Package ‘GenderInfer’

October 12, 2022

Type Package
Title This is a Collection of Functions to Analyse Gender Differences
Version 0.1.0
Maintainer Rita Giordano <giordanor@rsc.org>
Description Implementation of functions, which combines binomial calculation and data visualisation, to analyse the differences in publishing authorship by gender described in Day et al. (2020) <doi:10.1039/C9SC04090K>. It should only be used when self-reported gender is unavailable.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports ggplot2, binom
Depends R (>= 2.10)
Suggests dplyr, knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Rita Giordano [aut, cre],
 Aileen Day [aut],
 John Boyle [aut],
 Colin Batchelor [ctb],
 Royal Society of Chemistry [cph]
Repository CRAN
Date/Publication 2021-09-29 08:00:05 UTC

R topics documented:

assign_gender ... 2
authors ... 3
balloon_plot ... 3
Assign gender by first name

Description

This function uses the data source based on combined US/UK censor data to assign gender based on first name.

Usage

assign_gender(data_df, first_name_col)

Arguments

data_df, input dataframe containing the first name
first_name_col, first name column’s name to assign gender to

Value

The input data frame with the gender column:

gender - assigned gender (F/M/U)

Examples

gender <- assign_gender(authors, "first_name")
authors

names dataset

Description
This data set contains all the names from UK and US social security.

Usage
authors

Format
A data frame with 1000 rows of four variables:

- first_name first name
- last_name last name
- country_code country
- publication_years publication year

balloon_plot Function to create the balloon plot for gender first name

Description
Function to create the balloon plot for gender first name.

Usage
balloon_plot(data_df, gender_var, cutoff)

Arguments
- data_df, data frame containing 'first_name' and 'gender' columns from assign_gender
- gender_var, gender possible values are F for female, M for male and U for unknown
- cutoff, numerical value indicating where to cut the counting data

Value
The output is a gg object from ggplot2 which shows the most frequent names as a balloon plot.

Examples

gender <- assign_gender(authors, "first_name")
bp <- balloon_plot(gender, "M", cutoff = 5)
bar_chart
Function to create a bar chart of the total number by gender

Description

Function to create a bar chart of the total number by gender

Usage

```r
bar_chart(data_df, x_label, y_label)
```

Arguments

- `data_df`, dataframe from `total_gender_df`
- `x_label`, label for x axis.
- `y_label`, label for y axis.

Value

A bar chart as ggplot2 object showing on the y axis the total number per gender and on the x axis the level previously defined in `total_gender_df`.

baseline
Calculate the female baseline

Description

baseline calculate the female baseline giving a dataframe containing the gender information.

Usage

```r
baseline(data_df, gender_col)
```

Arguments

- `data_df`, dataframe containing the gender column.
- `gender_col`, the name of the column containing the gender information.

Value

The function returns a numeric vector containing the baseline values
Examples

```r
## df is the dataframe in output from the function assign_gender
df <- data.frame(first_name = c("anna", "john", "ernest", "colin", "aileen"),
                 gender = c("F", "M", "M", "M", "F"),
                 stringsAsFactors = FALSE)
baseline <- baseline(df, gender_col = "gender")
```

bullet_chart

Create a bullet chart with significance bars to compare different baselines in percentage for gender analysis

Description

Create a bullet chart with significance bars to compare different baselines in percentage for gender analysis

Usage

```r
bullet_chart(data_df, baseline_female, x_label, y_label, baseline_label)
```

Arguments

- `data_df`, dataframe in output from `percent_df`
- `baseline_female`, numeric vector containing the baseline for each level
- `x_label`, label for x axis
- `y_label`, label for y axis
- `baseline_label`, label used to define the baseline name.

Value

This function create a bullet chart containing the percentage of submission with the corresponding baseline for the level defined in `percent_df`.
bullet_line_chart

Function to create a bullet chart with a line chart in the same graphical frame; to compare different baselines for gender analysis.

Description

Function to create a bullet chart with a line chart in the same graphical frame; to compare different baselines for gender analysis.

Usage

```r
bullet_line_chart(
  data_df,  # dataframe in output from percent_df
  baseline_female,  # numeric vector containing the baseline for each level
  x_label,  # label for x axis for both charts
  y_bullet_chart_label,  # label for y axis of the bullet chart
  baseline_label,  # label used to define the baseline name.
  line_chart_df,  # data frame containing the total number of submissions
  line_chart_scaling,  # factor of conversion for second y-axis
  y_line_chart_label,  # label the y-axis of the line chart
  line_label  # label used to define the line chart.
)
```

Arguments

data_df, # dataframe in output from percent_df
baseline_female, # numeric vector containing the baseline for each level
x_label, # label for x axis for both charts
y_bullet_chart_label, # label for y axis of the bullet chart
baseline_label, # label used to define the baseline name.
line_chart_df, # data frame containing the total number of submissions
line_chart_scaling, # factor of conversion for second y-axis
y_line_chart_label, # label the y-axis of the line chart
line_label # label used to define the line chart.

Value

The function create a bullet chart containing the percentage of male and female with the corresponding baseline for the level defined in percent_df. The total number of submissions are displayed on the top of the bullet chart.
calculate_binom_baseline

Calculate binomials and significance for multiple baselines.

Description

Function to calculate the lower CI, upper CI, percentages and counts, and significance of difference from one or multiple baseline percentages, given supplied confidence level using

Usage

```r
calculate_binom_baseline(data_df, baseline_female, confidence_level = 0.95)
```

Arguments

- `data_df`, dataframe in output from `reshape_for_binomials` containing the columns: female, male, which contain the integer counts of males and females respectively and must be a numeric vector greater than 0.
- `baseline_female`, female baseline in percentage from `baseline`.
- `confidence_level`, confidence level to use for significance calculation, default is 0.95

Value

This function returns a dataframe with additional columns than the input one:

- `lower_CI` = lower confidence level of confidence interval expressed as a percentage
- `upper_CI` = upper confidence level of confidence interval expressed as a percentage
- `lower_CI_count` = lower confidence level of confidence interval expressed as a count
- `upper_CI_count` = upper confidence level of confidence interval expressed as a count
- `significance` = flag indicating whether difference of female percentage with baseline percentage is significant for the row in consideration. It has values "significant" or "" if not.

gender_names

Gender names dataset

Description

This dataset contains all the names from UK and US social security

Usage

```r
gender_names
```
Format

a data frame of two variables:

Name First name
UKUS_Gender Gender of the first name

percent_df

Create a dataframe that will be the input to generate stacked bar chart and bullet chart that show percentage to compare proportions among gender.

Description

Create a dataframe that will be the input to generate stacked bar chart and bullet chart that show percentage to compare proportions among gender.

Usage

percent_df(data_df)

Arguments

data_df, dataframe containing level, lower_CI, upper_CI, significance and female and male percentages from calculate_binom_baseline

Value

The output dataframe contains the columns x_values, y_values, gender, labels

reshape_for_binomials

Reshape the dataframe to make it easier to carry out binomial calculations.

Description

reshape dataframe from long format to wide format.

Usage

reshape_for_binomials(data_df, gender_col, level)

Arguments

data_df, dataframe containing the columns gender and counts
gender_col, the name of the column containing the gender values.
level, variable to compare for the baseline.
Value

The output is a dataframe containing more columns than the input one, such as:

level : the variable used to perform the binomials
total_for_level: the total amount of each gender including unknowns
total_female_male: the total amount of male and female
female_percentage: the percentage of female in the total_female_male
male_percentage: the percentage of male in the total_female_male

Examples

```r
authors_df <- assign_gender(data_df = authors, first_name_col = "first_name")
female_count <- dplyr::count(authors_df, gender)

## create a new data frame to be used for the binomial calculation.
df_gender <- reshape_for_binomials(data = female_count, gender_col = "gender",
                                   level = 2020)
```

```r
c create a stacked bar chart with significance bars to compare with the female baseline for gender analysis.
```

Description

Create a stacked bar chart with significance bars to compare with the female baseline for gender analysis.

Usage

```r
stacked_bar_chart(data_df, baseline_female, x_label, y_label, baseline_label)
```

Arguments

- `data_df`, is the output dataframe from `percent_df`
- `baseline_female`, female baseline in percentage from `baseline`
- `x_label`, label for x axis
- `y_label`, label for y axis
- `baseline_label`, label used to define the baseline name.

Value

This function create a bar chart containing the percentage of submission with the corresponding baseline.
theme_gd

This function create a gender diversity theme for chart based on ggplot2.

Usage

theme_gd()

Value

an object of the class theme defined in ggplot2 own class system.

Examples

```r
require(ggplot2)
ggplot(authors, aes(x = publication_years)) + geom_bar() + theme_gd()
```

total_gender_df

Create a dataframe that will be the input to generate the bar chart of the full amount of female and male.

Description

Create a dataframe that will be the input to generate the bar chart of the full amount of female and male.

Usage

```
total_gender_df(data_df, level)
```

Arguments

- `data_df`, dataframe from `calculate_binom_baseline` containing Level, LCI, UCI, Significance and Male and Female percentages
- `level`, name of level

Value

The output is a dataframe with the columns `x_values`, `total_female_male`, `gender`, `y_values`. This data frame is the input to create the bar chart for `bar_chart`.
Index

* datasets
 authors, 3
 gender_names, 7

assign_gender, 2, 3
authors, 3

balloon_plot, 3
bar_chart, 4, 10
baseline, 4, 7, 9
bullet_chart, 5
bullet_line_chart, 6

calculate_binom_baseline, 7, 8, 10

gender_names, 7

percent_df, 5, 6, 8, 9

reshape_for_binomials, 7, 8

stacked_bar_chart, 9

theme_gd, 10

total_gender_df, 4, 10