Package ‘GWnnegPCA’

November 18, 2020

Type Package

Title Geographically Weighted Non-Negative Principal Components Analysis

Version 0.0.4

Description Implements a geographically weighted non-negative principal components analysis, which consists of the fusion of geographically weighted and sparse non-negative principal components analyses <doi:10.17608/k6.auckland.9850826.v1>.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Language en-US

Depends R (>= 3.5.0)

Imports sp, sf, pracma, geodist, nsprcomp, methods, spData

SystemRequirements C++11, GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0)

NeedsCompilation no

Author Narumasa Tsutsumida [aut, cre]

Maintainer Narumasa Tsutsumida <rsnaru.jp@gmail.com>

Repository CRAN

Date/Publication 2020-11-18 14:50:06 UTC

R topics documented:

gw_nsprcomp ... 2

Index 5
Description

Implementation of geographically weighted non-negative principal component analysis, which consists of the fusion of GWPCA and sparse non-negative PCA.

Usage

```r
gw_nsprcomp(data, elocat, vars, bw, k = 2, kernel, adaptive = TRUE,
             p = 2, theta = 0, longlat = FALSE, geodisic_measure = "cheap",
             dMat = NULL, n.obs = NA, n.iter = 1, ncomp = k, nneg = TRUE,
             localcenter = TRUE, localscale = FALSE,...)
```

Arguments

- **data**: a Spatial*DataFrame either SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp.
- **elocat**: Same as GWmodel::gwpca. two-column numeric array or Spatial*DataFrame object for providing evaluation locations, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp.
- **vars**: the number of retained components; k must be less than the number of variables.
- **bw**: bandwidth used in the weighting function, possibly calculated by bw.gwpca; fixed (distance) or adaptive bandwidth (number of nearest neighbours).
- **k**: the number of retained components; k must be less than the number of variables
- **kernel**: Same as GWmodel::gwpca. Function chosen as follows: gaussian: \(wgt = \exp(-0.5*(vdist/bw)^2) \); exponential: \(wgt = \exp(-vdist/bw) \); bisquare: \(wgt = (1-(vdist/bw)^2)^2 \) if \(vdist < bw \), \(wgt=0 \) otherwise; tricube: \(wgt = (1-(vdist/bw)^3)^3 \) if \(vdist < bw \), \(wgt=0 \) otherwise; boxcar: \(wgt=1 \) if \(dist < bw \), \(wgt=0 \) otherwise see help(GWmodel::gw.weight) more detail.
- **adaptive**: if TRUE calculate an adaptive kernel where the bandwidth corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance).
- **p**: the power of the Minkowski distance, default is 2, i.e. the Euclidean distance.
- **theta**: an angle in radians to rotate the coordinate system, default is 0.
- **longlat**: if TRUE, great circle distances will be calculated.
- **geodisic_measure**: geodisic_measure is used when latlon coordinate. The distance is cauclated by geodist::geodist(). One of "haversine" "vincenty", "geodesic", or "cheap" specifying desired method of geodesic distance calculation. "Cheap" is the fastest way but may have errors if the ROI is large.
- **dMat**: a pre-specified distance matrix, it can be calculated by the function gw.dist.
gw_nsprrcomp

- **n.obs**: Number of observations used to find the correlation matrix if using a correlation matrix. Used for finding the goodness of fit statistics. Must be specified if using a correlation matrix and finding confidence intervals.

- **n.iter**: Same as psych::fa. Number of bootstrap interations to do in fa or fa.poly

- **ncomp**: the number of principal components (PCs) to be computed. With the default setting, PCs are computed until x is fully deflated. ncomp can be specified implicitly if k is given as a vector.

- **nneg**: a logical value indicating whether the loadings should be non-negative, i.e. the PAs should be constrained to the non-negative orthant.

- **localcenter**: If TRUE, local weighted x is centered. The default is TRUE.

- **localscale**: If TRUE, local weighted x is scaled. The default is FALSE.

- **...**: arguments passed to or from other methods.

Value

- **loadings**: The localized loadings
- **score**: The PC score by the localized non-negative PCA.
- **sdev**: The localized standard deviation of the principal components.

Author(s)

N. Tsutsumida

References

Examples

```r
### This example is for demonstrating GWnnegPCA only.
### The application does not imply any reasonable meanings.

library(sp)
library(spData)
library(sf)

boston <- as(st_read(system.file("shapes/boston_tracts.shp", package="spData")[[1]], "Spatial")
Data.scaled <- scale(as.matrix(boston@data[, c("AGE","RAD","TAX")]))
Coords <- as.matrix(cbind(boston$LON, boston$LAT))
Data.scaled.spdf <- SpatialPointsDataFrame(Coords, as.data.frame(Data.scaled))
```
gwnnegpca_ans <- gw_nsprcomp(
 data = Data.scaled.spdf,
 vars = colnames(Data.scaled.spdf@data),
 bw = 0.25,
 k = 3,
 longlat = TRUE,
 kernel="bisquare",
 adaptive = TRUE,
 nneg=TRUE,
 center=FALSE
)

boston$PC1_load_AGE <- gwnnegpca_ans$loadings[,"AGE","PC1"]
boston$PC1_load_RAD <- gwnnegpca_ans$loadings[,"RAD","PC1"]
boston$PC1_load_TAX <- gwnnegpca_ans$loadings[,"TAX","PC1"]

plot(st_as_sf(boston)[,c("PC1_load_AGE","PC1_load_RAD","PC1_load_TAX")])
Index

gw_nsprcomp, 2