Package ‘GenericML’

October 12, 2022

Title Generic Machine Learning Inference

Version 0.2.2

Author Max Welz [aut, cre] (<https://orcid.org/0000-0003-2945-1860>), Andreas Alfons [aut] (<https://orcid.org/0000-0002-2513-3788>), Mert Demirer [aut], Victor Chernozhukov [aut]

Maintainer Max Welz <welz@ese.eur.nl>

Description Generic Machine Learning Inference on heterogeneous treatment effects in randomized experiments as proposed in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <arXiv:1712.04802>. This package's workhorse is the 'mlr3' framework of Lang et al. (2019) <doi:10.21105/joss.01903>, which enables the specification of a wide variety of machine learners. The main functionality, GenericML(), runs Algorithm 1 in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <arXiv:1712.04802> for a suite of user-specified machine learners. All steps in the algorithm are customizable via setup functions. Methods for printing and plotting are available for objects returned by GenericML(). Parallel computing is supported.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.0

URL https://github.com/mwelz/GenericML/

BugReports https://github.com/mwelz/GenericML/issues/

Depends ggplot2, mlr3, mlr3learners

Imports sandwich, lmtest, splitstackshape, stats, parallel, abind

Suggests glmnet, ranger, rpart, e1071, xgboost, kknn, DiceKriging, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-18 08:00:09 UTC
R topics documented:

- BLP .. 2
- CLAN ... 4
- GATES ... 5
- GenericML ... 7
- GenericML_combine 12
- GenericML_single 14
- get_best ... 17
- get_BLP ... 18
- get_CLAN ... 20
- get_GATES .. 22
- heterogeneity_CLAN 23
- lambda_parameters 24
- Med ... 25
- plot.GenericML 26
- print.BLP_info 28
- print.CLAN_info 29
- print.GATES_info 29
- print.GenericML 30
- print.heterogeneity_CLAN 31
- propensity_score 31
- proxy_BCA 32
- proxy_CATE 34
- quantile_group 36
- setup_diff 36
- setup_plot 38
- setup_stratify 40
- setup_vcov 41
- setup_X1 ... 42
- TrueIfUnix 44

Index 45

__

BLP Performs BLP regression

Description

Performs the linear regression for the Best Linear Predictor (BLP) procedure.

Usage

BLP(
 Y,
 D,
 propensity_scores,
 proxy_BCA,
proxy_CATE,
HT = FALSE,
X1_control = setup_X1(),
vcov_control = setup_vcov(),
significance_level = 0.05
)

Arguments

Y A numeric vector containing the response variable.
D A binary vector of treatment assignment. Value one denotes assignment to the
treatment group and value zero assignment to the control group.
propensity_scores A numeric vector of propensity scores. We recommend to use the estimates of a
"propensity_score" object.
proxy_BCA A numeric vector of proxy baseline conditional average (BCA) estimates. We
recommend to use the estimates of a "proxy_BCA" object.
proxy_CATE A numeric vector of proxy conditional average treatment effect (CATE) esti-
mates. We recommend to use the estimates of a "proxy_CATE" object.
HT Logical. If TRUE, a Horvitz-Thompson (HT) transformation is applied (BLP2 in
the paper). Default is FALSE.
X1_control Specifies the design matrix \(X_1 \) in the regression. Must be an object of class
"setup_X1". See the documentation of setup_X1() for details.
vcov_control Specifies the covariance matrix estimator. Must be an object of class "setup_vcov".
See the documentation of setup_vcov() for details.
significance_level Significance level. Default is 0.05.

Value

An object of class "BLP", consisting of the following components:

generic_targets A matrix of the inferential results on the BLP generic targets.
coefficients An object of class "coeftest", contains the coefficients of the BLP regression.
1m An object of class "1m" used to fit the linear regression model.

References

ing Inference on Heterogenous Treatment Effects in Randomized Experiments.” arXiv preprint

See Also

setup_X1(), setup_diff(), setup_vcov(), propensity_score(), proxy_BCA(), proxy_CATE()
Examples

```r
## generate data
set.seed(1)
n <- 150  # number of observations
p <- 5   # number of covariates
D <- rbinom(n, 1, 0.5) # random treatment assignment
Y <- runif(n)  # outcome variable
propensity_scores <- rep(0.5, n)  # propensity scores
proxy_BCA <- runif(n)  # proxy BCA estimates
proxy_CATE <- runif(n)  # proxy CATE estimates

## perform BLP
BLP(Y, D, propensity_scores, proxy_BCA, proxy_CATE)
```

CLAN

Performs CLAN

Description

Performs Classification Analysis (CLAN) on all variables in a design matrix.

Usage

```r
CLAN(Z_CLAN, membership, equal_variances = FALSE, diff = setup_diff(),
    significance_level = 0.05)
```

Arguments

- **Z_CLAN**
 A numeric matrix holding variables on which classification analysis (CLAN) shall be performed. CLAN will be performed on each column of the matrix.

- **membership**
 A logical matrix that indicates the group membership of each observation in Z_CLAN. Needs to be of type "quantile_group". Typically, the grouping is based on CATE estimates, which are for instance returned by proxy_CATE.

- **equal_variances**
 If TRUE, then all within-group variances of the CLAN groups are assumed to be equal. Default is FALSE. This specification is required for heteroskedasticity-robust variance estimation on the difference of two CLAN generic targets (i.e. variance of the difference of two means). If TRUE (corresponds to homoskedasticity assumption), the pooled variance is used. If FALSE (heteroskedasticity), the variance of Welch’s t-test is used.
diff
Specifies the generic targets of CLAN. Must be an object of class "setup_diff". See the documentation of `setup_diff()` for details.

significance_level
Significance level. Default is 0.05.

Value
An object of the class "CLAN", consisting of the following components:

- **generic_targets**: A list of result matrices for each variable in Z_CLAN. Each matrix contains inferential results on the CLAN generic targets.
- **coefficients**: A matrix of point estimates of each CLAN generic target parameter.

References

See Also
`quantile_group()`, `setup_diff()`

Examples
```r
## generate data
set.seed(1)
n <- 150 # number of observations
p <- 5 # number of covariates
Z_CLAN <- matrix(runif(n*p), n, p) # design matrix to perform CLAN on membership <- quantile_group(rnorm(n)) # group membership

## perform CLAN
CLAN(Z_CLAN, membership)
```

GATES

Performs GATES regression

Description

Performs the linear regression for the Group Average Treatments Effects (GATES) procedure.
Usage

GATES(
 Y,
 D,
 propensity_scores,
 proxy_BCA,
 proxy_CATE,
 membership,
 HT = FALSE,
 X1_control = setup_X1(),
 vcov_control = setup_vcov(),
 diff = setup_diff(),
 significance_level = 0.05
)

Arguments

Y A numeric vector containing the response variable.
D A binary vector of treatment assignment. Value one denotes assignment to the
treatment group and value zero assignment to the control group.
propensity_scores A numeric vector of propensity scores. We recommend to use the estimates of a "propensity_score" object.
proxy_BCA A numeric vector of proxy baseline conditional average (BCA) estimates. We recommend to use the estimates of a "proxy_BCA" object.
proxy_CATE A numeric vector of proxy conditional average treatment effect (CATE) estimates. We recommend to use the estimates of a "proxy_CATE" object.
membership A logical matrix that indicates the group membership of each observation in Z_CLAN. Needs to be of type "quantile_group". Typically, the grouping is based on CATE estimates, which are for instance returned by proxy_CATE().
HT Logical. If TRUE, a Horvitz-Thompson (HT) transformation is applied (GATES2 in the paper). Default is FALSE.
X1_control Specifies the design matrix X_1 in the regression. Must be an object of class "setup_X1". See the documentation of setup_X1() for details.
vcov_control Specifies the covariance matrix estimator. Must be an object of class "setup_vcov". See the documentation of setup_vcov() for details.
diff Specifies the generic targets of CLAN. Must be an object of class "setup_diff". See the documentation of setup_diff() for details.

Value

An object of class "GATES", consisting of the following components:

generic_targets A matrix of the inferential results on the GATES generic targets.
coefficients An object of class "coeftest", contains the coefficients of the GATES regression.

lm An object of class "lm" used to fit the linear regression model.

References

See Also

setup_X1(), setup_diff(), setup_vcov(), propensity_score(), proxy_BCA(), proxy_CATE()

Examples

generate data
set.seed(1)
n <- 150 # number of observations
p <- 5 # number of covariates
D <- rbinom(n, 1, 0.5) # random treatment assignment
Y <- runif(n) # outcome variable
propensity_scores <- rep(0.5, n) # propensity scores
proxy_BCA <- runif(n) # proxy BCA estimates
proxy_CATE <- runif(n) # proxy CATE estimates
membership <- quantile_group(proxy_CATE) # group membership

perform GATES
GATES(Y, D, propensity_scores, proxy_BCA, proxy_CATE, membership)
GenericML

Z_CLAN = NULL,
HT = FALSE,
quantile_cutoffs = c(0.25, 0.5, 0.75),
X1_BLP = setup_X1(),
X1_GATES = setup_X1(),
diff_GATES = setup_diff(),
diff_CLAN = setup_diff(),
vcov_BLP = setup_vcov(),
vcov_GATES = setup_vcov(),
equal_variances_CLAN = FALSE,
prop_aux = 0.5,
stratify = setup_stratify(),
significance_level = 0.05,
min_variation = 1e-05,
parallel = FALSE,
um_cores = parallel::detectCores(),
seed = NULL,
store_learners = FALSE,
store_splits = TRUE
)

Arguments

Z
A numeric design matrix that holds the covariates in its columns.

D
A binary vector of treatment assignment. Value one denotes assignment to the
treatment group and value zero assignment to the control group.

Y
A numeric vector containing the response variable.

learners_GenericML
A character vector specifying the machine learners to be used for estimating
the baseline conditional average (BCA) and conditional average treatment ef-
fect (CATE). Either 'lasso', 'random_forest', 'tree', or a custom learner
specified with mlr3 syntax. In the latter case, do not specify in the mlr3 syntax
specification if the learner is a regression learner or classification learner. Exam-
ple: 'mlr3::lrn("ranger", num.trees = 100)' for a random forest learner
with 100 trees. Note that this is a string and the absence of the classif. or
regr. keywords. See https://mlr3learners.mlr-org.com for a list of mlr3
learners.

learner_propensity_score
The estimator of the propensity scores. Either a numeric vector (which is then
taken as estimates of the propensity scores) or a string specifying the estimator.
In the latter case, the string must either be equal to 'constant' (estimates the
propensity scores by mean(D)), 'lasso', 'random_forest', 'tree', or mlr3
syntax. Note that in case of mlr3 syntax, do not specify if the learner is a
regression learner or classification learner. Example: 'mlr3::lrn("ranger",
num.trees = 100)' for a random forest learner with 100 trees. Note that this
is a string and the absence of the classif. or regr. keywords. See https:
//mlr3learners.mlr-org.com for a list of mlr3 learners.
num_splits Number of sample splits. Default is 100. Must be larger than one. If you want to run GenericML on a single split, please use GenericML_single().

Z_CLAN A numeric matrix holding variables on which classification analysis (CLAN) shall be performed. CLAN will be performed on each column of the matrix. If NULL (default), then Z_CLAN = Z, i.e. CLAN is performed for all variables in Z.

HT Logical. If TRUE, a Horvitz-Thompson (HT) transformation is applied in the BLP and GATES regressions. Default is FALSE.

quantile_cutoffs The cutoff points of the quantiles that shall be used for GATES grouping. Default is c(0.25, 0.5, 0.75), which corresponds to the four quartiles.

X1_BLP Specifies the design matrix X_1 in the regression. Must be an object of class "setup_X1". See the documentation of setup_X1() for details.

X1_GATES Same as X1_BLP, just for the GATES regression.

diff_GATES Specifies the generic targets of GATES. Must be an object of class "setup_diff". See the documentation of setup_diff() for details.

diff.CLAN Same as diff_GATES, just for the CLAN generic targets.

vcov_BLP Specifies the covariance matrix estimator in the BLP regression. Must be an object of class "setup_vcov". See the documentation of setup_vcov() for details.

vcov_GATES Same as vcov_BLP, just for the GATES regression.

equal_variances_CLAN Logical. If TRUE, then all within-group variances of the CLAN groups are assumed to be equal. Default is FALSE. This specification is required for heteroskedasticity-robust variance estimation on the difference of two CLAN generic targets (i.e. variance of the difference of two means). If TRUE (corresponds to homoskedasticity assumption), the pooled variance is used. If FALSE (heteroskedasticity), the variance of Welch’s t-test is used.

prop_aux Proportion of samples that shall be in the auxiliary set in case of random sample splitting. Default is 0.5. The number of samples in the auxiliary set will be equal to floor(prop_aux * length(Y)). If the data set is large, you can save computing time by choosing prop_aux to be smaller than 0.5. In case of stratified sampling (controlled through the argument stratify via setup_stratify()), prop_aux does not have an effect, and the number of samples in the auxiliary set is specified via setup_stratify().

stratify A list that specifies whether or not stratified sample splitting shall be performed. It is recommended to use the returned object of setup_stratify() as this list. See the documentation of setup_stratify() for details.

significance_level Significance level for VEIN. Default is 0.05.

min_variation Specifies a threshold for the minimum variation of the BCA/CATE predictions. If the variation of a BCA/CATE prediction falls below this threshold, random noise with distribution $N(0, var(Y)/20)$ is added to it. Default is 1e-05.

parallel Logical. If TRUE, parallel computing will be used. Default is FALSE. On Unix systems, this will be done via forking (shared memory across threads). On non-Unix systems, this will be done through parallel socket clusters.
num_cores Number of cores to be used in parallelization (if applicable). Default is the number of cores of the user’s machine.

seed Random seed. Default is NULL for no random seeding.

store_learners Logical. If TRUE, all intermediate results of the learners will be stored. That is, for each learner and each split, all BCA and CATE predictions as well as all BLP, GATES, CLAN, and Λ estimates will be stored. Default is FALSE.

store_splits Logical. If TRUE (default), the sample splits will be stored.

Details

The specifications "lasso", "random_forest", and "tree" in learners_GenericML and learner_propensity_score correspond to the following mlr3 specifications (we omit the keywords classif. and regr.). "lasso" is a cross-validated Lasso estimator, which corresponds to `mlr3::lrn("cv_glmnet", s = "lambda.min", alpha = 1)`. "random_forest" is a random forest with 500 trees, which corresponds to `mlr3::lrn("ranger", num.trees = 500)`. "tree" is a tree learner, which corresponds to `mlr3::lrn("rpart")`. **Warning:** GenericML() can be quite memory-intensive, in particular when the data set is large. To alleviate memory usage, consider setting store_learners = FALSE, choosing a low number of cores via num_cores (at the expense of longer computing time), setting prop_aux to a value smaller than the default of 0.5, or using GenericML_combine().

Value

An object of class "GenericML". On this object, we recommend to use the accessor functions get_BLP(), get_GATES(), and get_CLAN() to extract the results of the analyses of BLP, GATES, and CLAN, respectively. An object of class "GenericML" contains the following components:

VEIN A list containing two sub-lists called best_learners and all_learners, respectively. Each of these two sub-lists contains the inferential VEIN results on the generic targets of the BLP, GATES, and CLAN analyses. all_learners does this for all learners specified in the argument learners_GenericML, best_learners only for the corresponding best learners. Which learner is best for which analysis is assessed by the Λ criteria discussed in Sections 5.2 and 5.3 of the paper.

best A list containing information on the evaluation of which learner is the best for which analysis. Contains four components. The first three contain the name of the best learner for BLP, GATES, and CLAN, respectively. The fourth component, overview, contains the two Λ criteria used to determine the best learners (discussed in Sections 5.2 and 5.3 of the paper).

propensity_scores The propensity score estimates as well as the "mlr3" objects used to estimate them (if mlr3 was used for estimation).

GenericML_single Only nonempty if store_learners = TRUE. Contains all intermediate results of each learners for each split. That is, for a given learner (first level of the list) and split (second level), objects of classes "BLP", "GATES", "CLAN", "proxy_BCA", "proxy_CATE" as well as the Λ criteria ("best")) are listed, which were computed with the given learner and split.

splits Only nonempty if store_splits = TRUE. Contains a character matrix of dimension length(Y) by num_splits. Contains the group membership (main or auxiliary) of each observation (rows) in each split (columns). "M" denotes the main set, "A" the auxiliary set.
generic_targets A list of generic target estimates for each learner. More specifically, each component is a list of the generic target estimates pertaining to the BLP, GATES, and CLAN analyses. Each of those lists consists of a three-dimensional array containing the generic targets of a single learner for all sample splits (except CLAN where there is one more layer of lists).

arguments A list of arguments used in the function call.

Note
In an earlier development version, Lucas Kitzmueller alerted us to several minor bugs and proposed fixes. Many thanks to him!

References

See Also
plot.GenericML(), print.GenericML(), get_BLP(), get_GATES(), get_CLAN(), setup_X1(), setup_diff(), setup_vcov(), setup_stratify(), GenericML_single(), GenericML_combine()

Examples
if (require("glmnet") & & require("ranger")) {

generate data
set.seed(1)
 n <- 150 # number of observations
 p <- 5 # number of covariates
 D <- rbinom(n, 1, 0.5) # random treatment assignment
 Z <- matrix(runif(n*p), n, p) # design matrix
 Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
 Y1 <- 2 + Y0 # potential outcome under treatment
 Y <- ifelse(D == 1, Y1, Y0) # observed outcome

column names of Z
 colnames(Z) <- paste0("V", 1:p)

specify learners
 learners <- c("lasso", "mlr3::lrn(ranger", num.trees = 10")

glmnet v4.1.3 isn't supported on Solaris, so skip Lasso in this case
if(Sys.info()["sysname"] == "SunOS") learners <- learners[-1]

specify quantile cutoffs (the 4 quartile groups here)
 quantile_cutoffs <- c(0.25, 0.5, 0.75)
specify the differenced generic targets of GATES and CLAN
use G4-G1, G4-G2, G4-G3 as differenced generic targets in GATES
diff_GATES <- setup_diff(subtract_from = "most",
 subtracted = c(1,2,3))
use G1-G3, G1-G2 as differenced generic targets in CLAN
diff_CLAN <- setup_diff(subtract_from = "least",
 subtracted = c(3,2))

perform generic ML inference
small number of splits to keep computation time low
x <- GenericML(Z, D, Y, learners, num_splits = 2,
 quantile_cutoffs = quantile_cutoffs,
 diff_GATES = diff_GATES,
 diff_CLAN = diff_CLAN,
 parallel = FALSE)

access BLP generic targets for best learner and make plot
get_BLP(x, plot = TRUE)

access GATES generic targets for best learner and make plot
get_GATES(x, plot = TRUE)

access CLAN generic targets for "V1" & best learner and make plot
get_CLAN(x, variable = "V1", plot = TRUE)

GenericML_combine

Combine several GenericML objects

Description

This function combines multiple "GenericML" objects into one "GenericML" object. Combining several "GenericML" objects can be useful when you cannot run `GenericML()` for sufficiently many splits due to memory constraints. In this case, you may run `GenericML()` multiple times with only a small number of sample splits each and combine the returned "GenericML" objects into one GenericML object with this function.

Usage

```r
GenericML_combine(x)
```

Arguments

- `x`: A list of "GenericML" objects, as returned by the function `GenericML()`.
Details

To ensure consistency of the estimates, all "GenericML" objects in the list x must have the exact same parameter specifications in their original call to GenericML(), except for the parameters num_splits, parallel, num_cores, seed, and store_learners (i.e. these arguments may vary between the "GenericML" objects in the list x). An error will be thrown if this is not satisfied.

Value

A "GenericML" object as returned by GenericML(). In the arguments component of this object, the objects parallel, num_cores, seed, and store_learners are set to NULL as these might differ between the individual GenericML objects in x. Moreover, the propensity_scores component of the returned object is taken from the first "GenericML" object in x.

See Also

GenericML()

Examples

if (require("glmnet") && require("ranger")) {

 ## generate data
 set.seed(1)
 n <- 150 # number of observations
 p <- 5 # number of covariates
 D <- rbinom(n, 1, 0.5) # random treatment assignment
 Z <- matrix(runif(n*p), n, p) # design matrix
 Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
 Y1 <- 2 + Y0 # potential outcome under treatment
 Y <- ifelse(D == 1, Y1, Y0) # observed outcome

 ## column names of Z
 colnames(Z) <- paste0("V", 1:p)

 ## specify learners
 learners <- c("lasso", "mlr3::lrn('ranger', num.trees = 10)")

 ## glmnet v4.1.3 isn't supported on Solaris, so skip Lasso in this case
 if(Sys.info()["sysname"] == "SunOS") learners <- learners[-1]

 ## call GenericML three times and store the returned objects in a list x
 x <- lapply(1:3, function(...) GenericML(Z, D, Y, learners, num_splits = 2, parallel = FALSE))

 ## combine the objects in x into one GenericML object
 genML <- GenericML_combine(x)

 ## you can use all methods of GenericML objects on the combined object, for instance accessors:
 get_BLP(genML, plot = TRUE)

}
Single iteration of the GenericML algorithm

Description

Performs generic ML inference for a single learning technique and a given split of the data. Can be seen as a single iteration of Algorithm 1 in the paper.

Usage

GenericML_single(
 Z,
 D,
 Y,
 learner,
 propensity_scores,
 M_set,
 A_set = setdiff(1:length(Y), M_set),
 Z_CLAN = NULL,
 HT = FALSE,
 quantile_cutoffs = c(0.25, 0.5, 0.75),
 X1_BLP = setup_X1(),
 X1_GATES = setup_X1(),
 diff_GATES = setup_diff(),
 diff_CLAN = setup_diff(),
 vcov_BLP = setup_vcov(),
 vcov_GATES = setup_vcov(),
 equal_variances_CLAN = FALSE,
 significance_level = 0.05,
 min_variation = 1e-05
)

Arguments

Z A numeric design matrix that holds the covariates in its columns.
D A binary vector of treatment assignment. Value one denotes assignment to the treatment group and value zero assignment to the control group.
Y A numeric vector containing the response variable.
learner A character specifying the machine learner to be used for estimating the baseline conditional average (BCA) and conditional average treatment effect (CATE). Either 'lasso', 'random_forest', 'tree', or a custom learner specified with mlr3 syntax. In the latter case, do not specify in the mlr3 syntax specification if the learner is a regression learner or classification learner. Example: 'mlr3::lrn("ranger", num.trees = 100)' for a random forest learner with
100 trees. Note that this is a string and the absence of the classif. or regr. keywords. See https://mlr3learners.mlr-org.com for a list of mlr3 learners.

propensity_scores
A numeric vector of propensity score estimates.

M_set
A numerical vector of indices of observations in the main sample.

A_set
A numerical vector of indices of observations in the auxiliary sample. Default is complementary set to M_set.

Z_CLAN
A numeric matrix holding variables on which classification analysis (CLAN) shall be performed. CLAN will be performed on each column of the matrix. If NULL (default), then Z_CLAN = Z, i.e. CLAN is performed for all variables in Z.

HT
Logical. If TRUE, a Horvitz-Thompson (HT) transformation is applied in the BLP and GATES regressions. Default is FALSE.

quantile_cutoffs
The cutoff points of the quantiles that shall be used for GATES grouping. Default is c(0.25, 0.5, 0.75), which corresponds to the four quartiles.

X1_BLP
Specifies the design matrix X_1 in the regression. Must be an object of class "setup_X1". See the documentation of setup_X1() for details.

X1_GATES
Same as X1_BLP, just for the GATES regression.

diff_GATES
Specifies the generic targets of GATES. Must be an object of class "setup_diff". See the documentation of setup_diff() for details.

diff_CLAN
Same as diff_GATES, just for the CLAN generic targets.

vcov_BLP
Specifies the covariance matrix estimator in the BLP regression. Must be an object of class "setup_vcov". See the documentation of setup_vcov() for details.

vcov_GATES
Same as vcov_BLP, just for the GATES regression.

equal_variances_CLAN
Logical. If TRUE, then all within-group variances of the CLAN groups are assumed to be equal. Default is FALSE. This specification is required for heteroskedasticity-robust variance estimation on the difference of two CLAN generic targets (i.e. variance of the difference of two means). If TRUE (corresponds to homoskedasticity assumption), the pooled variance is used. If FALSE (heteroskedasticity), the variance of Welch’s t-test is used.

significance_level
Significance level for VEIN. Default is 0.05.

min_variation
Specifies a threshold for the minimum variation of the BCA/CATE predictions. If the variation of a BCA/CATE prediction falls below this threshold, random noise with distribution $N(0, var(Y) / 20)$ is added to it. Default is 1e-05.

Details
The specifications "lasso", "random_forest", and "tree" in learner correspond to the following mlr3 specifications (we omit the keywords classif. and regr.). "lasso" is a cross-validated Lasso estimator, which corresponds to 'mlr3::lrn("cv_glmnet", s = "lambda.min", alpha = 1)'. "random_forest" is a random forest with 500 trees, which corresponds to 'mlr3::lrn("ranger", num.trees = 500)'. "tree" is a tree learner, which corresponds to 'mlr3::lrn("rpart")'.
Value

A list with the following components:

- **BLP**: An object of class "BLP".
- **GATES**: An object of class "GATES".
- **CLAN**: An object of class "CLAN".
- **proxy_BCA**: An object of class "proxy_BCA".
- **proxy_CATE**: An object of class "proxy_CATE".
- **best**: Estimates of the \(\Lambda \) parameters for finding the best learner. Returned by `lambda_parameters()`.

References

See Also

`GenericML()`

Examples

```r
if(require("ranger")){
  ## generate data
  set.seed(1)
  n <- 150 # number of observations
  p <- 5 # number of covariates
  Z <- matrix(runif(n*p), n, p) # design matrix
  D <- rbinom(n, 1, 0.5) # random treatment assignment
  Y <- runif(n) # outcome variable
  propensity_scores <- rep(0.5, n) # propensity scores
  M_set <- sample(1:n, size = n/2) # main set

  ## specify learner
  learner <- "mlr3::lrn('ranger', num.trees = 10)"

  ## run single GenericML iteration
  GenericML_single(Z, D, Y, learner, propensity_scores, M_set)
}
```
get_best accessor function for the best learner estimates

Description
The best learner is determined by maximizing the criteria Λ and $\bar{\Lambda}$, see Sections 5.2 and 5.3 of the paper. This function accesses the estimates of these two criteria.

Usage
get_best(x)

Arguments
x An object of the class "GenericML", as returned by the function GenericML().

Value
An object of class "best", which consists of the following components:

BLP A string holding the name of the best learner for a BLP analysis.
GATES A string holding the name of the best learner for a GATES analysis.
CLAN A string holding the name of the best learner for a CLAN analysis (same learner as in GATES).
overview A numeric matrix of the estimates of the performance measures Λ and $\bar{\Lambda}$ for each learner.

See Also
GenericML(), get_BLP(), get_GATES(), get_CLAN()

Examples
if(require("rpart") && require("ranger")){
 ## generate data
 set.seed(1)
 n <- 150 # number of observations
 p <- 5 # number of covariates
 D <- rbinom(n, 1, 0.5) # random treatment assignment
 Z <- matrix(runif(n*p), n, p) # design matrix
 Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
 Y1 <- 2 + Y0 # potential outcome under treatment
 Y <- ifelse(D == 1, Y1, Y0) # observed outcome

 ## column names of Z
 colnames(Z) <- paste0("V", 1:p)

 ## specify learners
 learners <- c("tree", "mlr3::lrn('ranger', num.trees = 10)")
perform generic ML inference
small number of splits to keep computation time low
x <- GenericML(Z, D, Y, learners, num_splits = 2,
 parallel = FALSE)

access best learner
get_best(x)

access BLP generic targets for best learner w/o plot
get_BLP(x, learner = "best", plot = FALSE)

access BLP generic targets for ranger learner w/o plot
get_BLP(x, learner = "mlr3::lrn(\"ranger\", num.trees = 10)\", plot = FALSE)

access GATES generic targets for best learner w/o plot
get_GATES(x, learner = "best", plot = FALSE)

access GATES generic targets for ranger learner w/o plot
get_GATES(x, learner = "mlr3::lrn(\"ranger\", num.trees = 10)\", plot = FALSE)

access CLAN generic targets for "V1" & best learner, w/o plot
get_CLAN(x, learner = "best", variable = "V1", plot = FALSE)

access CLAN generic targets for "V1" & ranger learner, w/o plot
get_CLAN(x, learner = "mlr3::lrn(\"ranger\", num.trees = 10)\",
 variable = "V1", plot = FALSE)

get_BLP

Accessor function for the BLP generic target estimates

Description

Accessor function for the BLP generic target estimates

Usage

get_BLP(x, learner = "best", plot = TRUE)

Arguments

- **x**: An object of the class "GenericML", as returned by the function GenericML().
- **learner**: A character string of the learner whose BLP generic target estimates shall be accessed. Default is "best" for the best learner for BLP.
- **plot**: Logical. If TRUE (default), a "ggplot" object is computed.
Value

An object of class "BLP_info", which consists of the following components:

- `estimate` A numeric vector of point estimates of the BLP generic targets.
- `confidence_interval` A numeric matrix of the lower and upper confidence bounds for each generic target. The confidence level of the implied confidence interval is equal to $1 - 2 \times \text{significance_level}$.
- `confidence_level` The confidence level of the confidence intervals. Equals $1 - 2 \times \text{significance_level}$.
- `learner` The argument `learner`.
- `plot` An object of class "ggplot". Only returned if the argument `plot = TRUE`.

See Also

`GenericML()`, `get_GATES()`, `get_CLAN()`, `get_best()`, `print.BLP_info()`, `print.GATES_info()`, `print.CLAN_info()`

Examples

```r
if(require("rpart") && require("ranger")){
  ## generate data
  set.seed(1)
  n <- 150 # number of observations
  p <- 5 # number of covariates
  D <- rbinom(n, 1, 0.5) # random treatment assignment
  Z <- matrix(runif(n*p), n, p) # design matrix
  Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
  Y1 <- 2 + Y0 # potential outcome under treatment
  Y <- ifelse(D == 1, Y1, Y0) # observed outcome

  ## column names of Z
  colnames(Z) <- paste0("V", 1:p)

  ## specify learners
  learners <- c("tree", "mlr3::lrn('ranger', num.trees = 10)")

  ## perform generic ML inference
  # small number of splits to keep computation time low
  x <- GenericML(Z, D, Y, learners, num_splits = 2,
                  parallel = FALSE)

  ## access best learner
  get_best(x)

  ## access BLP generic targets for best learner w/o plot
  get_BLP(x, learner = "best", plot = FALSE)

  ## access BLP generic targets for ranger learner w/o plot
  get_BLP(x, learner = "mlr3::lrn('ranger', num.trees = 10)", plot = FALSE)

  ## access GATES generic targets for best learner w/o plot
```
get_GATES(x, learner = "best", plot = FALSE)

access GATES generic targets for ranger learner w/o plot
get_GATES(x, learner = "mlr3::lrn('ranger', num.trees = 10)", plot = FALSE)

access CLAN generic targets for "V1" & best learner, w/o plot
get_CLAN(x, learner = "best", variable = "V1", plot = FALSE)

access CLAN generic targets for "V1" & ranger learner, w/o plot
get_CLAN(x, learner = "mlr3::lrn('ranger', num.trees = 10)",
variable = "V1", plot = FALSE)
}

get_CLAN

Accessor function for the CLAN generic target estimates

Description

Accessor function for the CLAN generic target estimates

Usage

get_CLAN(x, variable, learner = "best", plot = TRUE)

Arguments

x An object of the class "GenericML", as returned by the function GenericML().

variable The (character) name of a variable on which CLAN was performed.

learner A character string of the learner whose CLAN generic target estimates shall be
accessed. Default is "best" for the best learner for CLAN

plot Logical. If TRUE (default), a "ggplot" object is computed.

Value

An object of class "CLAN_info", which consists of the following components:

estimate A numeric vector of point estimates of the CLAN generic targets.

confidence_interval A numeric matrix of the lower and upper confidence bounds for each
generic target. The confidence level of the implied confidence interval is equal to 1 - 2 *
significance_level.

confidence_level The confidence level of the confidence intervals. Equals 1 - 2 * significance_level.

learner The argument learner.

plot An object of class "ggplot". Only returned if the argument plot = TRUE.

CLAN_variable The name of the CLAN variable of interest.
get_CLAN

See Also

GenericML(), get_BLP(), get_GATES(), get_best(), print.BLP_info(), print.GATES_info(), print.CLAN_info()

Examples

if(require("rpart") && require("ranger")){
 ## generate data
 set.seed(1)
 n <- 150 # number of observations
 p <- 5 # number of covariates
 D <- rbinom(n, 1, 0.5) # random treatment assignment
 Z <- matrix(runif(n*p), n, p) # design matrix
 Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
 Y1 <- 2 + Y0 # potential outcome under treatment
 Y <- ifelse(D == 1, Y1, Y0) # observed outcome

 ## column names of Z
 colnames(Z) <- paste0("V", 1:p)

 ## specify learners
 learners <- c("tree", "mlr3::lrn('ranger', num.trees = 10)"

 ## perform generic ML inference
 # small number of splits to keep computation time low
 x <- GenericML(Z, D, Y, learners, num_splits = 2,
 parallel = FALSE)

 ## access best learner
 get_best(x)

 ## access BLP generic targets for best learner w/o plot
 get_BLP(x, learner = "best", plot = FALSE)

 ## access BLP generic targets for ranger learner w/o plot
 get_BLP(x, learner = "mlr3::lrn('ranger', num.trees = 10)", plot = FALSE)

 ## access GATES generic targets for best learner w/o plot
 get_GATES(x, learner = "best", plot = FALSE)

 ## access GATES generic targets for ranger learner w/o plot
 get_GATES(x, learner = "mlr3::lrn('ranger', num.trees = 10)", plot = FALSE)

 ## access CLAN generic targets for "V1" & best learner, w/o plot
 get_CLAN(x, learner = "best", variable = "V1", plot = FALSE)

 ## access CLAN generic targets for "V1" & ranger learner, w/o plot
 get_CLAN(x, learner = "mlr3::lrn('ranger', num.trees = 10)",
 variable = "V1", plot = FALSE)
}
get_GATES

Accessory function for the GATES generic target estimates

Description

Accessor function for the GATES generic target estimates

Usage

get_GATES(x, learner = "best", plot = TRUE)

Arguments

x

An object of the class "GenericML", as returned by the function GenericML().

learner

A character string of the learner whose GATES generic target estimates shall be accessed. Default is "best" for the best learner for GATES.

plot

Logical. If TRUE (default), a "ggplot" object is computed.

Value

An object of class "GATES_info", which consists of the following components:

estimate

A numeric vector of point estimates of the GATES generic targets.

confidence_interval

A numeric matrix of the lower and upper confidence bounds for each generic target. The confidence level of the implied confidence interval is equal to 1 - 2 * significance_level.

confidence_level

The confidence level of the confidence intervals. Equals 1 - 2 * significance_level.

learner

The argument learner.

plot

An object of class "ggplot". Only returned if the argument plot = TRUE.

See Also

GenericML(), get_BLP(), get_CLAN(), get_best(), print.BLP_info(), print.GATES_info(), print.CLAN_info()

Examples

if(require("rpart") && require("ranger")){
 ## generate data
 set.seed(1)
 n <- 150 # number of observations
 p <- 5 # number of covariates
 D <- rbinom(n, 1, 0.5) # random treatment assignment
 Z <- matrix(runif(n*p), n, p) # design matrix
 Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
 Y1 <- 2 + Y0 # potential outcome under treatment
 Y <- ifelse(D == 1, Y1, Y0) # observed outcome
column names of Z
colnames(Z) <- paste0("V", 1:p)

specify learners
learners <- c("tree", "mlr3::lrn('ranger', num.trees = 10)")

perform generic ML inference
small number of splits to keep computation time low
x <- GenericML(Z, D, Y, learners, num_splits = 2, parallel = FALSE)

access best learner
get_best(x)

access BLP generic targets for best learner w/o plot
get_BLP(x, learner = "best", plot = FALSE)

access BLP generic targets for ranger learner w/o plot
get_BLP(x, learner = "mlr3::lrn('ranger', num.trees = 10)", plot = FALSE)

access GATES generic targets for best learner w/o plot
get_GATES(x, learner = "best", plot = FALSE)

access GATES generic targets for ranger learner w/o plot
get_GATES(x, learner = "mlr3::lrn('ranger', num.trees = 10)", plot = FALSE)

access CLAN generic targets for "V1" & best learner, w/o plot
get_CLAN(x, learner = "best", variable = "V1", plot = FALSE)

access CLAN generic targets for "V1" & ranger learner, w/o plot
get_CLAN(x, learner = "mlr3::lrn('ranger', num.trees = 10)",
variable = "V1", plot = FALSE)

heterogeneity_CLAN

Evaluate treatment effect heterogeneity along CLAN variables

Description

This function tests for statistical significance of all CLAN difference parameters that were specified in the function setup_diff(). It reports all CLAN variables along which there are significant difference parameters, which corresponds to evidence for treatment effect heterogeneity along this variable, at the specified significance level.

Usage

heterogeneity_CLAN(x, learner = "best", significance_level = 0.05)
Arguments

- **x**: An object of class "GenericML", as returned by the function `GenericML()`.
- **learner**: A character string of the learner whose CLAN generic target estimates are of interest. Default is "best" for the best learner for CLAN.
- **significance_level**: Level for the significance tests. Default is 0.05.

Value

An object of class "heterogeneity_CLAN", consisting of the following components:

- **p_values**: A matrix of p values of all CLAN difference parameters for all CLAN variables.
- **significant**: The names of variables with at least one significant CLAN difference parameter ("variables"), their number "num_variables", and the total number of significant CLAN difference parameters "num_params". All significance tests were performed at level `significance_level`.
- **min_pval**: Information on the smallest p value: Its value ("value"), the variable in which it was estimated ("variable"), the CLAN difference parameter it belongs to ("parameter"), and whether or not it is significant at level `significance_level` ("significant").
- **"learner"**: Name of the learner whose median estimates we used for the listed results.
- **"significance_level"**: The level of the significance tests.

See Also

- `GenericML()`

lambda_parameters

Estimate the two lambda parameters

Description

Estimates the lambda parameters \(\Lambda \) and \(\bar{\Lambda} \) whose medians are used to find the best ML method.

Usage

```
lambda_parameters(BLP, GATES, proxy_CATE, membership)
```

Arguments

- **BLP**: An object of class "BLP".
- **GATES**: An object of class "GATES".
- **proxy_CATE**: Proxy estimates of the CATE.
- **membership**: A logical matrix that indicates the group membership of each observation in \(Z_{\text{CLAN}} \). Needs to be of type "quantile_group". Typically, the grouping is based on CATE estimates, which are for instance returned by `proxy_CATE()`.
Med

Value

A list containing the estimates of Λ and $\bar{\Lambda}$, denoted λ and $\lambda \bar{}$, respectively.

References

Examples

```r
## generate data
set.seed(1)
n <- 200 # number of observations
p <- 5 # number of covariates
D <- rbinom(n, 1, 0.5) # random treatment assignment
Y <- runif(n) # outcome variable
propensity_scores <- rep(0.5, n) # propensity scores
proxy_BCA <- runif(n) # proxy BCA estimates
proxy_CATE <- runif(n) # proxy CATE estimates
membership <- quantile_group(proxy_CATE) # group membership

## perform BLP
BLP <- BLP(Y, D, propensity_scores, proxy_BCA, proxy_CATE)

## perform GATES
GATES <- GATES(Y, D, propensity_scores, proxy_BCA, proxy_CATE, membership)

## get estimates of the lambda parameters
lambda_parameters(BLP, GATES, proxy_CATE, membership)
```

Med

Calculate lower and upper median

Description

Calculates the lower and and median of a vector as proposed in Comment 4.2 in the paper.

Usage

```
Med(x)
```

Arguments

```
x A numeric vector.
```

Value

A list with the upper and lower median and the Med statistic (which is their mean).
References

Examples

```r
set.seed(1)
x <- runif(100)
Med(x)
```

plot.GenericML
Plot method for a "GenericML" object

Description

Visualizes the estimates of the generic targets of interest: plots the point estimates as well as the corresponding confidence intervals. The generic targets of interest can be (subsets of) the parameters of the BLP, GATES, or CLAN analysis.

Usage

```r
## S3 method for class 'GenericML'
plot(x, type = "GATES", learner = "best", CLAN_variable = NULL, groups = "all", ATE = TRUE, limits = NULL, title = NULL, ...)
```

Arguments

- **x**: An object of the class "GenericML", as returned by the function `GenericML()`.
- **type**: The analysis whose parameters shall be plotted. Either "GATES", "BLP", or "CLAN". Default is "GATES".
- **learner**: The learner whose results are to be returned. Default is "best" for the best learner as measured by the Λ parameters.
- **CLAN_variable**: Name of the CLAN variable to be plotted. Only applicable if type = "CLAN".
groups Character vector indicating the per-group parameter estimates that shall be plotted in GATES and CLAN analyses. Default is "all" for all parameters. If there are \(K \) groups, this variable is a subset of \(\text{c("G1", "G2", \ldots, "GK", "G1-G2", "G1-G2", \ldots, "G1-GK", "GK-G1", "GK-G2", \ldots)} \), where \(G_k \) denotes the \(k \)-th group. Note that this set depends on the choices of the arguments "diff_GATES" and "diff_CLAN" of the "GenericML" object.

ATE Logical. If TRUE (default), then the BLP estimate of the average treatment effect along with confidence intervals will be added to the plot. Only applicable if type is "CLAN" or "GATES".

limits A numeric vector of length two holding the limits of the y-axis of the plot.
title The title of the plot.
... Additional arguments to be passed down.

Details

If you wish to retrieve the data frame that this plot method visualizes, please use setup_plot().

Value

An object of class "ggplot".

See Also

setup_plot(), GenericML(), get_BLP(), get_GATES(), get_CLAN(), setup_diff()

Examples

if(require("ranger")) {

 ## generate data
 set.seed(1)
 n <- 150 # number of observations
 p <- 5 # number of covariates
 D <- rbinom(n, 1, 0.5) # random treatment assignment
 Z <- matrix(runif(n*p), n, p) # design matrix
 Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
 Y1 <- 2 + Y0 # potential outcome under treatment
 Y <- ifelse(D == 1, Y1, Y0) # observed outcome

 ## name the columns of Z
 colnames(Z) <- paste0("V", 1:p)

 ## specify learners
 learners <- c("random_forest")

 ## specify quantile cutoffs (the 4 quartile groups here)
 quantile_cutoffs <- c(0.25, 0.5, 0.75)

 ## specify the differenced generic targets of GATES and CLAN
 diff_GATES <- setup_diff(subtract_from = "most",}
perform generic ML inference
small number of splits to keep computation time low
x <- GenericML(Z, D, Y, learners, num_splits = 2,
quantile_cutoffs = quantile_cutoffs,
diff_GATES = diff_GATES,
diff_CLAN = diff_CLAN,
parallel = FALSE)

plot BLP parameters
plot(x, type = "BLP")

plot GATES parameters "G1", "G4", "G4-G1"
plot(x, type = "GATES", groups = c("G1", "G4", "G4-G1"))

plot CLAN parameters "G1", "G2", "G2-G1" of variable "V1":
plot(x, type = "CLAN", CLAN_variable = "V1",
groups = c("G1", "G2", "G1-G3"))
}

print.BLP_info

Print method for a "BLP_info" object

Description

Print method for a "BLP_info" object

Usage

```
## S3 method for class 'BLP_info'
print(x, digits = max(3L,getOption("digits") - 3L), ...)
```

Arguments

- `x` An object of the class "BLP_info", as returned by the function `get_BLP()`.
- `digits` Number of digits to print.
- `...` Additional arguments to be passed down.

Value

A print to the console.
Description

Print method for a "CLAN_info" object

Usage

```r
## S3 method for class 'CLAN_info'
print(x, digits = max(3L,getOption("digits") - 3L), ...)
```

Arguments

- **x**: An object of the class "CLAN_info", as returned by the function `get_CLAN()`.
- **digits**: Number of digits to print.
- **...**: Additional arguments to be passed down.

Value

A print to the console.

Description

Print method for a "GATES_info" object

Usage

```r
## S3 method for class 'GATES_info'
print(x, digits = max(3L,getOption("digits") - 3L), ...)
```

Arguments

- **x**: An object of the class "GATES_info", as returned by the function `get_GATES()`.
- **digits**: Number of digits to print.
- **...**: Additional arguments to be passed down.

Value

A print to the console.
Description

Prints key results of the analyses conducted in GenericML().

Usage

S3 method for class 'GenericML'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x
An object of the class "GenericML", as returned by the function GenericML().
digits
Number of digits to print.
...
Additional arguments to be passed down.

Value

A print to the console.

Examples

if(require("ranger")){

 ## generate data
 set.seed(1)
 n <- 150 # number of observations
 p <- 5 # number of covariates
 D <- rbinom(n, 1, 0.5) # random treatment assignment
 Z <- matrix(runif(n*p), n, p) # design matrix
 Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
 Y1 <- 2 + Y0 # potential outcome under treatment
 Y <- ifelse(D == 1, Y1, Y0) # observed outcome

 ## specify learners
 learners <- c("random_forest")

 ## perform generic ML inference
 # small number of splits to keep computation time low
 x <- GenericML(Z, D, Y, learners, num_splits = 2,
 parallel = FALSE)

 ## print
 print(x)
}
print.heterogeneity_CLAN

Description

Print method for a "heterogeneity_CLAN" object

Usage

S3 method for class 'heterogeneity_CLAN'
print(x, ...)

Arguments

x An object of class "heterogeneity_CLAN".
...
 Additional arguments to be passed down.

Value

A print to the console.

propensity_score Propensity score estimation

Description

Estimates the propensity scores $Pr[D = 1 | Z]$ for binary treatment assignment D and covariates Z. Either done by taking the empirical mean of D (which should equal roughly 0.5, since we assume a randomized experiment), or by direct machine learning estimation.

Usage

propensity_score(Z, D, estimator = "constant")

Arguments

Z A numeric design matrix that holds the covariates in its columns.
D A binary vector of treatment assignment. Value one denotes assignment to the
treatment group and value zero assignment to the control group.
estimator Character specifying the estimator. Must either be equal to 'constant' (esti-
mates the propensity scores by mean(D)), 'lasso', 'random_forest', 'tree',
or mlr3 syntax. Note that in case of mlr3 syntax, do not specify if the learner is
a regression learner or classification learner. Example: 'mlr3::lrn("ranger",
num.trees = 500)' for a random forest learner. Note that this is a string and the
absence of the classif. or regr. keywords. See https://mlr3learners.mlr-org.com for a list of mlr3 learners.
Details

The specifications "lasso", "random_forest", and "tree" in estimator correspond to the following mlr3 specifications (we omit the keywords classif. and regr.). "lasso" is a cross-validated Lasso estimator, which corresponds to `mlr3::lrn("cv_glmnet", s = "lambda.min", alpha = 1)`.

"random_forest" is a random forest with 500 trees, which corresponds to `mlr3::lrn("ranger", num.trees = 500)`.

"tree" is a tree learner, which corresponds to `mlr3::lrn("rpart")`.

Value

An object of class "propensity_score", consisting of the following components:

- estimates A numeric vector of propensity score estimates.
- mlr3_objects "mlr3" objects used for estimation. Only non-empty if mlr3 was used.

References

Examples

```r
## generate data
set.seed(1)
n <- 100 # number of observations
p <- 5 # number of covariates
D <- rbinom(n, 1, 0.5) # random treatment assignment
Z <- matrix(runif(n*p), n, p) # design matrix

## estimate propensity scores via mean(D)...
propensity_score(Z, D, estimator = "constant")

## ... and via SVM with cache size 40
if(require("e1071")){
  propensity_score(Z, D, estimator = "mlr3::lrn("svm", cachesize = 40")
}
```

Description

Proxy estimation of the Baseline Conditional Average (BCA), defined by $E[Y|D = 0, Z]$. Estimation is done on the auxiliary sample, but BCA predictions are made for all observations.
proxy_BCA

Usage

proxy_BCA(Z, D, Y, A_set, learner, min_variation = 1e-05)

Arguments

Z
A numeric design matrix that holds the covariates in its columns.

D
A binary vector of treatment assignment. Value one denotes assignment to the
treatment group and value zero assignment to the control group.

Y
A numeric vector containing the response variable.

A_set
A numerical vector of the indices of the observations in the auxiliary sample.

learner
A string specifying the machine learner for the estimation. Either 'lasso',
'random_forest', 'tree', or a custom learner specified with mlr3 syntax. In
the latter case, do not specify in the mlr3 syntax specification if the learner is a
regression learner or classification learner. Example: 'mlr3::lrn("ranger",
num.trees = 100)' for a random forest learner with 100 trees. Note that this
is a string and the absence of the classif. or regr. keywords. See https://
/mlr3learners.mlr-org.com for a list of mlr3 learners.

min_variation
Specifies a threshold for the minimum variation of the predictions. If the varia-
tion of a BCA prediction falls below this threshold, random noise with distribu-
tion $N(0, \text{var}(Y)/20)$ is added to it. Default is 1e-05.

Details

The specifications "lasso", "random_forest", and "tree" in learner correspond to the follow-
ing mlr3 specifications (we omit the keywords classif. and regr.). "lasso" is a cross-validated
Lasso estimator, which corresponds to 'mlr3::lrn("cv_glmnet", s = "lambda.min", alpha =
1)'. "random_forest" is a random forest with 500 trees, which corresponds to 'mlr3::lrn("ranger",
num.trees = 500)'. "tree" is a tree learner, which corresponds to 'mlr3::lrn("rpart")'.

Value

An object of class "proxy_BCA", consisting of the following components:

estimates A numeric vector of BCA estimates of each observation.

mlr3_objects "mlr3" objects used for estimation.

References

Inference on Heterogeneous Treatment Effects in Randomized Experiments.” arXiv preprint

Lang M., Binder M., Richter J., Schratz P., Pfisterer F., Coors S., Au Q., Casalicchio G., Kotthoff L.,

See Also

proxy_CATE()
Examples

```r
if(require("ranger")){
  ## generate data
  set.seed(1)
  n <- 150 # number of observations
  p <- 5 # number of covariates
  D <- rbinom(n, 1, 0.5) # random treatment assignment
  Z <- matrix(runif(n*p), n, p) # design matrix
  Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
  Y1 <- 2 + Y0 # potential outcome under treatment
  Y <- ifelse(D == 1, Y1, Y0) # observed outcome
  A_set <- sample(1:n, size = n/2) # auxiliary set

  ## BCA predictions via random forest
  proxy_BCA(Z, D, Y, A_set, learner = "mlr3::lrn('ranger', num.trees = 10)")
}
```

proxy_CATE

Conditional Average Treatment Effect

Proxy estimation of the Conditional Average Treatment Effect (CATE), defined by $E[Y|D = 1, Z] - E[Y|D = 0, Z]$. Estimation is done on the auxiliary sample, but CATE predictions are made for all observations.

Usage

```r
proxy_CATE(Z, D, Y, A_set, learner, proxy_BCA = NULL, min_variation = 1e-05)
```

Arguments

- **Z**: A numeric design matrix that holds the covariates in its columns.
- **D**: A binary vector of treatment assignment. Value one denotes assignment to the treatment group and value zero assignment to the control group.
- **Y**: A numeric vector containing the response variable.
- **A_set**: A numerical vector of the indices of the observations in the auxiliary sample.
- **learner**: A string specifying the machine learner for the estimation. Either 'lasso', 'random_forest', 'tree', or a custom learner specified with mlr3 syntax. In the latter case, do not specify in the mlr3 syntax specification if the learner is a regression learner or classification learner. Example: 'mlr3::lrn("ranger", num.trees = 100)' for a random forest learner with 100 trees. Note that this is a string and the absence of the classif. or regr. keywords. See https://mlr3learners.mlr-org.com for a list of mlr3 learners.
- **proxy_BCA**: A vector of proxy estimates of the baseline conditional average, BCA, $E[Y|D = 0, Z]$. If NULL, these will be estimated separately.
Minimum variation of the predictions before random noise with distribution $N(0, var(Y)/20)$ is added. Default is $1e-05$.

Details

The specifications "lasso", "random_forest", and "tree" in learner correspond to the following mlr3 specifications (we omit the keywords classif. and regr.). "lasso" is a cross-validated Lasso estimator, which corresponds to `mlr3::lrn("cv_glmnet", s = "lambda.min", alpha = 1)` . "random_forest" is a random forest with 500 trees, which corresponds to `mlr3::lrn("ranger", num.trees = 500)` . "tree" is a tree learner, which corresponds to `mlr3::lrn("rpart")`.

Value

An object of class "proxy_CATE", consisting of the following components:

estimates A numeric vector of CATE estimates of each observation.

mlr3_objects "mlr3" objects used for estimation of $E[Y|D = 1, Z]$ (Y1_learner) and $E[Y|D = 0, Z]$ (Y0_learner). The latter is not available if proxy_BCA = NULL.

References

See Also

proxy_BCA()

Examples

```r
if(require("ranger")){
  ## generate data
  set.seed(1)
  n <- 150 # number of observations
  p <- 5 # number of covariates
  D <- rbinom(n, 1, 0.5) # random treatment assignment
  Z <- matrix(runif(n*p), n, p) # design matrix
  Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
  Y1 <- 2 + Y0 # potential outcome under treatment
  Y <- ifelse(D == 1, Y1, Y0) # observed outcome
  A_set <- sample(1:n, size = n/2) # auxiliary set

  ## CATE predictions via random forest
  proxy_CATE(Z, D, Y, A_set, learner = "mlr3::lrn("ranger", num.trees = 10")")
}
```
quantile_group

Partition a vector into quantile groups

Description

Partitions a vector into quantile groups and returns a logical matrix indicating group membership.

Usage

```r
quantile_group(x, cutoffs = c(0.25, 0.5, 0.75))
```

Arguments

- **x** A numeric vector to be partitioned.
- **cutoffs** A numeric vector denoting the quantile cutoffs for the partition. Default are the quartiles: `c(0.25, 0.5, 0.75)`.

Value

An object of type "quantile_group", which is a logical matrix indicating group membership.

Examples

```r
set.seed(1)
x <- runif(100)
cutoffs <- c(0.25, 0.5, 0.75)
quantile_group(x, cutoffs)
```

setup_diff

Setup function for diff arguments

Description

This setup function controls how differences of generic target parameters are taken. Returns a list with two components, called `subtract_from` and `subtracted`. The first element (`subtract_from`) denotes what shall be the base group to subtract from in the generic targets of interest (GATES or CLAN); either "most" or "least". The second element (`subtracted`) are the groups to be subtracted from `subtract_from`, which is a subset of 1, 2, ..., \(K \), where \(K \) equals the number of groups. The number of groups should be consistent with the number of groups induced by the argument `quantile_cutoffs`, which is the cardinality of `quantile_cutoffs`, plus one.

Usage

```r
setup_diff(subtract_from = "most", subtracted = 1)
```
setup_diff

Arguments

subtract_from String indicating the base group to subtract from, either "most" (default) or "least". The most affected group corresponds to the K-th group in the paper (there are K groups). The least affected group corresponds to the first group.

subtracted Vector indicating the groups to be subtracted from the group specified in subtract_from. If there are K groups, subtracted should be a subset of $1, 2, ..., K$. Be careful to not specify a zero difference: If subtract_from = "most", subtracting group K results in a zero difference. Same if subtract_from = "least" and we subtract group 1.

Details

The output of this setup function is intended to be used as argument in the functions GenericML() and GenericML_single() (arguments diff_GATES, diff_CLAN), as well as GATES() and CLAN() (argument diff).

Value

An object of class "setup_diff", consisting of the following components:

subtract_from A character equal to "most" or "least".

subtracted A numeric vector of group indices.

See the description above for details.

References

See Also

GenericML(), GenericML_single(), CLAN(), GATES(), setup_X1(), setup_vcov()

Examples

specify quantile cutoffs (the 4 quartile groups here)
quantile_cutoffs <- c(0.25, 0.5, 0.75)

Use group difference GK-G1 as generic targets in GATES and CLAN
Gx is the x-th group
setup_diff(subtract_from = "most", subtracted = 1)

Use GK-G1, GK-G2, GK-G3 as differenced generic targets
setup_diff(subtract_from = "most", subtracted = c(1,2,3))

Use G1-G2, G1-G3 as differenced generic targets
setup_diff(subtract_from = "least", subtracted = c(3,2))
setup_plot
Set up information for a GenericML() plot

Description

Extract the relevant information for visualizing the point and interval estimates of the generic targets of interest. The generic targets of interest can be (subsets of) the parameters of the BLP, GATES, or CLAN analysis.

Usage

```r
setup_plot(
  x,
  type = "GATES",
  learner = "best",
  CLAN_variable = NULL,
  groups = "all"
)
```

Arguments

- **x**
 - An object of the class "GenericML", as returned by the function `GenericML()`.

- **type**
 - The analysis whose parameters shall be plotted. Either "GATES", "BLP", or "CLAN". Default is "GATES".

- **learner**
 - The learner whose results are to be returned. Default is "best" for the best learner as measured by the Λ parameters.

- **CLAN_variable**
 - Name of the CLAN variable to be plotted. Only applicable if `type = "CLAN"`.

- **groups**
 - Character vector indicating the per-group parameter estimates that shall be plotted in GATES and CLAN analyses. Default is "all" for all parameters. If there are \(K \) groups, this variable is a subset of \{"G1", "G2",...,"GK", "G1-G2", "G1-G2",..., "G1-GK", "GK-G1", "GK-G2",...\}, where \(Gk \) denotes the \(k \)-th group. Note that this set depends on the choices of the arguments "diff_GATES" and "diff_CLAN" of the "GenericML" object.

Details

This function is used internally by `plot.GenericML()`. It may also be useful for users who want to produce a similar plot, but who want more control over what information to display or how to display that information.

Value

An object of class "setup_plot", which is a list with the following elements.

- **data_plot** A data frame containing point and interval estimates of the generic target specified in the argument type.
data_BLP A data frame containing point and interval estimates of the BLP analysis.

confidence_level The confidence level of the confidence intervals. The confidence level is equal to 1 - 2 * significance_level, which is the adjustment proposed in the paper.

See Also

plot.GenericML()

Examples

```r
if(require("ranger") && require("ggplot2")) {

## generate data
set.seed(1)
n <- 150 # number of observations
p <- 5 # number of covariates
D <- rbinom(n, 1, 0.5) # random treatment assignment
Z <- matrix(runif(n*p), n, p) # design matrix
Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
Y1 <- 2 + Y0 # potential outcome under treatment
Y <- ifelse(D == 1, Y1, Y0) # observed outcome

## name the columns of Z
colnames(Z) <- paste0("V", 1:p)

## specify learners
learners <- c("random_forest")

## perform generic ML inference
# small number of splits to keep computation time low
x <- GenericML(Z, D, Y, learners,
  num_splits = 2,
  parallel = FALSE)

## the plot we wish to replicate
plot(x = x, type = "GATES")

## get the data to plot the GATES estimates
data <- setup_plot(x = x, type = "GATES")

## define variables to appease the R CMD check
group <- estimate <- ci_lower <- ci_upper <- NULL

## replicate the plot(x, type = "GATES")
# for simplicity, we skip aligning the colors
ggplot(mapping = aes(x = group,
  y = estimate), data = data$data_plot) +
  geom_hline(aes(yintercept = 0),
    color = "black", linetype = "dotted") +
  geom_hline(aes(yintercept = data$data_BLP["beta.1", "estimate"],
    color = "ATE"),
    linetype = "dashed") +
```
setup_stratify

Setup function for stratified sampling

Description

This function controls whether or not stratified sample splitting shall be performed. If no stratified sampling shall be performed, do not pass any arguments to this function (this is the default). If stratified sampling shall be performed, use this function to pass arguments to `stratified()` in the package "splitstackshape". In this case, the specification for prop_aux in `GenericML()` does not have an effect because the number of samples in the auxiliary set is specified with the size argument in `stratified()`.

Usage

setup_stratify(...)

Arguments

... Named objects that shall be used as arguments in `stratified()`. If empty (default), ordinary random sampling will be performed.

Details

The output of this setup function is intended to be used as argument stratify in the function `GenericML()`. If arguments are passed to `stratified()` via this function, make sure to pass the necessary objects that `stratified()` in the "splitstackshape" package requires. The necessary objects are called `indt`, `group`, and `size` (see the documentation of `stratified()` for details). If either of these objects is missing, an error is thrown.

Value

A list of named objects (possibly empty) specifying the stratified sampling strategy. If empty, no stratified sampling will be performed and instead ordinary random sampling will be performed.

See Also

`stratified()`, `GenericML()`
Examples

sample data of group membership (with two groups)
set.seed(1)
n <- 500
groups <- data.frame(group1 = rbinom(n, 1, 0.2),
 group2 = rbinom(n, 1, 0.3))

suppose we want both groups to be present in a strata...
group <- c("group1", "group2")

... and that the size of the strata equals half of the observations per group
size <- 0.5

obtain a list of arguments that will be passed to splitstackshape::stratified()
setup_stratify(indt = groups, group = group, size = size)

if no stratified sampling shall be used, do not pass anything
setup_stratify()
Value

An object of class "setup_vcov", consisting of the following components:

estimator A character equal to covariance estimation function names in the "sandwich" package.
arguments A list of arguments that shall be passed to the function specified in the estimator argument.

See the description above for details.

References

See Also

GenericML(), GenericML_single(), BLP(), GATES(), setup_X1(), setup_diff()

Examples

use standard homoskedastic OLS covariance matrix estimate
setup_vcov(estimator = "vcovHC", arguments = list(type = "const"))

use White's heteroskedasticity-robust estimator
setup_vcov(estimator = "vcovHC", arguments = list(type = "HC0"))

if (require("sandwich")){
 # use HAC-robust estimator with prewhitening and Andrews' (Econometrica, 1991) weights
 # since weightsAndrews() is a function in 'sandwich', require this package
 setup_vcov(estimator = "vcovHAC", arguments = list(prewhite = TRUE, weights = weightsAndrews))
}

setup_X1

Setup function controlling the matrix X_1 in the BLP or GATES regression

Description

Returns a list with three elements. The first element of the list, funs_Z, controls which functions of matrix Z are used as regressors in \(X_1 \). The second element, covariates, is an optional matrix of custom covariates that shall be included in \(X_1 \). The third element, fixed_effects, controls the inclusion of fixed effects.
setup_X1

Usage

setup_X1(funs_Z = c("B"), covariates = NULL, fixed_effects = NULL)

Arguments

funs_Z Character vector controlling the functions of Z to be included in X1. Subset of c("S", "B", "p"). where "p" corresponds to the propensity scores, "B" to the proxy baseline estimates, and "S" to the proxy CATE estimates. Default is "B".

covariates Optional numeric matrix containing additional covariates to be included in X1. Default is NULL.

fixed_effects Numeric vector of integers that indicates cluster membership of the observations: For each cluster, a fixed effect will be added. Default is NULL for no fixed effects.

Details

The output of this setup function is intended to be used as argument in the functions GenericML() and GenericML_single() (arguments X1_BLP, X1_GATES), as well as BLP() and GATES() (argument X1_control).

Value

An object of class "setup_X1", consisting of the following components:

funs_Z A character vector, being a subset of c("S", "B", "p").
covariates Either NULL or a numeric matrix.
fixed_effects Either NULL or an integer vector indicating cluster membership.

See the description above for details.

References

See Also

GenericML(), GenericML_single(), BLP(), GATES(), setup_vcov(), setup_diff()

Examples

set.seed(1)
n <- 100 # sample size
p <- 5 # number of covariates
covariates <- matrix(runif(n*p), n, p) # sample matrix of covariates

let there be three clusters; assign membership randomly
fixed_effects <- sample(c(1,2,3), size = n, replace = TRUE)
use BCA estimates in matrix X1
setup_X1(funs_Z = "B", covariates = NULL, fixed_effects = NULL)

use BCA and propensity score estimates in matrix X1
uses uniform covariates and fixed effects
setup_X1(funs_Z = c("B", "p"), covariates = covariates, fixed_effects = NULL)

TrueIfUnix

Check if user’s OS is a Unix system

Description

Check if user’s OS is a Unix system

Usage

`TrueIfUnix()`

Value

A Boolean that is TRUE if the user’s operating system is a Unix system and FALSE otherwise.
Index

BLP, 2, 10, 16, 24, 41–43
CLAN, 4, 10, 16, 37
coeffest, 3
GATES, 5, 10, 16, 24, 37, 41–43
GenericML, 7, 10, 12, 13, 16–22, 24, 26, 27, 30, 37, 38, 40–43
GenericML_combine, 10, 11, 12
GenericML_single, 9, 11, 14, 37, 41–43
get_best, 17, 19, 21, 22
get_BLP, 10, 11, 17, 18, 21, 22, 27, 28
get_CLAN, 10, 11, 17, 19, 20, 22, 27, 29
get_GATES, 10, 11, 17, 19, 21, 22, 27, 29
ggplot, 18–20, 22, 27
heterogeneity_CLAN, 23, 31
lambda_parameters, 16, 24
lm, 3, 7
Med, 25
plot_GenericML, 11, 26, 38, 39
print.BLP_info, 19, 21, 22, 28
print.CLAN_info, 19, 21, 22, 29
print.GATES_info, 19, 21, 22, 29
print.GenericML, 11, 30
print.heterogeneity_CLAN, 31
propensity_score, 3, 6, 7, 31
proxy_BCA, 3, 6, 7, 10, 16, 32, 35
proxy_CATE, 3, 6, 7, 10, 16, 24, 33, 34
quantile_group, 4–6, 24, 36
setup_diff, 3, 5–7, 9, 11, 15, 23, 27, 36, 42, 43
setup_plot, 27, 38
setup_stratify, 9, 11, 40
setup_vcov, 3, 6, 7, 9, 11, 15, 37, 41, 43
setup_X1, 3, 6, 7, 9, 11, 15, 37, 42, 42
stratified, 40
TrueIfUnix, 44