Package ‘GenomicTools.fileHandler’

October 12, 2022

Type Package
Title File Handlers for Genomic Data Analysis
Version 0.1.5.9
Date 2020-03-05
Author Daniel Fischer
Maintainer Daniel Fischer <daniel.fischer@luke.fi>
Description A collection of I/O tools for handling the most commonly used genomic datafiles, like fasta/-q, bed, gff, gtf, ped/map and vcf.
Depends R (>= 3.3), data.table (>= 1.9.6)
Imports snpStats
Suggests knitr, rmarkdown
VignetteBuilder knitr
License GPL (>= 2)
Encoding UTF-8
LazyLoad yes
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-05 08:00:07 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenomicTools.fileHandler-package</td>
<td>2</td>
</tr>
<tr>
<td>example.bed</td>
<td>3</td>
</tr>
<tr>
<td>example.fasta</td>
<td>3</td>
</tr>
<tr>
<td>example.fastq</td>
<td>4</td>
</tr>
<tr>
<td>example.gff</td>
<td>4</td>
</tr>
<tr>
<td>example.gtf</td>
<td>5</td>
</tr>
<tr>
<td>example.ped</td>
<td>5</td>
</tr>
</tbody>
</table>

GenomicTools.fileHandler-package

Description

Package: GenomicTools.fileHandler
Type: Package
Version: 0.1.5.9
Date: 2020-03-05
example.bed

License: GPL
LazyLoad: yes

Author(s)

Daniel Fischer
Maintainer: Daniel Fischer <daniel.fischer@luke.fi>

<table>
<thead>
<tr>
<th>example.bed</th>
<th>Example Gene Annotation in Bed-Format</th>
</tr>
</thead>
</table>

Description

This file contains some example lines to represent a typical bed file that can be used to try the corresponding functions.

Format

A file with three column Chr, Start and End.

Details

The file is located in the /extdata folder of the package and is accessible after installation via `system.file("extdata","example.bed", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer

<table>
<thead>
<tr>
<th>example.fasta</th>
<th>Example Sequencing Reads in fasta-Format</th>
</tr>
</thead>
</table>

Description

This file contains some example reads to represent a typical fasta file that can be used to try the corresponding functions.

Details

The file is located in the /extdata folder of the package and is accessible after installation via `system.file("extdata","example.fasta", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer
example.fastq
Example Sequencing Reads in fastq-Format

Description

This file contains some example reads to represent a typical fastq file that can be used to try the corresponding functions.

Details

The file is located in the `/extdata` folder of the package and is accessible after installation via `system.file("extdata","example.fastq", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer

example.gff
Example Gene Annotation in gff-Format

Description

This file contains some example gene annotations to represent a typical gff file that can be used to try the corresponding functions.

Details

The file is located in the `/extdata` folder of the package and is accessible after installation via `system.file("extdata","example.gff", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer
Description

This file contains some example gene annotations to represent a typical gtf file that can be used to try the corresponding functions.

Details

The file is located in the /extdata folder of the package and is accessible after installation via `system.file("extdata","example.gtf", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer

Description

This file contains some example variants to represent a typical ped/map file pair that can be used to try the corresponding functions.

Details

The file is located in the /extdata folder of the package and is accessible after installation via `system.file("extdata","example.ped", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer
example2.gtf.gz

Example Gene Annotation in zipped gtf-Format

Description

This file contains some example gene annotations to represent a typical zipped gtf file that can be used to try the corresponding functions.

Details

The file is located in the /extdata folder of the package and is accessible after installation via `system.file("extdata","example2.gtf.gz", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer

example.vcf

Example Variant data in vcf-Format

Description

This file contains some example variants to represent a typical vcf file that can be used to try the corresponding functions.

Details

The file is located in the /extdata folder of the package and is accessible after installation via `system.file("extdata","example.vcf", package="GenomicTools.fileHandler")`

Author(s)

Daniel Fischer
exportBed

Exporting a Bed File.

Description

This function exports a standard bed file.

Usage

```
exportBed(x, file = NULL, header = FALSE)
```

Arguments

- `x`: data.frame
- `file`: Character, specifies filename/path
- `header`: Logical, shall a header be written

Details

This function exports a data.frame to a standard bed file. If no file name is given, the variable name will be used instead.

Value

A bed file

Author(s)

Daniel Fischer

Examples

```
novelBed <- data.frame(Chr=c(11,18,3),
                      Start=c(72554673, 62550696, 18148822),
                      End=c(72555273, 62551296, 18149422),
                      Gene=c("LOC1", "LOC2", "LOC3"))

# Create a temporary file to where the output of the function is stored
myfile <- file.path(tempdir(), "myLocs.bed")
exportBed(novelBed, file=myfile)
exportBed(novelBed, file=myfile, header=TRUE)
```
Exporting a Fasta File.

Description

This function exports a standard fasta file.

Usage

```r
exportFA(fa, file = NULL)
```

Arguments

- `fa`: fasta object
- `file`: Character, specifies filename/path

Details

This function exports a fasta object to a standard fasta file. If no file name is given, the variable name will be used instead.

Value

A fasta file

Author(s)

Daniel Fischer

Examples

```r
# Define here the location on HDD for the example file
fpath <- system.file("extdata","example.fasta", package="GenomicTools.fileHandler")
# Import the example fasta file
fastaFile <- importFA(file=fpath)
newFasta <- fastaFile[1:5]

myfile <- file.path(tempdir(), "myLocs.fa")

exportFA(newFasta, file=myfile)
```
importBed

Importing a Bed File.

Description

This function imports a standard bed file.

Usage

```r
importBed(file, header = FALSE, sep = "\t")
```

Arguments

- `file`: Specifies the filename/path.
- `header`: Logical, is a header present.
- `sep`: Column separator.

Details

This function imports a standard bed-file into a data.frame. It is basically a convenience wrapper around `read.table`. However, if no header lines is given, this function automatically assigns the column names, as they are given in the bed-specification on the Ensembl page here: https://www.ensembl.org/info/website/upload/bed.html

Value

A `data.frame`

Author(s)

Daniel Fischer

See Also

[exportBed], [read.table]

Examples

```r
# Define here the location on HDD for the example file
fpath <- system.file("extdata","example.bed", package="GenomicTools.fileHandler")
# Import the example bed file
bedFile <- importBed(file=fpath)
```
importBlastTab
Import a Tab Delimited Blast Output File

Description
This function imports a tab delimited blast output.

Usage
importBlastTab(file)

Arguments
- **file**
 Filename

Details
This function imports a tab delimited blast output file, currently the same as `read.table`

Value
A data.frame

Author(s)
Daniel Fischer

importFA
Importing a Fasta File.

Description
This function imports a standard fasta file

Usage
importFA(file)

Arguments
- **file**
 Specifies the filename/path
Details

This function imports a standard fasta file. Hereby, it does not matter if the identifier and sequence are alternating or not, as the rows starting with '>' are used as identifier.

The example file was downloaded from here and was then further truncated respective transformed to fasta format:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/sequence_read/

Value

An object of class `fa` containing the sequences. The names correspond to the sequence names given in the fasta file.

Author(s)

Daniel Fischer

See Also

print.fa, summary.fa

Examples

```r
# Define here the location on HDD for the example file
fpath <- system.file("extdata","example.fasta", package="GenomicTools.fileHandler")
# Import the example fasta file
fastaFile <- importFA(file=fpath)
```

importFeatureCounts
Import from FeatureCounts

Description

This functions imports the output from FeatureCounts

Usage

```r
importFeatureCounts(file, skip = 0, headerLine = 2)
```

Arguments

- **file**: Character, file name
- **skip**: Number of lines to skip from txt file
- **headerLine**: Linenumber that contains the header information
importFQ

Details
FeatureCounts produces two files, the txt that contain the expression values and then the summary that contains all the information about the mapping statistics. This function imports both and stores them in a corresponding list.

Value
A list with expValues, geneInfo and summary

Author(s)
Daniel Fischer

Examples

```r
# Define here the location on HDD for the example file
fpath <- system.file("extdata","featureCountsExample.txt", package="GenomicTools.fileHandler")
# Import the example featureCounts file
fcFile <- importFeatureCounts(file=fpath)
```

importFQ

Importing a Fastq File.

Description
This function imports a standard fastq file

Usage
importFQ(file)

Arguments
file Specifies the filename/path

Details
This function imports a standard fastq file that consists out of blocks of four lines per entry

Value
An object of class fq containing the sequences and the quality measure. The names correspond to the sequence names given in the fasta file.

Author(s)
Daniel Fischer
importGFF

See Also

print.fq, summary.fq

Examples

Define here the location on HDD for the example file
fpath <- system.file("extdata","example.fastq", package="GenomicTools.fileHandler")
Import the example fastq file
fastqFile <- importFQ(file=fpath)

importGFF

Description

Import a GFF file

Usage

importGFF(file, skip = "auto", nrow = -1, use.data.table = TRUE,
level = "gene", features = NULL, num.features = c("FPKM", "TPM"),
print.features = FALSE, merge.feature = NULL, merge.all = TRUE,
class.names = NULL, verbose = TRUE)

Arguments

file file or folder
skip numeric, lines to skip
nrow numeric, lines to read
use.data.table logical
level Character, read level, default: "gene"
features features to import
num.features names of the numeric features
print.features Logical, print available features
merge.feature Character, merge multiple samples to dataset
merge.all Logical, shall all samples be merged together
class.names Definition of class name in V9
verbose Logical, verbose function output

Details

This function imports a standard gff file.
Value

A gff object

Author(s)

Daniel Fischer

Examples

Define here the location on HDD for the example file
fpath <- system.file("extdata","example.gff", package="GenomicTools.fileHandler")
Import the example gff file
importGFF(file)

Description

Import a GFF3 file

Usage

importGFF3(gff, chromosomes)

Arguments

gff file or folder
chromosomes The chromosome to import

Details

This function imports a standard gff3 file.

Value

A gff object

Author(s)

Daniel Fischer
importGTF

Import a GTF File

Description

This function imports a gtf file.

Usage

```r
importGTF(file, skip = "auto", nrow = -1, use.data.table = TRUE, 
level = "gene", features = NULL, num.features = c("FPKM", "TPM"), 
print.features = FALSE, merge.feature = NULL, merge.all = TRUE, 
class.names = NULL, verbose = TRUE)
```

Arguments

- `file`: file or folder
- `skip`: numeric, lines to skip
- `nrow`: numeric, lines to read
- `use.data.table`: logical
- `level`: Character, read level, default: "gene"
- `features`: features to import
- `num.features`: names of the numeric features
- `print.features`: Logical, print available features
- `merge.feature`: Character, merge multiple samples to dataset
- `merge.all`: Logical, shall all samples be merged
- `class.names`: Vector with class names
- `verbose`: Logical, verbose function output

Details

This function imports a gtf file. The features names to be imported are defined in `features`, several features are then provided as vector. A list of available feature can be printed, by setting `print.features=TRUE`.

The `skip` option allows to skip a given number of rows, the default is, however, auto. In that case, all rows that start with the # symbol are skipped.

In case a set of expression values given in gtf format should be imported and to be merged into a single data table, the feature that should be used for merging can be provided to the `merge.feature` option. In that case the function expects a folder in `file` and it will import all gts located in that folder and merges them according to the `merge.feature` option. With the option `class.names` a vector of prefixes for the merged features can be provided. If this is kept empty, then the filenames of the gtf will be used instead (without gtf extension).

By default the function imports all features in column 9 as string character. However, for common labels (FPKM and TPM) the class type is set automatically to numeric. Additional numerical feature names can be defined with the `num.feature` option.
Value

A gtf object

Author(s)

Daniel Fischer

Examples

```r
# Define here the location on HDD for the example file
fpath <- system.file("extdata","example.gtf", package="GenomicTools.fileHandler")
# Same file, but this time as gzipped version
fpath.gz <- system.file("extdata","example2.gtf.gz", package="GenomicTools.fileHandler")

# Import the example gtf file
importGTF(fpath, level="transcript", features=c("gene_id","FPKM"))

## Not run:
# For the current you need to have zcat installed (should be standard on a Linux system)
importGTF(fpath.gz, level="transcript", features=c("gene_id","FPKM"))

## End(Not run)
```

importPED

Description

Import a PED/MAP file pair

Usage

```r
importPED(file, n, snps = NULL, which, split = "\t+", sep = ".", na.strings = "0", lex.order = FALSE, verbose = TRUE)
```

Arguments

- `file`: ped filename
- `n`: Number of samples to read
- `snps`: map filename
- `which`: Names of SNPS to import
- `split`: Columns separator in ped file
- `sep`: Character that separates Alleles
- `na.strings`: Definition for missing values
- `lex.order`: Logical, lexicographical order
- `verbose`: Logical, verbose output
Details

This function is to a large extend taken from snpStat::read.pedmap, but here is internally the data.table::fread function used that resulted in much faster file processing.

To import the data, the ped file can be provided to the file option and the map file to the snps option. If no option is given to snps and the file option is provided without any file extension, then the ped/map extension are automaticall added.

Value

a pedmap object

Author(s)

Daniel Fischer

Examples

Define here the location on HDD for the example file
pedPath <- system.file("extdata","example.ped", package="GenomicTools.fileHandler")
mapPath <- system.file("extdata","example.map", package="GenomicTools.fileHandler")
Import the example ped/map files
importPED(file=pedPath, snps=mapPath)

Description

Import the Log-File from STAR

Usage

importSTARLog(dir, recursive = TRUE, log = FALSE, finalLog = TRUE, verbose = TRUE)

Arguments

dir The directory name
recursive Logical, check for sub-directories
log boolean, import also log file
finalLog boolean, import also final_log file
verbose Logical, talkactive function feedback
Details
This function imports the Log file from STAR

Value
a data frame

Author(s)
Daniel Fischer

Description
Import a VCF function

Usage
importVCF(file, na.seq = "./.")

Arguments
file The file name
na.seq The missing value definition

Details
This function imports a VCF file.
In case the logical flag 'phased' is set to TRUE then the genotypes are expected to be in the format 0/0, otherwise they are expected to be like 0/1.

The example file was downloaded from here:

Value
A vcf object

Author(s)
Daniel Fischer
Examples

Define here the location on HDD for the example file
fpath <- system.file("extdata","example.vcf", package="GenomicTools.fileHandler")
Import the example vcf file
importVCF(fpath)

Description

Import an Blast XML file

Usage

importXML(folder, seqNames = NULL, which = NULL, idTH = 0.8,
verbose = TRUE)

Arguments

folder Character, folder path
seqNames Names of sequences
which Which sequences to import
idTH Use the threshold as cut-off
verbose Logical, verbose output

Details

This function imports XML files as provided as Blast output, it is mainly aimed to import the output of the hoardeR package

Value

An XML object

Author(s)

Daniel Fischer
plotTotalReads

Description
Plot the total reads

Usage
plotTotalReads(STARLog)

Arguments
STARLog A STARLog object

Details
This function plots the total reads from a STARlog object
Part of the diagnostic plot series for of the STARLog. The function accepts also a list of STARLogs and creates then comparative boxplots

Value
A plot

Author(s)
Daniel Fischer

plotUniquelyMappedReads

Description
Plot the uniquely mapped reads

Usage
plotUniquelyMappedReads(STARLog)

Arguments
STARLog A STARLog object
prereadGTF

Details
This function plots the percentage of uniquely reads from a STARlog object.
Part of the diagnostic plot series for the STARLog. The function accepts also a list of STARLogs
and creates then comparative boxplots.

Value
A plot

Author(s)
Daniel Fischer

prereadGTF(prereadGTF)

Description
Preread a gtf file and prints features of it for importing it.

Usage
prereadGTF(file, nrow = 1000, skip = "auto")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>Filename</td>
</tr>
<tr>
<td>nrow</td>
<td>Number of rows to read</td>
</tr>
<tr>
<td>skip</td>
<td>Rows to skip from top</td>
</tr>
</tbody>
</table>

Details
This function reads a gtf file and prints its features for the import step.
By default, this function only imports the first 1000 rows, in case all rows should be imported set
nrow=-1.
The number to skip in the beginning can be adjusted by the skip option. The default is here auto
so that the function can identify the correct amount of header rows. Hence, this option should be
changed only, if there is a good reason.

Value
A list of available features

Author(s)
Daniel Fischer
print.bed

Print a bed Object

Description

Prints a bed object.

Usage

S3 method for class 'bed'
print(x, n = 6, ...)

Arguments

x Object of class bed.
n Number of lines to print
... Additional parameters

Details

The print function displays a bed object

Author(s)

Daniel Fischer

print.fa

Print a fa Object

Description

Prints a fa object.

Usage

S3 method for class 'fa'
print(x, n = 2, seq.out = 50, ...)

Arguments

x Object of class fa.
n Number of sequences to display
seq.out Length of the subsequence to display
... Additional parameters
print.featureCounts

Details
The print function displays a fa object

Author(s)
Daniel Fischer

print.featureCounts Print a featureCounts Object

Description
Prints an featureCounts object.

Usage
S3 method for class 'featureCounts'
print(x, ...)

Arguments
x Object of class featureCounts.
... Additional parameters

Details
The print function displays a featureCounts object

Author(s)
Daniel Fischer

print.fq Print a fq Object

Description
Prints a fq object.

Usage
S3 method for class 'fq'
print(x, n = 2, seq.out = 50, print.qual = TRUE, ...)
Arguments

- x: Object of class `fq`.
- n: Number of sequences to display
- seq.out: Length of the subsequence to display
- print.qual: Logical, shall the quality measures also be printed
- ...: Additional parameters

Details

The print function displays a `fa` object.

Author(s)

Daniel Fischer

print.gtf

Print a gtf Object

Description

Prints a gtf object.

Usage

```r
## S3 method for class 'gtf'
print(x, n = 6, ...)
```

Arguments

- x: Object of class `gtf`.
- n: Number of lines to print
- ...: Additional parameters

Details

The print function displays a `bed` object.

Author(s)

Daniel Fischer
print.pedMap

Print a pedMap Object

Description

Prints an pedMap object.

Usage

```r
## S3 method for class 'pedMap'
print(x, n = 6, m = 6, ...)  
```

Arguments

- `x` Object of class pedMap.
- `n` Number of samples to display
- `m` Number of columns to display
- `...` Additional parameters

Details

The print function displays a pedMap object.

Author(s)

Daniel Fischer

print.vcf

Print a vcf Object

Description

Prints an vcf object.

Usage

```r
## S3 method for class 'vcf'
print(x, n = 6, m = 6, fullHeader = FALSE, ...)  
```

Arguments

- `x` Object of class vcf.
- `n` Number of samples to display
- `m` Number of columns to display
- `fullHeader` Logical, shall the whole header be printed
- `...` Additional parameters
Details

The print function displays a vcf object

Author(s)

Daniel Fischer

summary.bed

Summary of a bed Object

Description

Summarizes a bed object.

Usage

S3 method for class 'bed'
summary(object, ...)

Arguments

object Object of class bed.
...
Additional parameters

Details

The summary function displays an informative summary of a bed object

Author(s)

Daniel Fischer

summary.fa

Summary of a fa Object

Description

Summarizes a fa object.

Usage

S3 method for class 'fa'
summary(object, ...)
summary.featureCounts

Arguments

object Object of class fa.
... Additional parameters

Details

The summary function displays an informative summary of a fa object

Author(s)

Daniel Fischer

Summary of a featureCounts Object

Description

Summarizes a featureCounts object.

Usage

```r
## S3 method for class 'featureCounts'
summary(object, ...)
```

Arguments

object Object of class featureCounts.
... Additional parameters

Details

The summary function displays an informative summary of a featureCounts object

Author(s)

Daniel Fischer
summary.fq

Summary of a fq Object

Description

Summarizes a *fq* object.

Usage

```r
## S3 method for class 'fq'
summary(object, ...)
```

Arguments

- `object`: Object of class *fq*.
- `...`: Additional parameters

Details

The `summary` function displays an informative summary of a *fq* object.

Author(s)

Daniel Fischer

summary.gtf

Summary of a gtf Object

Description

Summarizes a *gtf* object.

Usage

```r
## S3 method for class 'gtf'
summary(object, ...)
```

Arguments

- `object`: Object of class *gtf*.
- `...`: Additional parameters

Details

The `summary` function displays an informative summary of a *gtf* object.
summary.STARLog

Author(s)
Daniel Fischer

Description
Summarizes a STARLog object.

Usage

S3 method for class 'STARLog'
summary(object, ...)

Arguments

object Object of class STARLog.
...

Additional parameters

Details
The summary function displays an informative summary of a STARLog object

Author(s)
Daniel Fischer
Index

* data
 example.bed, 3
 example.fasta, 3
 example.fastq, 4
 example.gff, 4
 example.gtf, 5
 example.ped, 5
 example.vcf, 6
 example2.gtf.gz, 6

* methods
 print.bed, 22
 print.fa, 22
 print.featureCounts, 23
 print.fq, 23
 print.gtf, 24
 print.pedMap, 25
 print.vcf, 25
 summary.bed, 26
 summary.fa, 26
 summary.featureCounts, 27
 summary.fq, 28
 summary.gtf, 28
 summary.STARLog, 29

* print
 print.bed, 22
 print.fa, 22
 print.featureCounts, 23
 print.fq, 23
 print.gtf, 24
 print.pedMap, 25
 print.vcf, 25

* summary
 summary.bed, 26
 summary.fa, 26
 summary.featureCounts, 27
 summary.fq, 28
 summary.gtf, 28
 summary.STARLog, 29

example.bed, 3
example.fasta, 3
example.fastq, 4
example.gff, 4
example.gtf, 5
example.ped, 5
example.vcf, 6
example2.gtf.gz, 6
exportBed, 7
exportFA, 8
GenomicTools.fileHandler-package, 2
importBed, 9
importBlastTab, 10
importFA, 10
importFeatureCounts, 11
importFQ, 12
importGFF, 13
importGFF3, 14
importGTF, 15
importPED, 16
importSTARLog, 17
importVCF, 18
importXML, 19
plotTotalReads, 20
plotUniquelyMappedReads, 20
prereadGTF, 21
print.bed, 22
print.fa, 22
print.featureCounts, 23
print.fq, 23
print.gtf, 24
print.pedMap, 25
print.vcf, 25
summary.bed, 26
summary.fa, 26
summary.featureCounts, 27
summary.fq, 28
summary.gtf, 28
summary.STARLog, 29

summary.gtf, 28
summary.STARLog, 29