GWnnegPCA: Geographically Weighted Non-Negative Principal Components Analysis

Implements a geographically weighted non-negative principal components analysis, which consists of the fusion of geographically weighted and sparse non-negative principal components analyses (Tsutsumida N. et al., (2019) <doi:10.17608/k6.auckland.9850826.v1>).

Version: 0.0.2
Depends: R (≥ 3.5.0)
Imports: sp, sf, GWmodel, nsprcomp, methods
Published: 2020-07-29
Author: Narumasa Tsutsumida ORCID iD [aut, cre]
Maintainer: Narumasa Tsutsumida < at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
SystemRequirements: C++11, GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0)
Language: en-US
Materials: README
CRAN checks: GWnnegPCA results


Reference manual: GWnnegPCA.pdf
Package source: GWnnegPCA_0.0.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: GWnnegPCA_0.0.2.tgz, r-oldrel: GWnnegPCA_0.0.2.tgz
Old sources: GWnnegPCA archive


Please use the canonical form to link to this page.