price of the property
BldIntWr a numeric vector, 1 if the property was built during the world war, 0 otherwise
BldPostW a numeric vector, 1 if the property was built after the world war, 0 otherwise
Bld60s a numeric vector, 1 if the property was built between 1960 and 1969, 0 otherwise
Bld70s a numeric vector, 1 if the property was built between 1970 and 1979, 0 otherwise
Bld80s a numeric vector, 1 if the property was built between 1980 and 1989, 0 otherwise
TypDetch a numeric vector, 1 if the property is detached (i.e. it is a stand-alone house), 0 otherwise
TypSemiD a numeric vector, 1 if the property is semi detached, 0 otherwise
TypFlat a numeric vector, if the property is a flat (or 'apartment' in the USA), 0 otherwise
FlrArea a numeric vector, floor area of the property in square metres

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

```r
###
data(EWHP)
head(ewhp)
houses.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)
###Get the border of England and Wales
data(EWOutline)
plot(ewoutline)
plot(houses.spdf, add = TRUE, pch = 16)
```

EWOutline

Outline of England and Wales for data EWHP

Description

Outline (SpatialPolygonsDataFrame) of the England and Wales house price data EWHP.

Usage

data(EWOutline)

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

Georgia

Georgia census data set (csv file)

Description

Census data from the county of Georgia, USA

Usage

data(Georgia)

Format

A data frame with 159 observations on the following 13 variables.

- **AreaKey** An identification number for each county
- **Latitude** The latitude of the county centroid
- **Longitud** The longitude of the county centroid
- **TotPop90** Population of the county in 1990
- **PctRural** Percentage of the county population defined as rural
GeorgiaCounties

PctBach Percentage of the county population with a bachelors degree
PctEld Percentage of the county population aged 65 or over
PctFB Percentage of the county population born outside the US
PctPov Percentage of the county population living below the poverty line
PctBlack Percentage of the county population who are black
ID a numeric vector of IDs
X a numeric vector of x coordinates
Y a numeric vector of y coordinates

Details

This data set can also be found in GWR 3 and in spgwr.

References

Examples

```r
data(Georgia)
ls()
coords <- cbind(Gedu.df$X, Gedu.df$Y)
educ.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
spplot(educ.spdf, names(educ.spdf)[4:10])
```

GeorgiaCounties Georgia counties data (SpatialPolygonsDataFrame)

Description

The Georgia census data with boundaries for mapping

Usage

data(GeorgiaCounties)

Details

This data set can also be found in GWR 3 and in spgwr.
Examples

data(GeorgiaCounties)
plot(Gedu.counties)
data(Georgia)
coords <- cbind(Gedu.df$X, Gedu.df$Y)
educ.spdf <- SpatialPointsDataframe(coords, Gedu.df)
plot(educ.spdf, add=TRUE)

ggwr.basic
Generalised GWR models with Poisson and Binomial options

Description

This function implements generalised GWR

Usage

```r
ggwr.basic(formula, data, regression.points, bw, family =
    "poisson", kernel = "bisquare", adaptive = FALSE, cv =
    T, tol = 1e-05, maxiter = 20, p = 2, theta = 0,
    longlat = F, dMat, dMat1)
## S3 method for class 'ggwrm'
print(x, ...)
```

Arguments

- `formula`: Regression model formula of a `formula` object
- `data`: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
- `regression.points`: a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
- `bw`: bandwidth used in the weighting function, possibly calculated by bw.ggwr(); fixed (distance) or adaptive bandwidth(number of nearest neighbours)
- `family`: a description of the error distribution and link function to be used in the model, which can be specified by “poisson” or “binomial”
- `kernel`: function chosen as follows:
 - gaussian: \(wgt = \exp(-0.5*\text{vdist}/\text{bw})^2 \);
 - exponential: \(wgt = \exp(-\text{vdist}/\text{bw}) \);
 - bisquare: \(wgt = (1-(\text{vdist}/\text{bw})^2)^2 \) if \(\text{vdist} < \text{bw} \), \(wgt=0 \) otherwise;
 - tricube: \(wgt = (1-(\text{vdist}/\text{bw})^3)^3 \) if \(\text{vdist} < \text{bw} \), \(wgt=0 \) otherwise;
 - boxcar: \(wgt=1 \) if \(\text{dist} < \text{bw} \), \(wgt=0 \) otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
dcv if TRUE, cross-validation data will be calculated
tol the threshold that determines the convergence of the IRLS procedure
maxiter the maximum number of times to try the IRLS procedure
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
dMat1 a pre-specified distance matrix between regression points and observations, it can be calculated by the function gw.dist
dMat1 a square distance matrix between each pair of observations, it can be calculated by the function gw.dist
x an object of class "ggwrm", returned by the function gwr.generalised
... arguments passed through (unused)

Value

A list of class "ggwrm":
GW.arguments a list class object including the model fitting parameters for generating the report file
GW.diagnostic a list object including the diagnostic information of the model fitting
glm.res an object of class inheriting from "glm" which inherits from the class "lm", see glm.
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") integrated with fit.points,GWR coefficient estimates, y value,predicted values, coefficient standard errors and t-values in its "data" slot.
CV a data vector consisting of the cross-validation data

Note

Note that this function calibrates a Generalised GWR model via an approximating algorithm, which is different from the back-fitting algorithm used in the GWR4 software by Tomoki Nakaya.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

data(LondonHP)
Not run:
DM<-gw.dist(dp.locat=coordinates(londonhp))
bw.f1 <- bw.ggwr(BATH2~FLOORSZ,data=londonhp, dMat=DM)
res.poisson<-ggwr.basic(BATH2~FLOORSZ, bw=bw.f1,data=londonhp, dMat=DM)
bw.f2 <- bw.ggwr(BATH2~FLOORSZ,data=londonhp, dMat=DM,family ="binomial")
res.binomial<-ggwr.basic(BATH2~FLOORSZ, bw=bw.f2,data=londonhp, dMat=DM,
 family ="binomial")
End(Not run)

ggwr.cv

Cross-validation score for a specified bandwidth for generalised GWR

Description

This function finds the cross-validation score for a specified bandwidth for generalised GWR. It can be used to construct the bandwidth function across all possible bandwidths and compared to that found automatically.

Usage

ggwr.cv(bw, X, Y,family="poisson", kernel="bisquare",adaptive=F, dp.locat,
p=2, theta=0, longlat=F,dMat)

Arguments

- **bw**: bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- **X**: a numeric matrix of the independent data with an extra column of “ones” for the 1st column
- **Y**: a column vector of the dependent data
- **family**: a description of the error distribution and link function to be used in the model, which can be specified by “poisson” or “binomial”
- **kernel**: function chosen as follows:
 - gaussian: \(wgt = \exp(-.5*(vdist/bw)^2) \)
 - exponential: \(wgt = \exp(-vdist/bw) \)
 - bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 - tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 - boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise
- **adaptive**: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
- **dp.locat**: a two-column numeric array of observation coordinates
the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
an angle in radians to rotate the coordinate system, default is 0
if TRUE, great circle distances will be calculated
a pre-specified distance matrix, it can be calculated by the function `gw.dist`

Value

CV.score cross-validation score

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

Description

This function finds the individual cross-validation score at each observation location, for a generalised GWR model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-validations scores.

Usage

```r
ggwr.cv.contrib(bw, X, Y, family="poisson", kernel="bisquare", adaptive=F, dp.locat, p=2, theta=0, longlat=F, dMat)
```

Arguments

- `bw`: bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- `X`: a numeric matrix of the independent data with an extra column of “ones” for the 1st column
- `Y`: a column vector of the dependent data
- `family`: a description of the error distribution and link function to be used in the model, which can be specified by “poisson” or “binomial”
- `kernel`: function chosen as follows:
 - gaussian: \(wgt = \exp(-0.5 \cdot (vdist/bw)^2) \)
 - exponential: \(wgt = \exp(-vdist/bw) \)
 - bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise
 - tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise
 - boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

dp.locat a two-column numeric array of observation coordinates

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

CV a data vector consisting of squared residuals, whose sum is the cross-validation score for the specified bandwidth

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

twr

Geographically and Temporally Weighted Regression

Description

A function for calibrating a Geographically and Temporally Weighted Regression (GTWR) model.

Usage

gtwr(formula, data, regression.points, obs.tv, reg.tv, st.bw, kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, lamda=0.05, t.units = "auto", ksi=0, st.dMat)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
regression.points a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp: Note that no diagnostic information will returned if it is assigned
obs.tv a vector of time tags for each observation, which could be numeric or of POSIXlt class
reg.tv a vector of time tags for each regression location, which could be numeric or of POSIXlt class
st. bw
spatio-temporal bandwidth used in the weighting function, possibly calculated by `bw.gwr`; fixed (distance) or adaptive bandwidth (number of nearest neighbours)

kernel
function chosen as follows:
gaussian: \(\text{wgt} = \exp(-0.5 \times (vdist/bw)^2) \);
exponential: \(\text{wgt} = \exp(-vdist/bw) \);
bisquare: \(\text{wgt} = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(\text{wgt}=0 \) otherwise;
tricube: \(\text{wgt} = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(\text{wgt}=0 \) otherwise;
boxcar: \(\text{wgt}=1 \) if \(\text{dist} < bw \), \(\text{wgt}=0 \) otherwise

adaptive
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p
the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta
an angle in radians to rotate the coordinate system, default is 0

longlat
if TRUE, great circle distances will be calculated

lambda
an parameter between 0 and 1 for calculating spatio-temporal distance

t.units
character string to define time unit

ksi
an parameter between 0 and PI for calculating spatio-temporal distance, see details in Wu et al. (2014)

st.dMat
a pre-specified spatio-temporal distance matrix, and can be calculated via the function `st.dist`

Value

A list of class “gtwrmi”:

- **GTW.arguments**
a list class object including the model fitting parameters for generating the report file

- **GTW.diagnostic**
a list class object including the diagnostic information of the model fitting

- **lm**
an object of class inheriting from “lm”, see `lm`

- **SDF**
a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with fit.points, GTWR coefficient estimates, y value, predicted values, coefficient standard errors and t-values in its “data” slot.

- **timings**
starting and ending time.

- **this.call**
the function call used.

Note

The function implements GTWR model proposed by Huang et al. (2010) and Wu et al. (2014).

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
References

gw.dist

Distance matrix calculation

Description

Calculate a distance vector(matrix) between any GW model calibration point(s) and the data points.

Usage

gw.dist(dp.locat, rp.locat, focus=0, p=2, theta=0, longlat=F)

Arguments

dp.locat: a numeric matrix of two columns giving the coordinates of the data points
rp.locat: a numeric matrix of two columns giving the coordinates of the GW model calibration points
focus: an integer, indexing to the current GW model point, if focus=0, all the distances between all the GW model calibration points and data points will be calculated and a distance matrix will be returned; if 0<focus<length(rp.locat), then the distances between the 'focus'th GW model points and data points will be calculated and a distance vector will be returned
p: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta: an angle in radians to rotate the coordinate system, default is 0
longlat: if TRUE, great circle distances will be calculated

Value

Returns a numeric distance matrix or vector; matrix with its rows corresponding to the observations and its columns corresponds to the GW model calibration points.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
gw.pcpplot

See Also
dist in stats

Examples

dp<-cbind(sample(100),sample(100))
rp<-cbind(sample(10),sample(10))
#Euclidean distance metric is used.
dist.v1<-gw.dist(dp.locat=dp, focus=5, p=2, theta=0, longlat=FALSE)
#Manhattan distance metric is used.
dist.v2<-gw.dist(dp.locat=dp, focus=5, p=1, theta=0.5)
#Great Circle distance metric is used.
dist.v3<-gw.dist(dp.locat=dp, focus=5, longlat=TRUE)
#A generalized Minkowski distance metric is used with p = 0.75.
#The coordinate system is rotated by an angle 0.8 in radian.
dist.v4<-gw.dist(dp.locat=dp, rp.locat=rp, focus=5, p=0.75,theta=0.8)

matrix is calculated

#Euclidean distance metric is used.
dist.m1<-gw.dist(dp.locat=dp, p=2, theta=0, longlat=FALSE)
#Manhattan distance metric is used.
dist.m2<-gw.dist(dp.locat=dp, p=1, theta=0.5)
#Great Circle distance metric is used.
dist.m3<-gw.dist(dp.locat=dp, longlat=TRUE)
#A generalized Minkowski distance metric is used with p = 0.75.
#The coordinate system is rotated by an angle 0.8 in radian.
dist.m4<-gw.dist(dp.locat=dp, rp.locat=rp, p=0.75,theta=0.8)

gw.pcpplot

Geographically weighted parallel coordinate plot for investigating multivariate data sets

Description

This function provides a geographically weighted parallel coordinate plot for locally investigating a multivariate data set. It has an option that weights the lines of the plot with increasing levels of transparency, according to their observation’s distance from a specified focal/observation point.

Usage

gw.pcpplot(data,vars, focus, bw, adaptive = FALSE, ylim=NULL, ylab="", fixtrans=FALSE, p=2, theta=0, longlat=F, dMat,...)
Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
vars a vector of variable names to be evaluated
focus an integer, indexing to the observation point
bw bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
ylim the y limits of the plot
ylab a label for the y axis
fixtrans if TRUE, the transparency of the neighbouring observation plot lines increases with distance; If FALSE a standard (non-spatial) parallel coordinate plot is returned.
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function \texttt{gw.dist}
... other graphical parameters, (see \texttt{par})

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

\textbf{gw.weight} \hspace{1cm} \textit{Weight matrix calculation}

Description

Calculate a weight vector(matrix) from a distance vector(matrix).

Usage

\texttt{gw.weight(vdist,bw,kernel,adaptive=FALSE)}
Arguments

- **vdist**: a distance matrix or vector
- **bw**: bandwidth used in the weighting function, possibly calculated by `bw.gwr`; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- **kernel**: function chosen as follows:
 - gaussian: \(wgt = \exp(-0.5 \times (vdist/bw)^2) \)
 - exponential: \(wgt = \exp(-vdist/bw) \)
 - bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise
 - tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise
 - boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise
- **adaptive**: if TRUE calculate an adaptive kernel where the bandwidth \(bw \) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

Value

Returns a numeric weight matrix or vector; matrix with its rows corresponding to the observations and its columns corresponds to the GW model calibration points.

Note

The gaussian and exponential kernel functions are continuous and valued in the interval \((0,1] \); while bisquare, tricube and boxcar kernel functions are discontinuous and valued in the interval \([0,1] \). Notably, the upper limit of the bandwidth is exactly the number of observations when the adaptive kernel is used. In this function, the adaptive bandwidth will be specified as the number of observations even though a larger number is assigned. The function will be the same as a global application function (i.e. all weights are 1) when the adaptive bandwidth is equal to or larger than the number of observations when using the boxcar kernel function.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwda

GW Discriminant Analysis

Description

This function implements GW discriminant analysis, where location-wise probabilities and their associated entropy are also calculated.
Usage

gwda(formula, data, predict.data, validation = T, COV.gw=T, mean.gw=T, prior.gw=T, prior=FALSE, wqda =F, kernel = "bisquare", adaptive = FALSE, bw, p = 2, theta = 0, longlat = F,dMat)
S3 method for class 'gwda'
print(x, ...)

Arguments

formula Model formula of a formula object
data a Spatial*DataFrame for training, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
predict.data a Spatial*DataFrame object for prediction, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp; if it is not given, the training data will be predicted using leave-one-out cross-validation.
validation If TRUE, the results from the prediction will be validated and the correct proportion will be calculated.
COV.gw if true, localised variance-covariance matrix is used for GW discriminant analysis; otherwise, global variance-covariance matrix is used
mean.gw if true, localised mean is used for GW discriminant analysis; otherwise, global mean is used
prior.gw if true, localised prior probability is used for GW discriminant analysis; otherwise, fixed prior probability is used
prior a vector of given prior probability
wqda if TRUE, weighted quadratic discriminant analysis will be applied; otherwise weighted linear discriminant analysis will be applied
kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2); exponential: wgt = exp(-vdist/bw);
bisque: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
bw bandwidth used in the weighting function, possibly calculated by bw.gwpca; fixed (distance) or adaptive bandwidth(number of nearest neighbours)
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist
x an object of class “gwda”
... arguments passed through (unused)

Value

An object of class “gwda”. This includes a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object, SDF, (see package “sp”) with, following the use of new version of gwda, the probabilities for each level, the highest probability and the entropy of the probabilities in its “data” slot.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

```r
## Not run:
data(USelect)
dMat <- gw.dist(coordinates(USelect2004))
bw <- bw.gwda(winner~unemploy+pctcoled+PEROVER65+pcturban+WHITE,data=USelect2004,
adaptive=TRUE,dMat=dMat)
ge.gwda <- gwda(winner~unemploy+pctcoled+PEROVER65+pcturban+WHITE,data=USelect2004,
bw=bw,adaptive=TRUE,dMat=dMat)
table(USelect2004$winner,ge.gwda$SDF$group.predicted)
spplot(ge.gwda$SDF, "entropy")
## End(Not run)
```

gwpca

GWPCA

Description

This function implements basic or robust GWPCA.

Usage

gwpca(data, elocat, vars, k = 2, robust = FALSE, scaling=T, kernel = "bisquare",
adaptive = FALSE, bw, p = 2, theta = 0, longlat = F, cv = T, scores=F, dMat)

S3 method for class 'gwpca'
print(x, ...)

Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp

elocat a two-column numeric array or Spatial*DataFrame object for providing evaluation locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp

vars a vector of variable names to be evaluated

k the number of retained names of components; k must be less than the number of variables

robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied

scaling if TRUE, the data is scaled to have zero mean and unit variance (standardized); otherwise the data is centered but not scaled

kernel function chosen as follows:
gaussian: \(wgt = \exp(-0.5 \times (vdist/bw)^2) \);
exponential: \(wgt = \exp(-vdist/bw) \);

bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

bw bandwidth used in the weighting function, possibly calculated by bw.gwpca; fixed (distance) or adaptive bandwidth (number of nearest neighbours)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

cv If TRUE, cross-validation data will be found that are used to calculate the cross-validation score for the specified bandwidth.

scores if scores = TRUE, the scores of the supplied data on the principal components will be calculated.

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “gwpca”, returned by the function gwpca

... arguments passed through (unused)

Value

A list of class “gwpca”:

GW.arguments a list class object including the model fitting parameters for generating the report file

pca an object of class inheriting from “princomp”, see princomp.

loadings the localised loadings
a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with local proportions of variance for each principle components, cumulative proportion and winning variable for the 1st principle component in its “data” slot.

the localised scores of the supplied data on the principal components

The local amount of variance accounted for by each component

Vector of cross-validation data

starting and ending time.

Binbin Lu <binbinlu@whu.edu.cn>

Examples

```r
## Not run:
if(require("mvoutlier") && require("RColorBrewer"))
{
  data(bsstop)
  Data.1 <- bsstop[, 1:14]
  colnames(Data.1)
  Data.1.scaled <- scale(as.matrix(Data.1[5:14])) # standardised data...
  rownames(Data.1.scaled) <- Data.1[, 1]
  #compute principal components:
  pca <- princomp(Data.1.scaled, cor = FALSE, scores = TRUE)
  # use covariance matrix to match the following...
  pca$loadings
  data(bss.background)
  backdrop <- function()
  plot(bss.background, asp = 1, type = "l", xaxt = "n", yaxt = "n",
       xlab = "", ylab = "", bty = "n", col = "grey")
  pc1 <- pca$scores[, 1]
  backdrop()
}
#Geographically Weighted PCA and mapping the local loadings

# Coordinates of the sites
Coords1 <- as.matrix(cbind(Data.1$XCOO, Data.1$YCOO))
d1s <- SpatialPointsDataFrame(Coords1, as.data.frame(Data.1.scaled))
pca.gw <- gwpca(d1s, vars = colnames(d1s@data), bw = 1000000, k = 10)
local.loadings <- pca.gw$loadings[, , 1]

# Mapping the winning variable with the highest absolute loading
# note first component only - would need to explore all components..
lead.item <- colnames(local.loadings)[max.col(abs(local.loadings))]
df1p = SpatialPointsDataFrame(Coords1, data.frame(lead = lead.item))
backdrop()
colour <- brewer.pal(8, "Dark2")[match(df1p$lead, unique(df1p$lead))]
plot(df1p, pch = 18, col = colour, add = TRUE)
legend("topleft", as.character(unique(df1p$lead)), pch = 18, col =
    brewer.pal(8, "Dark2"))
backdrop()

# Glyph plots give a view of all the local loadings together
glyph.plot(local.loadings, Coords1, add = TRUE)

# it is not immediately clear how to interpret the glyphs fully,
# so inter-actively identify the full loading information using:
check.components(local.loadings, Coords1)

# GWPCA with an optimal bandwidth
bw.choice <- bw.gwpca(d1s, vars = colnames(d1s@data), k = 2)
pca.gw.auto <- gwpca(d1s, vars = colnames(d1s@data), bw = bw.choice, k = 2)
# note first component only - would need to explore all components..
local.loadings <- pca.gw.auto$loadings[, , 1]

lead.item <- colnames(local.loadings)[max.col(abs(local.loadings))]
df1p = SpatialPointsDataFrame(Coords1, data.frame(lead = lead.item))
backdrop()
colour <- brewer.pal(8, "Dark2")[match(df1p$lead, unique(df1p$lead))]
plot(df1p, pch = 18, col = colour, add = TRUE)
legend("topleft", as.character(unique(df1p$lead)), pch = 18, col =
    brewer.pal(8, "Dark2"))

# GWPCPLOT for investigating the raw multivariate data
gw.pcpplot(d1s, vars = colnames(d1s@data), focus = 359, bw = bw.choice)
}

## End(Not run)
gwpca.check.components

Interaction tool with the GWPCA glyph map

Description

The function interacts with the multivariate glyph plot of GWPCA loadings.

Usage

```r
 gwpca.check.components(ld, loc)
```

Arguments

- `ld`: GWPCA loadings returned by `gwpca`
- `loc`: a 2-column numeric array of GWPCA evaluation locations

Note

The function “check.components” (in the early versions of GWmodel) has been renamed as “gwpca.check.components”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

See Also

- `gwpca.glyph.plot`

---

gwpca.cv

Cross-validation score for a specified bandwidth for GWPCA

Description

This function finds the cross-validation score for a specified bandwidth for basic or robust GWPCA. It can be used to construct the bandwidth function across all possible bandwidths and compared to that found automatically.

Usage

```r
 gwpca.cv(bw, x, loc, k=2, robust=FALSE, kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, dMat)
```
Arguments

bw \quad \text{bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)}

x \quad \text{the variable matrix}

loc \quad \text{a two-column numeric array of observation coordinates}

k \quad \text{the number of retained components; } k \text{ must be less than the number of variables}

robust \quad \text{if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied}

kernel \quad \text{function chosen as follows:}
\begin{align*}
gaussian: & \quad \text{wgt} = \exp(-0.5 \times (vdist/bw)^2); \\
exponential: & \quad \text{wgt} = \exp(-vdist/bw); \\
bisquare: & \quad \text{wgt} = (1-(vdist/bw)^2)^2 \text{ if } vdist < bw, \text{ wgt} = 0 \text{ otherwise;} \\
tricube: & \quad \text{wgt} = (1-(vdist/bw)^3)^3 \text{ if } vdist < bw, \text{ wgt} = 0 \text{ otherwise;} \\
boxcar: & \quad \text{wgt}=1 \text{ if dist < bw, wgt}=0 \text{ otherwise}
\end{align*}

adaptive \quad \text{if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)}

p \quad \text{the power of the Minkowski distance, default is 2, i.e. the Euclidean distance}

theta \quad \text{an angle in radians to rotate the coordinate system, default is 0}

longlat \quad \text{if TRUE, great circle distances will be calculated}

dMat \quad \text{a pre-specified distance matrix, it can be calculated by the function gw.dist}

Value

CV.score \quad \text{cross-validation score}

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwpca.cv.contrib \quad \textit{Cross-validation data at each observation location for a GWPCA}

Description

This function finds the individual cross-validation score at each observation location, for a GWPCA model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-validations scores.

Usage

gwpca.cv.contrib(x, loc, bw, k=2, robust=FALSE, kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, dMat)
Arguments

x  the variable matrix
loc  a two-column numeric array of observation coordinates
bw  bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
k  the number of retained components; k must be less than the number of variables
robust  if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
kernel  function chosen as follows:
  gaussian: \( \text{wgt} = \exp(-0.5 \times (\text{vdist}/\text{bw})^2) \);
  exponential: \( \text{wgt} = \exp(-\text{vdist}/\text{bw}) \);
  bisquare: \( \text{wgt} = (1-(\text{vdist}/\text{bw})^2)^2 \) if \( \text{vdist} < \text{bw} \), \( \text{wgt}=0 \) otherwise;
  tricube: \( \text{wgt} = (1-(\text{vdist}/\text{bw})^3)^3 \) if \( \text{vdist} < \text{bw} \), \( \text{wgt}=0 \) otherwise;
  boxcar: \( \text{wgt}=1 \) if \( \text{dist} < \text{bw} \), \( \text{wgt}=0 \) otherwise
adaptive  if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
p  the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta  an angle in radians to rotate the coordinate system, default is 0
longlat  if TRUE, great circle distances will be calculated
dMat  a pre-specified distance matrix, it can be calculated by the function \text{gw.dist}

Value

CV  a data vector consisting of squared residuals, whose sum is the cross-validation score for the specified bandwidth (bw) and component (k).

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwca.glyph.plot  Multivariate glyph plots of GWPCA loadings

Description

This function provides a multivariate glyph plot of GWPCA loadings at each output location.

Usage

```
gwca.glyph.plot(ld, loc, r1=50, add=FALSE, alpha=1, sep.contrasts=FALSE)
```
Arguments

- **ld**: GWPCA loadings returned by `gwpca`
- **loc**: a two-column numeric array for providing evaluation locations of GWPCA calibration
- **r1**: argument for the size of the glyphs, default is 50; glyphs get larger as r1 is reduced
- **add**: if TRUE, add the plot to the existing window.
- **alpha**: the level of transparency of glyph from function rgb() and ranges from 0 to max (fully transparent to opaque)
- **sep.contrasts**: allows different types of glyphs and relates to whether absolute loadings are used (TRUE) or not

Note

The function “glyph.plot” (in the early versions of GWmodel) has been renamed as “gwpca.glyph.plot”, while the old name is still kept valid.

References


`gwpca.montecarlo.1`  
Monte Carlo (randomisation) test for significance of GWPCA eigenvalue variability for the first component only - option 1

Description

This function implements a Monte Carlo (randomisation) test for a basic or robust GW PCA with the bandwidth pre-specified and constant. The test evaluates whether the GW eigenvalues vary significantly across space for the first component only.

Usage

```r
S3 method for class 'mcsims'
gwpca.montecarlo.1(data, bw, vars, k = 2, nsims=99,robust = FALSE, scaling=T, kernel = "bisquare", adaptive = FALSE, p = 2, theta = 0, longlat = F, dMat)
plot(x, sname="SD of local eigenvalues from randomisations", ...)```
Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp

bw bandwidth used in the weighting function, possibly calculated by bw.gwpca; fixed (distance) or adaptive bandwidth (number of nearest neighbours)

vars a vector of variable names to be evaluated

k the number of retained components; k must be less than the number of variables

nsims the number of simulations for Monte Carlo test

robust if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied

scaling if TRUE, the data is scaled to have zero mean and unit variance (standardized); otherwise the data is centered but not scaled

kernel function chosen as follows:
gaussian: \(\text{wgt} = \exp(-0.5*(\text{vdist}/\text{bw})^2) \);
exponential: \(\text{wgt} = \exp(-\text{vdist}/\text{bw}) \);
bisquare: \(\text{wgt} = (1-(\text{vdist}/\text{bw})^2)^2 \) if \(\text{vdist} < \text{bw} \), \(\text{wgt}=0 \) otherwise;
tricube: \(\text{wgt} = (1-(\text{vdist}/\text{bw})^3)^3 \) if \(\text{vdist} < \text{bw} \), \(\text{wgt}=0 \) otherwise;
boxcar: \(\text{wgt}=1 \) if \(\text{dist} < \text{bw} \), \(\text{wgt}=0 \) otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “mcsims”, returned by the function gwpca.montecarlo.1 or gwpca.montecarlo.2

sname the label for the observed value on the plot

... arguments passed through (unused)

Value

A list of components:

actual the observed standard deviations (SD) of eigenvalues

sims a vector of the simulated SDs of eigenvalues

Note

The function “montecarlo.gwpca.1” (in the early versions of GWmodel) has been renamed as “gwpca.montecarlo.1”, while the old name is still kept valid.
Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

```r
## Not run:
data(DubVoter)
DM<-gw.dist(dp.locat=coordinates(Dub.voter))
gmc.res<-gwpca.montecarlo.1(data=Dub.voter, vars=c("DiffAdd", "LARent", "SC1", "Unempl", "LowEduc"), bw=20, dMat=DM, adaptive=TRUE)
gmc.res
plot(gmc.res)
## End(Not run)
```

Description

This function implements a Monte Carlo (randomisation) test for a basic or robust GW PCA with the bandwidth automatically re-selected via the cross-validation approach. The test evaluates whether the GW eigenvalues vary significantly across space for the first component only.

Usage

```r
gwpca.montecarlo.2(data, vars, k = 2, nsims=99, robust = FALSE, scaling=T, 
                   kernel = "bisquare", adaptive = FALSE,  p = 2, 
                   theta = 0, longlat = F, dMat)
```

Arguments

- `data` a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
- `vars` a vector of variable names to be evaluated
- `k` the number of retained components; k must be less than the number of variables
- `nsims` the number of simulations for MontCarlo test
- `robust` if TRUE, robust GWPCA will be applied; otherwise basic GWPCA will be applied
- `scaling` if TRUE, the data is scaled to have zero mean and unit variance (standardized); otherwise the data is centered but not scaled
kernel function chosen as follows:
gaussian: \(wgt = \exp(-0.5*(vdist/bw)^2) \);
exponential: \(wgt = \exp(-vdist/bw) \);
bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to
the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value
A list of components:

actual the observed standard deviations (SD) of eigenvalues
sims a vector of the simulated SDs of eigenvalues

Note
The function “montecarlo.gwpca.2” (in the early versions of GWmodel) has been renamed as “gw-pca.montecarlo.2”, while the old name is still kept valid.

Author(s)
Binbin Lu <binbinlu@whu.edu.cn>

References

Examples
```r
## Not run:
data(DubVoter)
DM<-gw.dist(dp.locat=coordinates(Dub.voter))
gmc.res.autow<-gwpca.montecarlo.2(data=Dub.voter, vars=c("DiffAdd", "LARent", "SC1", "Unempl", "LowEduc"), dMat=DM, adaptive=TRUE)
gmc.res.autow
plot.mcsims(gmc.res.autow)
## End(Not run)
```
gwr.basic
Basic GWR model

Description

This function implements basic GWR.

Usage

```r
GWRbasic(formula, data, regression.points, bw, kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, dMat,F123.test=F, cv=F, W.vect=NULL, parallel.method=FALSE, parallel.arg=NULL)
```

S3 method for class 'gwrm'

```r
print(x, ...)
```

Arguments

- **formula**: Regression model formula of a `formula` object
- **data**: a Spatial*DataFrame*, i.e. `SpatialPointsDataFrame` or `SpatialPolygonsDataFrame` as defined in package `sp`
- **regression.points**: a Spatial*DataFrame* object, i.e. `SpatialPointsDataFrame` or `SpatialPolygonsDataFrame` as defined in package `sp`; Note that no diagnostic information will be returned if it is assigned
- **bw**: bandwidth used in the weighting function, possibly calculated by `bw.gwr`; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- **kernel**: function chosen as follows:
 - gaussian: `wgt = exp(-.5*(vdist/bw)^2)`
 - exponential: `wgt = exp(-vdist/bw)`
 - bisquare: `wgt = (1-(vdist/bw)^2)^2` if `vdist < bw`, `wgt=0` otherwise
 - tricube: `wgt = (1-(vdist/bw)^3)^3` if `vdist < bw`, `wgt=0` otherwise
 - boxcar: `wgt=1` if `dist < bw`, `wgt=0` otherwise
- **adaptive**: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
- **p**: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
- **theta**: an angle in radians to rotate the coordinate system, default is 0
- **longlat**: if TRUE, great circle distances will be calculated
- **dMat**: a pre-specified distance matrix, it can be calculated by the function `gw.dist`
- **F123.test**: If TRUE, conduct three separate F-tests according to Leung et al. (2000).
- **cv**: if TRUE, cross-validation data will be calculated and returned in the output Spatial*DataFrame*
W. vect
x
parallel.method
parallel.arg
...
Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

OpenMP: https://www.openmp.org/

CUDA: https://developer.nvidia.com/cuda-zone

Examples

data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
##Compare the time consumed with and without a specified distance matrix
Not run:
system.time(gwr.res<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=1000, kernel = "gaussian"))
system.time(DM<-gw.dist(dp.locat=coordinates(londonhp)))
system.time(gwr.res<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=1000, kernel = "gaussian", dMat=DM))

specify an optimum bandwidth by cross-validation approach
bw1<-bw.gwr(PURCHASE~FLOORSZ, data=londonhp, kernel = "gaussian",dMat=DM)
gwr.res1<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=bw1,kernel = "gaussian", dMat=DM)
gwr.res1
End(Not run)
data(LondonBorough)
nsa = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(561900,200900), scale = 500, col=1)
Not run:
if(require("RColorBrewer"))
{
 mypalette<-brewer.pal(6,"Spectral")
x11()
 spplot(gwr.res1$SDF, "FLOORSZ", key.space = "right", cex=1.5, cuts=10,
ylim=c(155840.8,200933.9), xlim=c(503568.2,561957.5),

main="GWR estimated coefficients for FLOORSZ with a fixed bandwidth",
col.regions=mypalette, sp.layout=list(nsa, londonborough))

End(Not run)
Not run:

bw2<-bw.gwr(PURCHASE~FLOORSZ, approach="aic", adaptive=TRUE, data=londonhp,

kernel = "gaussian", dMat=DM)
gwr.res2<-gwr.basic(PURCHASE~FLOORSZ, data=londonhp, bw=bw2, adaptive=TRUE,

kernel = "gaussian", dMat=DM)
gwr.res2
if(require("RColorBrewer"))
{
x11()
spplot(gwr.res2$SDF, "FLOORSZ", key.space = "right", cex=1.5, cuts=10,

ylim=c(155840.8,200933.9), xlim=c(503568.2,561957.5),

main="GWR estimated coefficients for FLOORSZ with an adaptive bandwidth",
col.regions=mypalette, sp.layout=list(nsa, londonborough))

End(Not run)
Not run:

############HP-GWR test code
simulate.data.generator <- function(data.length) {

x1 <- rnorm(data.length)
x2 <- rnorm(data.length)
x3 <- rnorm(data.length)
lon <- rnorm(data.length, mean = 533200, sd = 10000)
lat <- rnorm(data.length, mean = 159400, sd = 10000)
y <- x1 + 5 * x2 + 2.5 * x3 + rnorm(data.length)
simulate.data <- data.frame(y = y, x1 = x1, x2 = x2, x3 = x3, lon = lon, lat = lat)
coordinates(simulate.data) <- ~ lon + lat
names(simulate.data) <- names(simulate.data)
return(simulate.data)
}
simulate.data <- simulate.data.generator(10000)
adaptive = TRUE

GWR (not parallelized)
bw.CV.s <- bw.gwr(data = simulate.data, formula = y ~ x1 + x2 + x3, approach="CV",

kernel = "gaussian", adaptive = adaptive, parallel.method = FALSE)
model.s <- gwr.model.selection(DeVar = "y", InDeVars = c("x1", "x2", "x3"), data = simulate.data,

bw = bw.CV.s, approach="AIC", kernel = "gaussian", adaptive = T,

parallel.method = FALSE)

system.time(

betas.s <- gwr.basic(data = simulate.data, formula = y ~ x1 + x2 + x3, bw = bw.CV.s,

kernel = "gaussian", adaptive = TRUE)
)

GWR-Omp
bw.CV.omp <- bw.gwr(data = simulate.data, formula = y ~ x1 + x2 + x3, approach="CV",

kernel = "gaussian", adaptive = adaptive, parallel.method = "omp")
model.omp <- gwr.model.selection(DeVar = "y", InDeVars = c("x1", "x2", "x3"), data = simulate.data,

bw = bw.CV.omp, approach="AIC", kernel = "gaussian", adaptive = T,
par$al.llel.method = "omp")

system.time(
 betas.omp <- gwr.basic(data = simulate.data, formula = y ~ x1 + x2 + x3, bw = bw.CV.omp,
 kernel = "gaussian", adaptive = T, parallel.method = "omp"))

GWR-CUDA

bw.CV.cuda <- bw.gwr(data = simulate.data, formula = y ~ x1 + x2 + x3, approach="CV",
 kernel = "gaussian", adaptive = adaptive, parallel.method = "cuda",
 parallel.arg = 6*16)

model.cuda <- gwr.model.selection(DeVar = "y", InDeVars = c("x1", "x2", "x3"),
 data = simulate.data, bw = bw.CV.cuda, approach="AIC",
 kernel = "gaussian", adaptive = T,
 parallel.method = "cuda", parallel.arg = 6*16)

system.time(
 betas.cuda <- gwr.basic(data = simulate.data, formula = y ~ x1 + x2 + x3, bw = bw.CV.cuda,
 kernel = "gaussian", adaptive = T, parallel.method = "cuda",
 parallel.arg = 6*8))

End(Not run)

gwr.bootstrap

Bootstrap GWR

Description

This function implements bootstrap methods to test for coefficient variability found from GWR under model assumptions for each of four null hypotheses: MLR, ERR, SMA and LAG models. Global test statistic results are found, as well local observation-specific test results that can be mapped.

Usage

```r

gwr.bootstrap(formula, data, kernel = "bisquare", approach = "AIC",
              R = 99, k.nearneigh = 4, adaptive = FALSE, p = 2,
              theta = 0, longlat = FALSE, dMat, verbose = FALSE,
              parallel.method = FALSE, parallel.arg = NULL)
```

S3 method for class 'gwrbsm'

```r
print(x, ...)`

**Arguments**

- `formula` Regression model formula of a `formula` object
- `data` a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package `sp`
- `kernel` function chosen as follows:
  - gaussian: `wgt = exp(-.5*(vdist/bw)^2);`
  - exponential: `wgt = exp(-vdist/bw);`
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

approach specified by CV for cross-validation approach or by AIC corrected (AICc) ap-

R number of random samples reapted in the bootstrap procedure

k.nearneigh number of nearest neighbours concerned in calibrating ERR, SMA and LAG models

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

verbose if TRUE and bandwidth selection is undertaken, the bandwidth searches are

parallel.method FALSE as default, and the calibration will be conducted traditionally via the se-

parallel.arg if parallel.method is not FALSE, then set the argument by following: if paral-

... arguments passed through (unused)

Value

A list of class “gwrbsm”:

formula Regression model formula of a formula object

results modified statistics reported from comparisons between GWR and MLR, ERR, SMA and LAG

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with fit.points,GWR coefficient estimates, y value,predicted values, coefficient standard errors and bootstrap p-values in its “data” slot.

timings starting and ending time.

this.call the function call used.
Note
This function implements the bootstrap methods introduced in Harris et al. (2017). It provides a
global test statistic (the modified one given in Harris et al. 2017) and a complementary localised
version that can be mapped. The bootstrap methods test for coefficient variability found from GWR
under model assumptions for each of four null hypotheses: i) multiple linear regression model
(MLR); ii) simultaneous autoregressive error model (ERR); iii) moving average error model (SMA)
and iv) simultaneous autoregressive lag model (LAG).

Author(s)
Binbin Lu <binbinlu@whu.edu.cn>

References
to investigate coefficient non-stationarity in spatial regression models. Spatial Statistics, 21, 241-261.

Examples
```r
Not run:
#Example with the Georgia educational attainment data
data(Georgia)
data(GeorgiaCounties)
coords <- cbind(Gedu.df$X, Gedu.df$Y)
Gedu.spdf <- SpatialPointsDataFrame(coords, Gedu.df)
#Make a SpatialPolygonDataFrame
require(RColorBrewer)
gSRDF <- SpatialPolygonsDataFrame(polygons(Gedu.counties), over(Gedu.counties,
 Gedu.spdf),match.ID=T)
mypalette.1 <- brewer.pal(11,"Spectral")
X11(width=9,height=8)
spplot(gSRDF, names(gSRDF)[c(5,7:9)], col.regions=mypalette.1,
cuts=10, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Georgia educational attainment predictor data")))
bsm.res <- gwr.bootstrap(PctBach~PctRural+PctEld+PctFB+PctPov, gSRDF,
 R=999, longlat=T)
bsm.res
#local bootstrap tests with respect to: MLR, ERR, SMA and LAG models.
mypalette.local.test <- brewer.pal(10,"Spectral")
X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[14:17], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the MLR model
null hypothesis")))
X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[19:22], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the ERR model
null hypothesis")))```
X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[24:27], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the SMA model null
hypothesis")))

X11(width=12,height=16)
spplot(bsm.res$SDF, names(bsm.res$SDF)[29:32], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the LAG model null
hypothesis")))

#Example with Dublin voter data
data(DubVoter)
X11(width=9,height=8)
spplot(Dub.voter, names(Dub.voter)[c(5,7,9,10)], col.regions=mypalette.1,
cuts=10, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Dublin voter turnout predictor data")))
bsm.res1 <- gwr.bootstrap(GenEl2004~LARent+Unempl+Age18_24+Age25_44, Dub.voter,
R=999)
bsm.res1

#local bootstrap tests with respect to: MLR, ERR, SMA and LAG models.
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[14:17], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the MLR model null
hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[19:22], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the ERR model null
hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[24:27], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the SMA model null hypothesis")))
X11(width=11,height=8)
spplot(bsm.res1$SDF, names(bsm.res1$SDF)[29:32], col.regions=mypalette.local.test,
cuts=9, par.settings=list(fontsize=list(text=15)),
main=expression(paste("Local p-values for each coefficient of the LAG model null hypothesis")))

End(Not run)
Description

This function provides a series of local collinearity diagnostics for the independent variables of a basic GWR model.

Usage

gwr.collin.diagno(formula, data, bw, kernel="bisquare",
adaptive=FALSE, p=2, theta=0, longlat=F,dMat)

Arguments

- formula: Regression model formula of a formula object
- data: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
- bw: bandwidth used in the weighting function, probably calculated by bw.gwr or bw.gwr.lcr; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- kernel: function chosen as follows:
 - gaussian: wgt = exp(-.5*(vdist/bw)^2);
 - exponential: wgt = exp(-vdist/bw);
 - bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
 - tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
 - boxcar: wgt=1 if dist < bw, wgt=0 otherwise
- adaptive: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
- p: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
- theta: an angle in radians to rotate the coordinate system, default is 0
- longlat: if TRUE, great circle distances will be calculated
- dMat: a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

- corr.mat: Local correlation matrix
- VIF: Local Variance inflation factors (VIFs) matrix
- local_CN: Local condition numbers
- VDP: Local variance-decomposition proportions
- SDF: a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with VIF, local_CN, VDP and corr.mat

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
References

gwr.cv

Cross-validation score for a specified bandwidth for basic GWR

Description

This function finds the cross-validation score for a specified bandwidth for basic GWR. It can be used to construct the bandwidth function across all possible bandwidths and compared to that found automatically.

Usage

gwr.cv(bw, X, Y, kernel="bisquare", adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F, dMat, verbose=T, parallel.method=F, parallel.arg=NULL)

Arguments

bw bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of “ones” for the 1st column

Y a column vector of the dependent data

kernel function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

dp.locat a two-column numeric array of observation coordinates

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0
gwr.cv.contrib

Cross-validation data at each observation location for a basic GWR model

Description

This function finds the individual cross-validation score at each observation location, for a basic GWR model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-validations scores.

Usage

gwr.cv.contrib(bw, X, Y, kernel="bisquare", adaptive=FALSE, dp.locat, p=2, theta=0, longlat=F, dMat, parallel.method=F, parallel.arg=NULL)

Arguments

bw bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of "ones" for the 1st column

longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist
verbose if TRUE (default), reports the progress of search for bandwidth
parallel.method Specified by ‘FALSE’ for serial approach, by “omp” for multi-thread approach implemented via OpenMP, by “cluster” for multi-process approach implemented via ‘parallel’ package, by “cuda” for parallel approach implemented via CUDA
parallel.arg Set the argument for parallel approach. If ‘parallel.method’ is ‘FALSE’, there is no need to set its value. If ‘parallel.method’ is “omp”, its value is used to set how many threads should be created (default by cores of *cores of CPU* - 1). If ‘parallel.method’ is “cluster”, its value is used to set how many R session should be created (default by cores of *cores of CPU* - 1). If ‘parallel.method’ is “cuda”, its value is used to set how many samples is included in one group during the calibration. This value should not be too big to avoid the overflow of GPU memory.

Value

CV.score cross-validation score

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
Y a column vector of the dependent data
kernel
 function chosen as follows:
 gaussian: \(wgt = \exp(-0.5 \times (vdist/bw)^2) \);
 exponential: \(wgt = \exp(-vdist/bw); \)
 bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise
adaptive
 if TRUE calculate an adaptive kernel where the bandwidth \((bw) \) corresponds to
 the number of nearest neighbours (i.e. adaptive distance); default is FALSE,
 where a fixed kernel is found (bandwidth is a fixed distance)
dp.locat
 a two-column numeric array of observation coordinates
p
 the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta
 an angle in radians to rotate the coordinate system, default is 0
longlat
 if TRUE, great circle distances will be calculated
dMat
 a pre-specified distance matrix, it can be calculated by the function \(gw.dist \)
parallel.method
 Specified by ‘FALSE‘ for serial approach, by “omp” for multi-thread approach
 implemented via OpenMP, by “cluster” for multi-process approach implemented
 via ‘parallel’ package, by “cuda” for parallel approach implemented via CUDA
parallel.arg
 Set the argument for parallel approach. If `parallel.method` is ‘FALSE’, there is
 no need to set its value. If `parallel.method` is “omp”, its value is used to set
 how many threads should be created (default by cores of *cores of CPU* - 1).
 If `parallel.method` is “cluster”, its value is used to set how many R session
 should be created (default by cores of *cores of CPU* - 1). If `parallel.method`
 is “cuda”, its value is used to set how many samples is included in one group
 during the calibration. This value should not be too big to avoid the overflow of
 GPU memory.

Value

CV
 a data vector consisting of squared residuals, whose sum is the cross-validation
 score for the specified bandwidth.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

gwr.hetero

Heteroskedastic GWR

Description

This function implements a heteroskedastic GWR model
Usage

gwr.hetero(formula, data, regression.points, bw, kernel="bisquare", adaptive=FALSE, tol=0.0001, maxiter=50, verbose=T, p=2, theta=0, longlat=F, dMat)

Arguments

formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
regression.points a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
bw bandwidth used in the weighting function, possibly calculated by bw.gwr; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
kernel function chosen as follows:
gaussian: \(wgt = \exp(-0.5*(vdist/bw)^2); \)
exponential: \(wgt = \exp(-vdist/bw); \)
bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
tol the threshold that determines the convergence of the iterative procedure
maxiter the maximum number of times to try the iterative procedure
verbose logical, if TRUE verbose output will be made from the iterative procedure
p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta an angle in radians to rotate the coordinate system, default is 0
longlat if TRUE, great circle distances will be calculated
dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

Value

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with coefficient estimates in its “data” slot.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
gwr.lcr

GWR with a locally-compensated ridge term

Description

To address possible local collinearity problems in basic GWR, GWR-LCR finds local ridge parameters at affected locations (set by a user-specified threshold for the design matrix condition number).

Usage

```r
gwr.lcr(formula, data, regression.points, bw, kernel="bisquare", lambda=0, lambda.adjust=FALSE, cn.thresh=NA, adaptive=FALSE, p=2, theta=0, longlat=F, cv=T, dMat)
```

Arguments

- `formula`: Regression model formula of a `formula` object
- `data`: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
- `regression.points`: a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp, or a two-column numeric array
- `bw`: bandwidth used in the weighting function, possibly calculated by `bw.gwr.lcr`; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- `kernel`: function chosen as follows: gaussian: `wgt = exp(-.5*(vdist/bw)^2)`; exponential: `wgt = exp(-vdist/bw)`; bisquare: `wgt = (1-(vdist/bw)^2)^2` if `vdist < bw`, `wgt=0` otherwise; tricube: `wgt = (1-(vdist/bw)^3)^3` if `vdist < bw`, `wgt=0` otherwise; boxcar: `wgt=1` if `dist < bw`, `wgt=0` otherwise
- `p`: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

References

lambda: option for a globally-defined (constant) ridge parameter. Default is lambda=0, which gives a basic GWR fit.

lambda.adjust: a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. lambda is user-specified as some constant, other than 0 everywhere); if TRUE, use cn.thresh to set the maximum condition number. Here for locations with a condition number (for its local design matrix) above this user-specified threshold, a local ridge parameter is found.

cn.thresh: maximum value for condition number, commonly set between 20 and 30.

adaptive: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance).

theta: an angle in radians to rotate the coordinate system, default is 0.

longlat: if TRUE, great circle distances will be calculated.

cv: if TRUE, 'cross-validation data will be calculated and returned in the output Spatial*DataFrame.

dMat: a pre-specified distance matrix, it can be calculated by the function gw.dist.

x: an object of class “gwr.lcr”, returned by the function gwr.lcr.

...: arguments passed through (unused).

Value:

A list of class “rgwr”:

SDF: a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package ”sp”) with coordinates of regression.points in its "data" slot.

GW.arguments: parameters used for the LCR-GWR calibration.

GW.diagnostics: diagnostic information is given when data points are also used as regression locations.

timings: timing information for running this function.

this.call: the function call used.

Author(s):

Binbin Lu <binbinlu@whu.edu.cn>

References:

Examples

data(DubVoter)
require(RColorBrewer)

Function to find the global condition number (CN)
BKW_cn <- function (X) {
 p <- dim(X)[2]
 Xscale <- sweep(X, 2, sqrt(colSums(X^2)), "/")
 Xsvd <- svd(Xscale)$d
 cn <- Xsvd[1] / Xsvd[p]
 cn
}

X <- cbind(1,Dub.voter@data[,3:10])
head(X)
CN.global <- BKW_cn(X)
CN.global

Not run:
gwr.lcr function with a global bandwidth to check that the global CN is found
gwr.lcr1 <- gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, bw=10000000000)
summary(gwr.lcr1SDFLocal_CN)

Find and map the local CNs from a basic GWR fit using the lcr-gwr function
#(note this is NOT the locally-compensated ridge GWR fit as would need to set
#lambda.adjust=TRUE and cn.thresh=30, say)

bw.lcr2 <- bw.gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, kernel="bisquare", adaptive=TRUE)
gwr.lcr2 <- gwr.lcr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24
+Age25_44+Age45_64, data=Dub.voter, bw=bw.lcr2, kernel="bisquare", adaptive=TRUE)
if(require("RColorBrewer"))
 spplot(gwr.lcr2$SDF, "Local_CN", col.regions=brewer.pal(9, "YlOrRd"), cuts=8,
 main="Local CN")

End(Not run)

gwr.lcr.cv
Cross-validation score for a specified bandwidth for GWR-LCR model

Description

This function finds the cross-validation score for a specified bandwidth for GWR-LCR. It can be
used to construct the bandwidth function across all possible bandwidths and compared to that found
automatically.
Usage

```r
gwr.lcr.cv(bw, X, Y, locs, kernel="bisquare", lambda=0, lambda.adjust=FALSE, cn.thresh=NA, adaptive=FALSE, p=2, theta=0, longlat=F, dMat)
```

Arguments

- **bw**: bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- **X**: a numeric matrix of the independent data with an extra column of “ones” for the 1st column
- **Y**: a column vector of the dependent data
- **kernel**: function chosen as follows:
 - gaussian: \(wgt = \exp(-0.5* (vdist/bw)^2)\);
 - exponential: \(wgt = \exp(-vdist/bw)\);
 - bisquare: \(wgt = (1-(vdist/bw)^2)^2\) if \(vdist < bw\), \(wgt=0\) otherwise;
 - tricube: \(wgt = (1-(vdist/bw)^3)^3\) if \(vdist < bw\), \(wgt=0\) otherwise;
 - boxcar: \(wgt=1\) if \(dist < bw\), \(wgt=0\) otherwise
- **locs**: a two-column numeric array of observation coordinates
- **lambda**: option for a globally-defined (constant) ridge parameter. Default is \(lambda=0\), which gives a basic GWR fit
- **lambda.adjust**: a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. \(lambda=0\), everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. \(lambda\) is user-specified as some constant, other than 0 everywhere); if TRUE, use \(cn.thresh\) to set the maximum condition number. Here for locations with a condition number (for its local design matrix) above this user-specified threshold, a local ridge parameter is found
- **cn.thresh**: maximum value for condition number, commonly set between 20 and 30
- **adaptive**: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
- **p**: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
- **theta**: an angle in radians to rotate the coordinate system, default is 0
- **longlat**: if TRUE, great circle distances will be calculated
- **dMat**: a pre-specified distance matrix, it can be calculated by the function `gw.dist`

Value

- **CV.score**: cross-validation score

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
gwr.lcr.cv.contrib

Cross-validation data at each observation location for the GWR-LCR model

Description
This function finds the individual cross-validation score at each observation location, for a GWR-LCR model, for a specified bandwidth. These data can be mapped to detect unusually high or low cross-validations scores.

Usage

gwr.lcr.cv.contrib(bw,X,Y,locs,kernel="bisquare",
lambda=0,lambda.adjust=FALSE,cn.thresh=NA,
adaptive=FALSE, p=2, theta=0, longlat=F, dMat)

Arguments

bw bandwidth used in the weighting function; fixed (distance) or adaptive bandwidth (number of nearest neighbours)

X a numeric matrix of the independent data with an extra column of "ones" for the 1st column

Y a column vector of the dependent data

locs a two-column numeric array of observation coordinates

kernel function chosen as follows:
gaussian: wgt = exp(-0.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisque: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise

lambda option for a globally-defined (constant) ridge parameter. Default is lambda=0, which gives a basic GWR fit

lambda.adjust a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. lambda is user-specified as some constant, other than 0 everywhere); if TRUE, use cn.thresh to set the maximum condition number. Here for locations with a condition number (for its local design matrix) above this user-specified threshold, a local ridge parameter is found

lambda.adjust lambda.adjust a locally-varying ridge parameter. Default FALSE, refers to: (i) a basic GWR without a local ridge adjustment (i.e. lambda=0, everywhere); or (ii) a penalised GWR with a global ridge adjustment (i.e. lambda is user-specified as some constant, other than 0 everywhere); if TRUE, use cn.thresh to set the maximum condition number. Here for locations with a condition number (for its local design matrix) above this user-specified threshold, a local ridge parameter is found

cn.thresh maximum value for condition number, commonly set between 20 and 30

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
theta
longlat
dMat

Value
CV

Author(s)
Binbin Lu <binbinlu@whu.edu.cn>

Description
This function implements the Minkovski approach to select an 'optimum' distance metric for calibrating a GWR model.

Usage
gwr.mink.approach(formula, data, criterion="AIC", bw, bw.sel.approach = "AIC", adaptive=F, kernel="bisquare", p.vals=seq(from=0.25, to=8, length.out=32), p.inf = T, theta.vals = seq(from=0, to=0.5*pi, length.out=10), verbose=F, nlower = 10)

Arguments
formula Regression model formula of a formula object
data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
criterion the criterion used for distance metric selection, AICc ("AICc") or cross-validation ("CV") score; default is "AICc"
bw bandwidth used in the weighting function, possibly calculated by bw.gwr; fixed (distance) or adaptive bandwidth (number of nearest neighbours)
bw.sel.approach approach used to select an optimum bandwidth for each calibration if no bandwidth (bw) is given; specified by CV for cross-validation approach or by AIC corrected (AICc) approach
adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
kernel function chosen as follows:
 gaussian: \(wgt = \exp(-.5*(vdist/bw)^2); \)
 exponential: \(wgt = \exp(-vdist/bw); \)
 bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise

p.vals a collection of positive numbers used as the power of the Minkowski distance

p.inf if TRUE, Chebyshev distance is tried for model calibration, i.e. \(p \) is infinity

theta.vals a collection of values used as angles in radians to rotate the coordinate system

verbose if TRUE and bandwidth selection is undertaken, the bandwidth searches are reported

nlower the minimum number of nearest neighbours if an adaptive kernel is used

Value

A list of:

- diag.df a data frame with four columns (p, theta, bandwidth, AICc/CV), each row corresponds to a calibration
- coefs.all a list class object including all the estimated coefficients

Note

The function “mink.approach” (in the early versions of GWmodel) has been renamed as “gwr.mink.approach”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Description

This function visualises the AICc/CV results from the gwr.mink.approach.

Usage

```r
gwr.mink.matrixview(diag.df, znm=colnames(diag.df)[4], criterion="AIC")
```
Arguments

- `diag.df`: the first part of a list object returned by `gwr.mink.approach`
- `znm`: the name of the forth column in `diag.df`
- `criterion`: the criterion used for distance metric selection in `gwr.mink.approach`

Note

The function “mink.matrixview” (in the early versions of GWmodel) has been renamed as “gwr.mink.matrixview”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

`gwr.mink.pval` Select the values of p for the Minkowski approach for GWR

Description

These functions implement heuristics to select the values of p from two intervals: (0, 2] in a ’backward’ direction and (2, Inf) in a ’forward’ direction.

Usage

- `gwr.mink.pval(formula, data, criterion="AIC", bw, bw.sel.approach = "AIC", adaptive=F, kernel="bisquare", left.interval=0.25, right.interval=0.5, drop.tol=3, theta0=0, verbose=F, nlower = 10)`
- `gwr.mink.pval.forward(formula, data, bw, bw.sel.approach = "AIC", adaptive=F, kernel="bisquare", p.max=Inf, p.min=2, interval=0.5, drop.tol=3, theta0=0, verbose=F, nlower = 10)`
- `gwr.mink.pval.backward(formula, data, bw, bw.sel.approach = "AIC", adaptive=F, kernel="bisquare", p.max=2, p.min=0.1, interval=0.5, drop.tol=3, theta0=0, verbose=F, nlower = 10)`

S3 method for class 'pvlas'
plot(x, ...)

Arguments

formula
Regression model formula of a formula object

data
a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp

criterion
the criterion used for distance metric selection, AICc ("AICc") or cross-validation ("CV") score; default is "AICc"

bw
bandwidth used in the weighting function, possibly calculated by bw.gwr; fixed (distance) or adaptive bandwidth(number of nearest neighbours)

bw.sel.approach
approach used to select an optimum bandwidth for each calibration if no bandwidth (bw) is given; specified by CV for cross-validation approach or by AIC corrected (AICc) approach

adaptive
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

kernel
function chosen as follows:
gaussian: \(wgt = \exp(-0.5*{(vdist/bw)}^2) \);
exponential: \(wgt = \exp(-vdist/bw) \);
bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise

left.interval
the step-size for searching the left interval (0, 2] in a 'backward' direction

right.interval
the step-size for searching the right interval (2, Inf) in a 'forward' direction

p.max
the maximum value of \(p \)

p.min
the minimum value of \(p \)

interval
the step-size for searching the given interval in a 'backward' or 'forward' direction

drop.tol
an AICc difference threshold to define whether the values of \(p \) to be dropped or not

theta0
a fixed rotation angle in radians

verbose
if TRUE and bandwidth selection is undertaken, the bandwidth searches are reported

n.lower
the minimum number of nearest neighbours if an adaptive kernel is used

x
an object of class "pvlas", returned by these functions

...
arguments passed through (unused)

Value
A list of:
p.vals
a vector of tried values of \(p \)

creation.vals
a vector of criterion values (AICc or CV) for tried values of \(p \)
p.dropped
a vector of boolean to label whether a value of \(p \) to be dropped or not: TRUE means to be dropped and FALSE means to be used for the Minkowski approach
gwr.mixed

Mixed GWR

Description

This function implements mixed (semiparametric) GWR

Usage

```r
gwr.mixed(formula, data, regression.points, fixed.vars, 
  intercept.fixed=FALSE, bw, diagnostic=T, kernel="bisquare", 
  adaptive=FALSE, p=2, theta=0, longlat=F,dMat, dMat.rp)
```

Arguments

- **formula**: Regression model formula of a formula object
- **data**: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package **sp**
- **regression.points**: a Spatial*DataFrame object, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package **sp**
- **fixed.vars**: independent variables that appeared in the formula that are to be treated as global
- **intercept.fixed**: logical, if TRUE the intercept will be treated as global
- **bw**: bandwidth used in the weighting function, possibly calculated by bw.gwr; fixed (distance) or adaptive bandwidth(number of nearest neighbours)
- **diagnostic**: logical, if TRUE the diagnostics will be calculated
- **kernel**: function chosen as follows:
 - gaussian: \(\text{wgt} = \exp(-0.5 \times (\text{vdist}/\text{bw})^2) \)
 - exponential: \(\text{wgt} = \exp(-\text{vdist}/\text{bw}) \)
 - bisquare: \(\text{wgt} = (1-(\text{vdist}/\text{bw})^2)^2 \) if \(\text{vdist} < \text{bw} \), \(\text{wgt}=0 \) otherwise
 - tricube: \(\text{wgt} = (1-(\text{vdist}/\text{bw})^3)^3 \) if \(\text{vdist} < \text{bw} \), \(\text{wgt}=0 \) otherwise
 - boxcar: \(\text{wgt}=1 \) if \(\text{dist} < \text{bw} \), \(\text{wgt}=0 \) otherwise
adaptive

if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p

the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta

an angle in radians to rotate the coordinate system, default is 0

longlat

if TRUE, great circle distances will be calculated

dMat

a pre-specified distance matrix, it can be calculated by the function gw.dist

dMat.rp

a distance matrix when an individual set of regression points are adopted

Value

A list of class “mgwr”:

GW.arguments

a list class object including the model fitting parameters for generating the report file

aic

AICc value from this calibration

df.used

effective degree of freedom

rss

residual sum of squares

SDF

a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with coefficient estimates in its "data" slot.

timings

starting and ending time.

this.call

the function call used.

Note

For an alternative formulation of mixed GWR, please refer to GWR 4, which provides useful tools for automatic bandwidth selection. This windows-based software also implements generalised mixed GWR.

The mixed GWR in the latest release of GWmodel (2.0-0) has been revised by Dr. Fiona H Evans from Centre for Digital Agriculture, Murdoch and Curtin Universities in terms of its computational efficiency.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

gwr.model.selection

Model selection for GWR with a given set of independent variables

Description

This function selects one GWR model from many alternatives based on the AICc values.

Usage

```r
gwr.model.selection(DeVar=NULL, InDeVars=NULL, data=list(), bw=NULL, approach="CV", adaptive=F, kernel="bisquare", dMat=NULL, p=2, theta=0, longlat=F, parallel.method=F, parallel.arg=NULL)
```

Arguments

- **DeVar**: dependent variable
- **InDeVars**: a vector of independent variables for model selection
- **data**: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
- **bw**: bandwidth used in the weighting function, possibly calculated by bw.gwr
- **approach**: specified by CV (cv) for cross validation approach or AIC (aic) for selecting bandwidth by AICc values
- **adaptive**: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
- **kernel**: function chosen as follows:
 - gaussian: \[wgt = \exp(-.5*(vdist/bw)^2) \]
 - exponential: \[wgt = \exp(-vdist/bw) \]
 - bisquare: \[wgt = (1-(vdist/bw)^2)^2 \] if vdist < bw, \(wgt=0 \) otherwise;
 - tricube: \[wgt = (1-(vdist/bw)^3)^3 \] if vdist < bw, \(wgt=0 \) otherwise;
 - boxcar: \(wgt=1 \) if dist < bw, \(wgt=0 \) otherwise
- **dMat**: a pre-specified distance matrix, it can be calculated by the function gw.dist
- **p**: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
- **theta**: an angle in radians to rotate the coordinate system, default is 0
- **longlat**: if TRUE, great circle distances will be calculated
parallel.method
Specified by ‘FALSE’ for serial approach, by ‘"omp"’ for multi-thread approach implemented via OpenMP, by ‘"cluster"’ for multi-process approach implemented via ‘parallel’ package, by ‘"cuda"’ for parallel approach implemented via CUDA.

parallel.arg
Set the argument for parallel approach. If ‘parallel.method’ is ‘FALSE’, there is no need to set its value. If ‘parallel.method’ is ‘"omp"’, its value is used to set how many threads should be created (default by cores of *cores of CPU* - 1). If ‘parallel.method’ is ‘"cluster"’, its value is used to set how many R session should be created (default by cores of *cores of CPU* - 1). If ‘parallel.method’ is ‘"cuda"’, its value is used to set how many samples is included in one group during the calibration. This value should not be too big to avoid the overflow of GPU memory.

Value

A list of:

- **model.list**
a list of all the tried GWR models consisted of formulas and variables.

- **GWR.df**
a data frame consisted of four columns: bandwidth, AIC, AICc, RSS

Note

The algorithm for selecting GWR models consists of the following four steps:

Step 1. Start by calibrating all the possible bivariate GWR models by sequentially regressing a single independent variable against the dependent variable;

Step 2. Find the best performing model which produces the minimum AICc value, and permanently include the corresponding independent variable in subsequent models;

Step 3. Sequentially introduce a variable from the remaining group of independent variables to construct new models with the permanently included independent variables, and determine the next permanently included variable from the best fitting model that has the minimum AICc value;

Step 4. Repeat step 3 until all the independent variables are permanently included in the model.

In this procedure, the independent variables are iteratively included into the model in a "forward" direction. Note that there is a clear distinction between the different number of involved variables in a selection step, which can be called model levels.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

See Also

gwr.model.view, gwr.model.sort
gwr.model.sort
Sort the results of the GWR model selection function
gwr.model.selection.

Description
Sort the results from the GWR model selection function gwr.model.selection

Usage
 gwr.model.sort(Sorting.list, numVars, ruler.vector)

Arguments
 Sorting.list a list returned by function gwr.model.selection
 numVars the number of independent variables involved in model selection
 ruler.vector a numeric vector as the sorting basis

Note
The function sorts the results of model selection within individual levels.
The function “model.sort.gwr” (in the early versions of GWmodel) has been renamed as “gwr.model.sort”,
while the old name is still kept valid.

Author(s)
Binbin Lu <binbinlu@whu.edu.cn>

See Also
 gwr.model.selection, gwr.model.view

gwr.model.view Visualise the GWR models from gwr.model.selection

Description
This function visualises the GWR models from gwr.model.selection.

Usage
 gwr.model.view(DeVar, InDeVars, model.list)
Arguments

DeVar dependent variable
InDeVars a vector of independent variables for model selection
model.list a list of all GWR model tried in \texttt{gwr.model.selection}

Note

The function “model.view.gwr” (in the early versions of GWmodel) has been renamed as “gwr.model.view”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

See Also

\texttt{gwr.model.selection, gwr.model.sort}

Examples

```r
## Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
DeVar<"PURCHASE"
InDeVars<-c("FLOORSZ", "GARAGE1", "BLDPWW1", "BLDPOSTW")
model.sel<-gwr.model.selection(DeVar, InDeVars, data=londonhp,
kernel = "gaussian", dMat=DM,bw=5000)
model.list<-model.sel[[1]]
gwr.model.view(DeVar, InDeVars, model.list=model.list)
## End(Not run)
```

\textit{gwr.montecarlo} \hspace{1cm} Monte Carlo (randomisation) test for significance of GWR parameter variability

Description

This function implements a Monte Carlo (randomisation) test to test for significant (spatial) variability of a GWR model’s parameters or coefficients.

Usage

\begin{verbatim}
gwr.montecarlo(formula, data = list(), nsims=99, kernel="bisquare", adaptive=F, bw, p=2, theta=0, longlat=F,dMat)
\end{verbatim}
Arguments

- **formula**: Regression model formula of a `formula` object
- **data**: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package `sp`
- **nsims**: the number of randomisations
- **kernel**: function chosen as follows:
 - gaussian: $wgt = \exp(-0.5 \times (\text{dist}/\text{bw})^2)$;
 - exponential: $wgt = \exp(-\text{dist}/\text{bw})$;
 - bisquare: $wgt = (1-(\text{dist}/\text{bw})^2)^2$ if dist < bw, wgt=0 otherwise;
 - tricube: $wgt = (1-(\text{dist}/\text{bw})^3)^3$ if dist < bw, wgt=0 otherwise;
 - boxcar: $wgt=1$ if dist < bw, wgt=0 otherwise
- **adaptive**: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
- **bw**: bandwidth used in the weighting function, possibly calculated by `bw.gwr`
- **p**: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
- **theta**: an angle in radians to rotate the coordinate system, default is 0
- **longlat**: if TRUE, great circle distances will be calculated
- **dMat**: a pre-specified distance matrix, it can be calculated by the function `gw.dist`

Value

- **pmat**: A vector containing p-values for all the GWR parameters

Note

The function “montecarlo.gwr” (in the early versions of GWmodel) has been renamed as “gwr.montecarlo”, while the old name is still kept valid.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Charlton, M, Fotheringham, S, and Brunsdon, C (2007), GWR3.0.
Examples

```r
## Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
bw<-bw.gwr(PURCHASE~FLOORSZ, data=londonhp, dMat=DM, kernel="gaussian")
#See any difference in the next two commands and why?
res.mont1<-gwr.montecarlo(PURCHASE~PROF+FLOORSZ, data = londonhp, dMat=DM,
nsim=99, kernel="gaussian", adaptive=FALSE, bw=3000)
res.mont2<-gwr.montecarlo(PURCHASE~PROF+FLOORSZ, data = londonhp, dMat=DM,
nsim=99, kernel="gaussian", adaptive=FALSE, bw=300000000000)
## End(Not run)
```

gwr.multiscale

Multiscale GWR

Description

This function implements multiscale GWR to detect variations in regression relationships across different spatial scales. This function can not only find a different bandwidth for each relationship but also (and simultaneously) find a different distance metric for each relationship (if required to do so).

Usage

```r
gwr.multiscale(formula, data, kernel = "bisquare", adaptive = FALSE, criterion = "dCVR", max.iterations = 2000, threshold = 1e-05, dMats, var.dMat.indx, p.vals, theta.vals, longlat = FALSE, bws0, bw.seled, approach = "AIC", bws.thresholds, bws.reOpts = 5, verbose = F, hatmatrix = T, predictor.centered = rep(T, length(bws0) - 1), nlower = 10, parallel.method = F, parallel.arg = NULL, force.armadillo = F)
```

S3 method for class 'multiscalegwr'

print(x, ...)

Arguments

- `formula`: Regression model formula of a `formula` object
- `data`: a `Spatial*DataFrame`, i.e. `SpatialPointsDataFrame` or `SpatialPolygonsDataFrame` as defined in package `sp`
- `kernel`: function chosen as follows:
 - `gaussian`: `wgt = exp(-.5*(vdist/bw)^2)`
 - `exponential`: `wgt = exp(-vdist/bw)`
 - `bisquare`: `wgt = (1-(vdist/bw)^2)^2` if `vdist < bw`, `wgt=0` otherwise
 - `tricube`: `wgt = (1-(vdist/bw)^3)^3` if `vdist < bw`, `wgt=0` otherwise
 - `boxcar`: `wgt=1` if `dist < bw`, `wgt=0` otherwise
adaptive: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance).

criterion: criterion for determining the convergence of the back-fitting procedure, could be "CVR" or "dCVR", which correspond to the changing value of RSS (CVR) and the differential version (dCVR), respectively; and "dCVR" is used as default.

max.iterations: maximum number of iterations in the back-fitting procedure

threshold: threshold value to terminate the back-fitting iterations

dMats: a list of distance matrices used for estimating each specific parameter

var.dMat.indx: index corresponds to a specific distance matrix for each exploratory variable, if dMats is provided

p.vals: a collection of positive numbers used as the power of the Minkowski distance

theta.vals: a collection of values used as angles in radians to rotate the coordinate system

longlat: if TRUE, great circle distances will be calculated

bws0: a vector of initializing bandwidths for the back-fitting procedure, of which the length should equal to the number of parameters if specified

bw.seled: a vector of boolean variables to determine whether the corresponding bandwidth should be re-selected or not: if TRUE, the corresponding bandwidth for the specific parameters are supposed to be given in bws0; otherwise, the bandwidths for the specific parameters will be selected within the back-fitting iterations.

approach: specified by CV for cross-validation approach or by AIC corrected (AICc) approach

bws.thresholds: threshold values to define whether the bandwidth for a specific parameter has converged or not

bws.reOpts: the number times of continually optimizing each parameter-specific bandwidth even though it meets the criterion of convergence, for avoiding sub-optimal choice due to illusion of convergence;

verbose: if TRUE and bandwidth selection is undertaken, the bandwidth searches are reported

predictor.centered: a logical vector of length equalling to the number of predictors, and note intercept is not included; if the element is TRUE, the corresponding predictor will be centered.

hatmatrix: if TRUE the hatmatrix for the whole model will be calculated, and AICc, adjusted-R2 values will be returned accordingly.

nlower: the minimum number of nearest neighbours if an adaptive kernel is used

parallel.method: FALSE as default, and the calibration will be conducted traditionally via the serial technique, "omp": multi-thread technique with the OpenMP API, "cluster": multi-process technique with the parallel package, "cuda": parallel computing technique with CUDA
parallel.arg

if parallel.method is not FALSE, then set the argument by following: if parallel.method is "omp", parallel.arg refers to the number of threads used, and its default value is the number of cores - 1; if parallel.method is "cluster", parallel.arg refers to the number of R sessions used, and its default value is the number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the number of calibrations included in each group, but note a too large value may cause the overflow of GPU memory.

force.armadillo

if TRUE, use the original RcppArmadillo implementation instead of the new RcppEigen implementation. Only matters if parallel.method = F or parallel.method = "omp".

x

an object of class “multiscalegwr”, returned by the function gwr.multiscale

... arguments passed through (unused)

Value

A list of class “psdmgwr”:

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with data locations, coefficient estimates from the PSDM GWR model, predicted y values, residuals, coefficient standard errors and t-values in its “data” slot.

GW.arguments a list class object including the model fitting parameters for generating the report file

GW.diagnostic a list class object including the diagnostic information of the model fitting

lm an object of class inheriting from “lm”, see lm.

bws.vars bandwidths used for all the parameters within the back-fitting procedure

timings starting and ending time.

this.call the function call used.

Note

This function implements multiscale GWR to detect variations in regression relationships across different spatial scales. This function can not only find a different bandwidth for each relationship, but also (and simultaneously), find a different distance metric for each relationship (i.e. Parameter-Specific Distance Metric GWR, i.e. PSDM GWR). Note that multiscale GWR (MGWR) has also been referred to as flexible bandwidth GWR (FBGWR) and conditional GWR (CGWR) in the literature. All are one and the same model, but where PSDM-GWR additionally provides a different distance metric option for each relationship. An MGWR model is calibrated if no “dMats” and “p.vals” are specified; a mixed GWR model will be calibrated if an infinite bandwidth and another regular bandwidth are used for estimating the global and local parameters (again when no “dMats” and “p.vals” are specified). In other words, the gwr.multiscale function is specified with Euclidean distances in both cases. Note that the results from this function for a mixed GWR model and gwr.mixed might be different, as a back-fitting algorithm is used in gwr.multiscale, while an approximating algorithm is applied in gwr.mixed. The gwr.mixed function performs better in computational efficiency, but poorer in prediction accuracy.
Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

data(LondonHP)
EUDM <- gw.dist(coordinates(londonhp))
No bandwidth is selected, and bw@ values are used
Not run:
Similar as the basic GWR
res1<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, criterion="dCVR", kernel="gaussian", adaptive=T, bws@=c(100, 100, 100), bw.seled=rep(T, 3), dMats=list(EUDM,EUDM,EUDM))
FBGWR
res2<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, criterion="dCVR", kernel="gaussian", adaptive=T, bws@=c(100, 100, 100), dMats=list(EUDM,EUDM,EUDM))
Mixed GWR
res3<-gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, bws@=c(Inf, 100, 100, Inf), bw.seled=rep(T, 3), kernel="gaussian", dMats=list(EUDM,EUDM,EUDM))
PSDM GWR
res4<- gwr.multiscale(PURCHASE~FLOORSZ+PROF, data=londonhp, kernel="gaussian", p.vals=c(1,2,3))
End(Not run)
GWR used as a spatial predictor

Description
This function implements basic GWR as a spatial predictor. The GWR prediction function is able to do leave-out-one predictions (when the observation locations are used for prediction) and predictions at a set-aside data set (when unobserved locations are used for prediction).

Usage

```r
  gwr.predict(formula, data, predictdata, bw, kernel="bisquare", adaptive=FALSE, p=2, theta=0, longlat=F, dMat1, dMat2)
  ## S3 method for class 'gwrm.pred'
  print(x, ...)
```

Arguments

- `formula`: Regression model formula of a `formula` object
- `data`: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package `sp`
- `predictdata`: a Spatial*DataFrame object to provide prediction locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package `sp`
- `bw`: bandwidth used in the weighting function, possibly calculated by `bw.gwr`, fixed (distance) or adaptive bandwidth (number of nearest neighbours)
- `kernel`: function chosen as follows:
 - gaussian: \(wgt = \exp(-0.5*vdist/bw)^2 \)
 - exponential: \(wgt = \exp(-vdist/bw) \)
 - bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 - tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise;
 - boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise
- `adaptive`: if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
- `p`: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
- `theta`: an angle in radians to rotate the coordinate system, default is 0
- `longlat`: if TRUE, great circle distances will be calculated
- `dMat1`: a pre-specified distance matrix between data points and prediction locations; if not given, it will be calculated by the given parameters
- `dMat2`: a pre-specified symmetric distance matrix between data points; if not given, it will be calculated by the given parameters
- `x`: an object of class “gwrm.pred”, returned by the function `gwr.predict`
- `...`: arguments passed through (unused)
Value

A list of class “gwr.m.pred”:

GW.arguments a list of geographically weighted arguments
SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package "sp") with GWR coefficients, predictions and prediction variances in its "data" slot.
this.call the function call used.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

```r
## Not run:
data(LondonHP)
gwr.pred<-gwr.predict(PURCHASE~FLOORSZ, data=londonhp, bw=2000, kernel = "gaussian")
gwr.pred
#########Global OLS regression results and comparison with gstat functions
if(require("gstat")){
  mlr.g <- gstat(id = "xx1", formula = PURCHASE~FLOORSZ,data=londonhp)
  mlr.g1 <- predict(mlr.g, newdata = londonhp, BLUE = TRUE)
  mlr.g1
}

ols.pred<-gwr.predict(PURCHASE~FLOORSZ, data=londonhp, bw=100000000000000000000000)
ols.pred$SDF

## End(Not run)
```
gwr.robust

Robust GWR model

Description
This function implements two robust GWR models.

Usage
gwr.robust(formula, data, bw, filtered = FALSE, kernel = "bisquare", adaptive = FALSE, p = 2,
theta = 0, longlat = F, dMat, F123.test = F, maxiter = 20, cut.filter = 3, cut1 = 2,
cut2 = 3, delta = 1.0e-5, parallel.method = FALSE, parallel.arg = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>Regression model formula of a formula object</td>
</tr>
<tr>
<td>data</td>
<td>a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp</td>
</tr>
<tr>
<td>bw</td>
<td>bandwidth used in the weighting function, possibly calculated by bw.gwr; fixed (distance) or adaptive bandwidth (number of nearest neighbours)</td>
</tr>
<tr>
<td>filtered</td>
<td>default FALSE, the automatic approach is used, if TRUE the filtered data approach is employed, as that described in Fotheringham et al. (2002 p.73-80)</td>
</tr>
<tr>
<td>kernel</td>
<td>function chosen as follows: gaussian: wgt = exp(-.5*(vdist/bw)^2); exponential: wgt = exp(-vdist/bw); bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise; tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist < bw, wgt=0 otherwise</td>
</tr>
<tr>
<td>adaptive</td>
<td>if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)</td>
</tr>
<tr>
<td>p</td>
<td>the power of the Minkowski distance, default is 2, i.e. the Euclidean distance</td>
</tr>
<tr>
<td>theta</td>
<td>an angle in radians to rotate the coordinate system, default is 0</td>
</tr>
<tr>
<td>longlat</td>
<td>if TRUE, great circle distances will be calculated</td>
</tr>
<tr>
<td>dMat</td>
<td>a pre-specified distance matrix, it can be calculated by the function gw.dist</td>
</tr>
<tr>
<td>F123.test</td>
<td>default FALSE, otherwise calculate F-test results (Leung et al. 2000)</td>
</tr>
<tr>
<td>maxiter</td>
<td>default 20, maximum number of iterations for the automatic approach</td>
</tr>
<tr>
<td>cut.filter</td>
<td>If filtered is TRUE, it will be used as the residual cutoff for filtering data; default cutoff is 3</td>
</tr>
<tr>
<td>cut1</td>
<td>default 2, first cutoff for the residual weighting function. wr(e)=1 if</td>
</tr>
<tr>
<td>cut2</td>
<td>default 3, second cutoff for the residual weighting function. wr(e)=(1-(</td>
</tr>
</tbody>
</table>
delta default 1.0e-5, tolerance of the iterative algorithm
parallel.method
 FALSE as default, and the calibration will be conducted traditionally via the serial technique, "omp": multi-thread technique with the OpenMP API, "cluster": multi-process technique with the parallel package, "cuda": parallel computing technique with CUDA
parallel.arg
 if parallel.method is not FALSE, then set the argument by following: if parallel.method is "omp", parallel.arg refers to the number of threads used, and its default value is the number of cores - 1; if parallel.method is "cluster", parallel.arg refers to the number of R sessions used, and its default value is the number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the number of calibrations included in each group, but note a too large value may cause the overflow of GPU memory.

Value

A list of class “gwrm”:

GW.arguments a list class object including the model fitting parameters for generating the report file
GW.diagnostic a list class object including the diagnostic information of the model fitting
lm
 an object of class inheriting from “lm”, see lm.
SDF
 a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) integrated with fit.points, GWR coefficient estimates, y value, predicted values, coefficient standard errors and t-values in its "data" slot. Notably, E_weights will be also included in the output SDF which represents the residual weighting when automatic approach is used; When the filtered approach is used, E_weight is a vector consisted of 0 and 1, where 0 means outlier to be excluded from calibration.
timings
 starting and ending time.
this.call
 the function call used.
Ftest.res
 results of Leung’s F tests when F123.test is TRUE.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

```r
## Not run:
data(DubVoter)
bw.a <- bw.gwr(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24 +Age25_44+Age45_64,
data=Dub.voter,approach="AICc",kernel="bisquare",adaptive=TRUE)
bw.a
gwr.res <- gwr.basic(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24 +Age25_44+Age45_64,
data=Dub.voter,bw=bw.a,kernel="bisquare",adaptive=TRUE,F123.test=TRUE)
print(gwr.res)

# Map of the estimated coefficients for LowEduc
names(gwr.res$SDF)
if(require("RColorBrewer"))
{
  mypalette<-brewer.pal(6,"Spectral")
  X11(width=10,height=12)
  spplot(gwr.res$SDF,"LowEduc",key.space = "right",
        col.regions=mypalette,at=c(-8,-6,-4,-2,0,2,4),
        main="Basic GW regression coefficient estimates for LowEduc")
}
# Robust GW regression and map of the estimated coefficients for LowEduc
rgwr.res <- gwr.robust(GenEl2004~DiffAdd+LARent+SC1+Unempl+LowEduc+Age18_24 +Age25_44+Age45_64, data=Dub.voter,bw=bw.a,kernel="bisquare",
adaptive=TRUE,F123.test=TRUE)
print(rgwr.res)
if(require("RColorBrewer"))
{
  X11(width=10,height=12)
  spplot(rgwr.res$SDF, "LowEduc", key.space = "right",
        col.regions=mypalette,at=c(-8,-6,-4,-2,0,2,4),
        main="Robust GW regression coefficient estimates for LowEduc")
}
## End(Not run)
```

gwr.scalable

Scalable GWR

Description

This function implements Scalable GWR for large dataset

Usage

```r
gwr.scalable(formula, data, bw.adapt=100, kernel = "gaussian", polynomial = 4,
p = 2, theta = 0, longlat = F, dMat)
```
Arguments

formula Regression model formula of a formula object

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame
 as defined in package sp

bw.adapt adaptive bandwidth (i.e. number of nearest neighbours) used for geographically
 weighting

kernel Kernel function to calculate the spatial weights, but note only two continuous
 functions available:
 gaussian: \(\text{wgt} = \exp(-0.5*(\text{vdist}/\text{bw})^2) \);
 exponential: \(\text{wgt} = \exp(-\text{vdist}/\text{bw}) \);

polynomial Degree of the polynomial to approximate the kernel function, and default is 4.

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function gw.dist

x an object of class “scgwrm”, returned by the function gwr.scalable

... arguments passed through (unused)

Value

A list of class “scgwrm”:

GW.arguments a list class object including the model fitting parameters for generating the report

GW.diagnostic a list class object including the diagnostic information of the model fitting

lm an object of class inheriting from “lm”, see lm.

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object
 (see package “sp”) integrated with fit.points, GWR coefficient estimates, y
 value, predicted values, coefficient standard errors and t-values in its "data" slot.

timings starting and ending time.

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

Examples

```r
## Not run:
require(spData)
data(boston)
boston <- boston.c
coordinates(boston) <- ~ LON + LAT
res <- gwr.scalable(formula = MEDV ~ CRIM + ZN + INDUS + CHAS + AGE, data = boston, bw.adapt = 100)
res

## End(Not run)
```

gwr.t.adjust
Adjust p-values for multiple hypothesis tests in basic GWR

Description

Given a set of p-values from the pseudo t-tests of basic GWR outputs, this function returns adjusted p-values using: (a) Bonferroni, (b) Benjamini-Hochberg, (c) Benjamini-Yekutieli and (d) Fotheringham-Byrne procedures.

Usage

```r
gwr.t.adjust(gwm.Obj)
```

Arguments

- `gwm.Obj`: an object of class “gwrm”, returned by the function `gwr.basic`

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>

References

gwr.write
Write the GWR results into files

Description
This function writes the calibration result of function `gwr.basic` to a text file and shape files.

Usage
```r
gwr.write(x, fn = "GWRresults")
gwr.write.shp(x, fn = "GWRresults")
```

Arguments
- `x`
an object of class “gwrm”, returned by the function `gwr.basic`
- `fn`
file name for the written results, by default the output files can be found in the working directory, “GWRresults.txt”, “GWRresults(.shp, .shx, .dbf)”

Note
The projection file is missing for the written shapefiles.
The functions “writeGWR” and “writeGWR.shp” (in the early versions of GWmodel) have been renamed respectively as “gwr.write” and “gwr.write.shp”, while the old names are still kept valid.

Author(s)
Binbin Lu <binbinlu@whu.edu.cn>

gwss
Geographically weighted summary statistics (GWSS)

Description
This function calculates basic and robust GWSS. This includes geographically weighted means, standard deviations and skew. Robust alternatives include geographically weighted medians, inter-quartile ranges and quantile imbalances. This function also calculates basic geographically weighted covariances together with basic and robust geographically weighted correlations.

Usage
```r
gwss(data, summary.locat, vars, kernel = "bisquare", adaptive = FALSE, bw, p = 2, theta = 0, longlat = F, dMat, quantile = FALSE)
## S3 method for class 'gwss'
print(x, ...)```
Arguments

data a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package \texttt{sp}

summary.locat a Spatial*DataFrame object for providing summary locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package \texttt{sp}

vars a vector of variable names to be summarized

bw bandwidth used in the weighting function

kernel function chosen as follows:
  gaussian: \( \text{wgt} = \exp(-0.5*(\text{vdist}/\text{bw})^2) \);
  exponential: \( \text{wgt} = \exp(-\text{vdist}/\text{bw}) \);
  bisquare: \( \text{wgt} = (1-(\text{vdist}/\text{bw})^2)^2 \) if \( \text{vdist} < \text{bw} \), \( \text{wgt}=0 \) otherwise;
  tricube: \( \text{wgt} = (1-(\text{vdist}/\text{bw})^3)^3 \) if \( \text{vdist} < \text{bw} \), \( \text{wgt}=0 \) otherwise;
  boxcar: \( \text{wgt}=1 \) if \( \text{dist} < \text{bw} \), \( \text{wgt}=0 \) otherwise

adaptive if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta an angle in radians to rotate the coordinate system, default is 0

longlat if TRUE, great circle distances will be calculated

dMat a pre-specified distance matrix, it can be calculated by the function \texttt{gw.dist}

quantile if TRUE, median, interquartile range, quantile imbalance will be calculated

x an object of class “gwss”, returned by the function \texttt{gwss}

... arguments passed through (unused)

Value

A list of class “lss”:

SDF a SpatialPointsDataFrame (may be gridded) or SpatialPolygonsDataFrame object (see package “sp”) with local means, local standard deviations, local variance, local skew, local coefficients of variation, local covariances, local correlations (Pearson’s), local correlations (Spearman’s), local medians, local interquartile ranges, local quantile imbalances and coordinates.

... other information for reporting

Author(s)

Binbin Lu <binbinlu@whu.edu.cn>
References


Examples

```r
Not run:
data(EWHP)
data(EWOutline)
head(ewhp)
houses.spdf <- SpatialPointsDataFrame(ewhp[, 1:2], ewhp)
localstats1 <- gwss(houses.spdf, vars = c("PurPrice", "FlrArea"), bw = 50000)
head(data.frame(localstats1$SDF))
localstats1
A function for mapping data
if(require("RColorBrewer")) {
 quick.map <- function(spdf, var, legend.title, main.title) {
 x <- spdf@data[, var]
cut.vals <- pretty(x)
x.cut <- cut(x, cut.vals)
cut.levels <- levels(x.cut)
cut.band <- match(x.cut, cut.levels)
colors <- brewer.pal(length(cut.levels), "YlOrRd")
colors <- rev(colors)
par(mar=c(1,1,1,1))
plot(ewoutline, col="olivedrab", bg="lightblue1")
title(main.title)
plot(spdf, add=TRUE, col=colors[cut.band], pch=16)
legend("topleft", cut.levels, col=colors, pch=16, bty="n", title=legend.title)
 }
quick.map(localstats1$SDF, "PurPrice_LM", "1000's Uk Pounds", "Geographically Weighted Mean")
par(mfrow = c(1, 2))
quick.map(localstats1$SDF, "PurPrice_LSKe", "Skewness Level", "Local Skewness")
quick.map(localstats1$SDF, "PurPrice_LSD", "1000's Pounds", "Local Standard Deviation")
Exploring Non-Stationarity of Relationships
quick.map(localstats1$SDF, "Corr_PurPrice.FlrArea", expression(rho), "Geographically Weighted Pearson Correlation")
Robust, Quantile Based Local Summary Statistics
localstats2 <- gwss(houses.spdf, vars = c("PurPrice", "FlrArea"), bw = 50000, quantile = TRUE)
quick.map(localstats2$SDF, "PurPrice_Median", "1000 UK Pounds", "Geographically Weighted Median House Price")
```
Monte Carlo (randomisation) test for gwss

Description

This function implements Monte Carlo (randomisation) tests for the GW summary statistics found in gwss.

Usage

```r
gwss.montecarlo(data, vars, kernel = "bisquare", adaptive = FALSE, bw, p = 2, theta = 0, longlat = F, dMat, quantile=FALSE,nsim=99)
```

Arguments

- `data`: a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp
- `vars`: a vector of variable names to be summarized
- `bw`: bandwidth used in the weighting function
- `kernel`: function chosen as follows:
  - gaussian: \( wgt = \exp(-0.5 \times (vdist/bw)^2) \)
  - exponential: \( wgt = \exp(-vdist/bw) \)
  - bisquare: \( wgt = (1-(vdist/bw)^2)^2 \) if \( vdist < bw \), \( wgt=0 \) otherwise
  - tricube: \( wgt = (1-(vdist/bw)^3)^3 \) if \( vdist < bw \), \( wgt=0 \) otherwise
  - boxcar: \( wgt=1 \) if \( vdist < bw \), \( wgt=0 \) otherwise
- `adaptive`: if TRUE calculate the adaptive kernel, and bw correspond to the number of nearest neighbours, default is FALSE.
- `p`: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
- `theta`: an angle in radians to rotate the coordinate system, default is 0
- `longlat`: if TRUE, great circle distances will be calculated
- `dMat`: a pre-specified distance matrix, it can be calculated by the function gw.dist
- `quantile`: if TRUE, median, interquartile range, quantile imbalance will be calculated
- `nsim`: default 99, the number of randomisations

Value

- `test`: probability of the test statistics of the GW summary statistics; if \( p<0.025 \) or if \( p>0.975 \) then the true local summary statistics can be said to be significantly different (at the 0.95 level) to such a local summary statistics found by chance.
The function “montecarlo.gwss” (in the early versions of GWmodel) has been renamed as “gwss.montecarlo”, while the old name is still kept valid.

Author(s)
Binbin Lu <binbinlu@whu.edu.cn>

References


Examples
```r
Not run:
data(LondonHP)
DM<-gw.dist(dp.locat=coordinates(londonhp))
test.lss<-gwss.montecarlo(data=londonhp, vars=c("PURCHASE","FLOORSZ"), bw=5000,
 kernel ="gaussian", dMat=DM,nsim=99)
test.lss
End(Not run)
```

Description
Outline (SpatialPolygonsDataFrame) of London boroughs for the LondonHP data.

Usage
data(LondonBorough)

Author(s)
Binbin Lu <binbinlu@whu.edu.cn>
LondonHP

London house price data set (SpatialPointsDataFrame)

Description


Usage

data(LondonHP)

Format

A SpatialPointsDataFrame object (proj4string set to "+init=epsg:27700 +datum=OSGB36").
The "data" slot is a data frame with 372 observations on the following 21 variables.

X a numeric vector, X coordinate
Y a numeric vector, Y coordinate
PURCHASE a numeric vector, the purchase price of the property
FLOORSZ a numeric vector, floor area of the property in square metres
TYPEDETCH a numeric vector, 1 if the property is detached (i.e. it is a stand-alone house), 0 otherwise
TPSEMDTCH a numeric vector, 1 if the property is semi detached, 0 otherwise
TYPETRRD a numeric vector, 1 if the property is in a terrace of similar houses (commonly referred to as a ‘row house’ in the USA), 0 otherwise
TYPEBNGNW a numeric vector, if the property is a bungalow (i.e. it has only one floor), 0 otherwise
TYPEFLAT a numeric vector, if the property is a flat (or ‘apartment’ in the USA), 0 otherwise
BLDPWW1 a numeric vector, 1 if the property was built prior to 1914, 0 otherwise
BLDPOSTW a numeric vector, 1 if the property was built between 1940 and 1959, 0 otherwise
BLD60S a numeric vector, 1 if the property was built between 1960 and 1969, 0 otherwise
BLD70S a numeric vector, 1 if the property was built between 1970 and 1979, 0 otherwise
BLD80S a numeric vector, 1 if the property was built between 1980 and 1989, 0 otherwise
BLD90S a numeric vector, 1 if the property was built between 1990 and 2000, 0 otherwise
BATH2 a numeric vector, 1 if the property has more than 2 bathrooms, 0 otherwise
GARAGE a numeric vector, 1 if the house has a garage, 0 otherwise
CENTHEAT a numeric vector, 1 if the house has central heating, 0 otherwise
BEDS2 a numeric vector, 1 if the property has more than 2 bedrooms, 0 otherwise
UNEMPLOY a numeric vector, the rate of unemployment in the census ward in which the house is located
PROF a numeric vector, the proportion of the workforce in professional or managerial occupations in the census ward in which the house is located
st.dist

Spatio-temporal distance matrix calculation

Description

Calculate a distance vector(matrix) between any GW model calibration point(s) and the data points.

Usage

```r
st.dist(dp.locat, rp.locat, obs.tv, reg.tv, focus=0, p=2,
theta=0, longlat=F, lambda=0.05, t.units = "auto",
ksi=0, s.dMat, t.dMat)
```

Arguments

- `dp.locat`: a numeric matrix of two columns giving the coordinates of the data points
- `rp.locat`: a numeric matrix of two columns giving the coordinates of the GW model calibration points
- `obs.tv`: a vector of time tags for each observation, which could be numeric or of `POSIXt` class
- `reg.tv`: a vector of time tags for each regression location, which could be numeric or of `POSIXt` class
- `focus`: an integer, indexing to the current GW model point, if `focus=0`, all the distances between all the GW model calibration points and data points will be calculated and a distance matrix will be returned; if `0<focus<length(rp.locat)`, then the distances between the `focus`th GW model points and data points will be calculated and a distance vector will be returned
the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
an angle in radians to rotate the coordinate system, default is 0
if TRUE, great circle distances will be calculated
an parameter between 0 and 1 for calculating spatio-temporal distance
character string to define time unit
an parameter between 0 and PI for calculating spatio-temporal distance, see details in Wu et al. (2014)
a predefined spatial distance matrix for calculating spatio-temporal distances
a predefined temporal distance matrix for calculating spatio-temporal distances

Returns a numeric spatio-temporal distance matrix or vector; or a matrix with its rows corresponding to the observations and its columns corresponds to the calibration points.

Binbin Lu <binbinlu@whu.edu.cn>

Results of the 2004 US presidential election at the county level (SpatialPolygonsDataFrame)

Results of the 2004 US presidential election at the county level, together with five socio-economic (census) variables. This data can be used with GW Discriminant Analysis.

data(USelect)

A SpatialPolygonsDataFrame with 3111 electoral divisions on the following 6 variables.

Categorical variable with three classes: i) Bush, ii) Kerry and iii) Borderline (supporting ratio for a candidate ranges from 0.45 to 0.55)
percentage unemployed
percentage of adults over 25 with 4 or more years of college education
percentage of persons over the age of 65
percentage urban
percentage white
References


Examples

data(USelect)
ls()
Index

* Cross-validation score
  ggwr.cv, 20

* Dublin Voter turnout
  DubVoter, 14

* England-Wales outline
  EWOutline, 16

* GTWR
  bw.gtwr, 5
gtwr, 22

* GW tools
  gw.dist, 24
gw.pcpplot, 25
gw.weight, 26

* GWDA
  bw.gwda, 7
gwda, 27

* GWPCA
  bw.gwpca, 8
gwpca, 29
gwpca.check.components, 33
gwpca.cv, 33
gwpca.cv.contrib, 34
gwpca.glyph.plot, 35
gwpca.montecarlo.1, 36
gwpca.montecarlo.2, 38

* GWPCP
  gw.pcpplot, 25

* GWR-LCR
  bw.gwr.lcr, 11
gwr.lcr, 53
gwr.lcr.cv, 55
gwr.lcr.cv.contrib, 57

* GWR
  bw.gwr, 10
gwr.basic, 40
gwr.bootstrap, 44
gwr.collin.diagno, 47
gwr.cv, 49
gwr.cv.contrib, 50
gwr.mink.approach, 58
gwr.mink.matrixview, 59
gwr.mink.pval, 60
gwr.model.selection, 64
gwr.model.sort, 66
gwr.model.view, 66
gwr.montecarlo, 67
gwr.predict, 73
gwr.t.adjust, 79
gwr.write, 80

* GWSS
  bw.gwss.average, 13
gwss, 80
gwss.montecarlo, 83

* Georgia census
  Georgia, 16

* Georgia counties
  GeorgiaCounties, 17

* Heteroskedastic GWR
  gwr.hetero, 51

* London Boroughs
  LondonBorough, 84

* Minkowski approach view
  gwr.mink.matrixview, 59

* Minkowski approach
  gwr.mink.approach, 58
gwr.mink.pval, 60

* Monte Carlo test
  gwr.montecarlo, 67

* Monte Carlo
  gwpca.montecarlo.1, 36
gwpca.montecarlo.2, 38
gwss.montecarlo, 83

* PSDM GWR
  gwr.multiscale, 69

* Scalable GWR
  gwr-scalable, 77

* US presidential election
  USElect, 87
* bandwidth selection
  bw.ggwr, 4
  bw.gtwr, 5
  bw.gwda, 7
  bw.gwpca, 8
  bw.gwr, 10
  bw.gwr.lcr, 11
  bw.gwss.average, 13

* bootstrap method
  gwr.bootstrap, 44

* collinearity diagnostics
  gwr.collin.diagno, 47

* cross-validation score
  gwpca.cv, 33
  gwr.cv, 49
  gwr.lcr.cv, 55

* data
  DubVoter, 14
  EWH, 15
  EWOutline, 16
  Georgia, 16
  GeorgiaCounties, 17
  LondonBorough, 84
  LondonHP, 85
  USelect, 87

* distance
  gw.dist, 24

* generalised GWR
  bw.ggwr, 4
  ggwr.basic, 18
  ggwr.cv, 20
  ggwr.cv.contrib, 21

* glyph plot interaction
  gwpca.check.components, 33

* glyph plot
  gwpca.glyph.plot, 35

* gtwr
  st.dist, 86

* house price
  EWH, 15
  LondonHP, 85

* mixed GWR
  gwr.mixed, 62

* model selection
  gwr.model.selection, 64
  gwr.model.sort, 66
  gwr.model.view, 66

* multiscale GWR
  gwr.mixed, 62
  gwr.multipricale, 69

* p-values adjustment
  gwr.t.adjust, 79

* package
  GWmodel-package, 3

* point-wise cross-validation scores
  gwpca.cv.contrib, 34
  gwr.cv.contrib, 50
  gwr.lcr.cv.contrib, 57

* point-wise cross-validation score
  ggwr.cv.contrib, 21

* predictor
  gwr.predict, 73

* results writing
  gwr.write, 80

* robust GWR
  gwr.robust, 75

* weight
  gw.weight, 26

AICc (gwr.model.selection), 64
AICc1 (gwr.scalable), 77
AICc_rss (gwr.model.selection), 64
AICc_rss1 (bw.gwr), 10

bias.bs (gwr.bootstrap), 44
bw.ggwr, 4
bw.gtwr, 5
bw.gwda, 7
bw.gwpca, 8, 28, 30, 37
bw.gwr, 10, 23, 27, 40, 52, 58, 61, 62, 64, 68,
  73, 75
bw.gwr.lcr, 11
bw.gwr1 (gwr.mink.approach), 58
bw.gwr3 (gwr.bootstrap), 44
bw.gwss.average, 13

check.components
  (gwpca.check.components), 33

confusion.matrix (gwda), 27

dist, 25
Dub.voter (DubVoter), 14
DubVoter, 14

e_vec (bw.gwr), 10
INDEX

ehat (gwr.model.selection), 64
EWHP, 15, 16
ewhp (EWHP), 15
EWOutline, 16
ewoutline (EWOutline), 16
extract.mat (gwr.model.selection), 64
F1234.test (gwr.basic), 40
fitted (bw.gwr), 10
formula, 4, 6, 7, 10, 11, 18, 22, 28, 40, 44, 45, 48, 52, 53, 58, 61, 62, 68, 69, 73, 75, 78
Gedu.counties (GeorgiaCounties), 17
Gedu.df (Georgia), 16
Generate.formula (gwr.model.selection), 64
generate.lm.data (gwr.bootstrap), 44
Georgia, 16
GeorgiaCounties, 17
ggwr.aic (bw.ggwr), 4
ggwr.basic, 18
ggwr.cv, 20
ggwr.cv.contrib, 21
glm, 19
glyph.plot (gwpca.glyph.plot), 35
gold (bw.gwr), 10
grouping.xy (gwda), 27
gtwr, 22
gtwr.aic (bw.gtwr), 5
gtwr.cv (bw.gtwr), 5
gw.average.cv (bw.gwss.average), 13
gw.dist, 5, 8–10, 12, 13, 19, 21, 22, 24, 26, 28, 30, 34, 35, 37, 39, 40, 45, 48, 50–52, 54, 56, 58, 63, 64, 68, 75, 78, 81, 83
gw.fitted (gwr.model.selection), 64
gw.mean.cv (bw.gwss.average), 13
gw.median.cv (bw.gwss.average), 13
gw.pcpplot, 25
gw.reg1 (gwr.predict), 73
gw.weight, 26
gw_BIC (bw.gwr), 10
gw_cv_all (bw.gwr), 10
gw_cv_all_cuda (bw.gwr), 10
gw_cv_all_omp (gwr.basic), 40
gw_dist (gw.dist), 24
gw_fitted (gwr.multiscale), 69
gw_local_r2 (gwr.basic), 40
gw_reg (gwr.basic), 40
gw_reg_1 (gwr.basic), 40
gw_reg_2 (gwr.basic), 40
gw_reg_all (gwr.basic), 40
gw_reg_all_cuda (gwr.basic), 40
gw_reg_all_omp (gwr.basic), 40
gw_weight (gw.weight), 26
gw_weight_mat (gw.weight), 26
gw_weight_vec (gw.weight), 26
gwda, 27, 29
GWmodel (GWmodel-package), 3
GWmodel-package, 3
gwpca, 29, 30, 33, 36
gwpca.check.components, 32
gwpca.cv, 33
gwpca.cv.contrib, 34
gwpca.glyph.plot, 33, 35
gwpca.montecarlo.1, 36, 37
gwpca.montecarlo.2, 37, 38
gwr.aic (bw.gwr), 10
gwr.aic1 (gwr.mink.approach), 58
gwr.backfit (gwr.multiscale), 69
gwr.basic, 40, 41, 79, 80
gwr.binomial (gwr.basic), 18
gwr.bootstrap, 44, 45
gwr.collin.diagno, 47
gwr.cv, 49
gwr.cv.contrib, 50
gwr.cv1 (gwr.mink.approach), 58
gwr.fitted (gwr.basic), 18
gwr.generalised, 19
gwr.generalised (gwr.basic), 18
gwr.hetero, 51
gwr.lcr, 11, 53, 54
gwr.lcr.cv, 55
gwr.lcr.cv.contrib, 57
gwr.mink.approach, 58, 59, 60
gwr.mink.matrixview, 59
gwr.mink.pval, 60
gwr.mixed, 62, 71
gwr.model.selection, 64, 66, 67
gwr.model.sort, 65, 66, 67
gwr.model.view, 65, 66, 66
gwr.montecarlo, 67
gwr.multiscale, 69, 71
gwr.poisson (gwr.basic), 18
gwr.predict, 73, 73
gwr.q (gwr.mixed), 62
gwr.q2 (gwr.multiscale), 69

print.gtwrm (gtwr), 22
print.gwda (gwda), 27
print.gwpca (gwpca), 29
print.gwrbsm (gwr.bootstrap), 44
print.gwr1cr (gwr.1cr), 53
print.gwr (gwr.basic), 40
print.gwrmpred (gwr.predict), 73
print.gwss (gwss), 80
print.mgwr (gwr.mixed), 69
print.multiscalegwr (gwr.multiprocess), 69
print.scgwrmpred (gwr.scalable), 77
pval.bs (gwr.bootstrap), 44
ridge.lm (gwr.1cr), 53
robustSvd (gwpca), 29
rss (gwr.model.selection), 64
rwpca (gwpca), 29

scgwr_loocv (gwr.scalable), 77
scgwr_pre (gwr.scalable), 77
scgwr_reg (gwr.scalable), 77
se.bs (gwr.bootstrap), 44
splitx (gwda), 27
st.dist, 23, 86

st.dist (gtwr), 22
st.distm (gtwr), 22
st.distv (gtwr), 22
trhat2 (gwr.basic), 40

USelect, 87
USelect2004 (USelect), 87

vector, 70

wlda (gwda), 27
wlda.cr (bw.gwda), 7
wmean (gwda), 27
wpcam (gwpca), 29
wprior (gwda), 27
wqda (gwda), 27
wqda.cr (bw.gwda), 7
writeGWR (gwr.write), 80
wvarcov (gwda), 29
wvarcov (gwda), 27

POSIXlt, 6, 22, 86
printcomp, 30
print.ggwrmpred (ggwr.basic), 18