Package ‘GeoFIS’

July 22, 2021

Type Package

Title Spatial Data Processing for Decision Making

Version 1.0.1

Author Serge Guillaume [aut],
Jean-Luc Lablée [aut, cre],
INRAE [cph] (National Research Institute for Agriculture, Food and
Environment, France)

Maintainer Jean-Luc Lablée <jean-luc.lablee@inrae.fr>

URL https://www.geofis.org

Description Methods for processing spatial data for decision-making.
This package is an R implementation of methods provided by the open source software GeoFIS <https://www.geofis.org> (Leroux et al. 2018) <doi:10.3390/agriculture8060073>.

License CeCILL

Encoding UTF-8

Depends R (>= 4.0.0), sp, data.tree, FisPro (>= 1.1.0)
Imports methods, Rdpack, foreach, R6, Rcpp (>= 1.0.0), rgeos, nnls
SystemRequirements GNU make, C++14, gmp, mpfr
RdMacros Rdpack
NeedsCompilation yes
LinkingTo Rcpp, BH, FisPro
Suggests testthat, rlang, knitr, rmarkdown, RColorBrewer, rgdal
RoxygenNote 7.1.1
VignetteBuilder knitr
Repository CRAN
Date/Publication 2021-07-22 08:20:13 UTC
R topics documented:

AggregFis .. 2
AggregFunction ... 3
AggregOwa .. 3
AggregWam .. 4
conductivity_2014 ... 4
conductivity_border 5
EuclideanDistance ... 5
Fusion ... 6
FusionLabel .. 7
fusion_cars ... 8
FuzzyDistance ... 8
GeoFIS .. 9
LearnOwaWeights ... 10
LearnWamWeights ... 11
MaximumDistance ... 11
MeanDistance ... 12
MinimumDistance .. 12
MinkowskiDistance .. 12
NewAggregFis ... 13
NewAggregFunction 13
NewAggregOwa .. 14
NewAggregWam .. 14
NewFisFusion .. 15
NewFusion .. 16
NewFusionAggreg .. 16
NewFusionInput ... 17
NewZoning ... 17
tolima ... 18
ZoneArea ... 18
ZoneSize .. 19
Zoning ... 19

Index 23

AggregFis

Class "AggregFis"

Description

The Fis aggregation operator to be used in Fusion

Slots

fis Fis object, The Fis to be used in the aggregation operator

output_index integer value, The index (1-based index) of the output in the Fis to be used in the aggregation
AggregFunction

Description

The functional aggregation operator to be used in Fusion

Slots

- `func` Function, The function used for the aggregation

See Also

- `NewAggregFunction`

AggregOwa

Description

The OWA aggregation operator to be used in Fusion

Slots

- `weights` numeric vector, The weights of the OWA aggregation operator (the sum of the weights must be equal to 1 without negative values)

See Also

- `NewAggregOwa`

Aggregation using numerical operators
AggregWam

Class "AggregWam"

Description

The WAM aggregation operator to be used in Fusion

Slots

weights numeric vector. The weights of the WAM aggregation operator (the sum of the weights must be equal to 1 without negative values)

See Also

NewAggregWam

Aggregation using numerical operators

conductivity_2014 Soil conductivity 2014 dataset

Description

The soil conductivity of a vine plot in year 2014

Usage

`data(conductivity_2014)`

Format

SpatialPointsDataFrame object with 353 observations and 1 attribute:

conduct numeric value, The soil conductivity
conductivity borderline

conductivity_border Border dataset

Description

The soil conductivity border of a vine plot

Usage

data(conductivity_border)

Format

SpatialPolygonsDataFrame object with 1 polygon delimiting the border of the vine plot:

id integer value, The id of the polygon

EuclideanDistance The "Euclidean" distance

Description

Function to create an "Euclidean" distance
To be used with the Zoning combine_distance or attribute_distance field

Usage

EuclideanDistance()

Value

Euclidean distance object
Fusion

Class "Fusion"

Description

The main class to perform data fusion
More information is available in the vignette "Data Fusion with GeoFIS"

Active bindings

aggregate Node object, or a list of Node. The node(s) to aggregate

Methods

Public methods:

- Fusion$new()
- Fusion$perform()
- Fusion$output()

Method new(): The constructor to build an object of class Fusion.

Usage:
Fusion$new(source)

Arguments:
source data.frame or Spatial*DataFrame object of sp package
Keep only numeric attributes

Method perform(): Perform the data fusion

Usage:
Fusion$perform()

Method output(): Get the output aggregated data (same object type as data source)

Usage:
Fusion$output()

Returns: data.frame or Spatial*DataFrame object

References

FusionLabel

See Also

NewFusion
Data Fusion documentation

Examples

more information about this example in the vignette "Data Fusion with GeoFIS"
section "Learning illustration"

library(GeoFIS)

data(fusion_cars)

fusion <- NewFusion(fusion_cars)
a <- NewFusionInput("a", NewMfTrapezoidalInf(4, 20), "A")
v <- NewFusionInput("v", NewMfTrapezoidalSup(100, 500), "V")
s <- NewFusionInput("s", NewMfTrapezoidalSup(120, 220), "S")
c <- NewFusionInput("c", NewMfTrapezoidalInf(6, 16), "C")
owa_aggreg <- NewFusionAggreg("score", NewAggregOwa(c(1, 0, 0, 0)), a, v, s, c)
fusion$aggregate <- owa_aggreg
fusion$perform()

score <- fusion$output()$"score"
print(score)

FusionLabel

Class "FusionLabel"

Description

Defines the allowed labels for the Mfs of the fuzzy inputs or output in the Fis "Fusion"

Active bindings

very_low character vector (read-only), The very_low label
low character vector (read-only), The low label
average character vector (read-only), The average label
high character vector (read-only), The high label
very_high character vector (read-only), The very_high label

Methods

Public methods:

• FusionLabel$get_labels()
Method get_labels(): Get the allowed labels depending on the granularity in the Fis
for granularity 2, allowed labels are: [low, high]
for granularity 3, allowed labels are: [low, average, high]
for granularity 4, allowed labels are: [very_low, low, high, very_high]
for granularity 5, allowed labels are: [very_low, low, average, high, very_high]

Usage:
FusionLabel$get_labels(granularity)*

Arguments:
- *granularity* integer value, The granularity of the fuzzy inputs or output in the Fis (value in range [2, 5])

Returns: character vector, The allowed labels for the granularity

fusion_cars

Fusion Cars dataset

Description
Illustration dataset for data fusion numerical operators learning

Usage

data(fusion_cars)

Format

data.frame object with four cars described by four attributes:

- **A** numeric value, the acceleration time (s) from 0 to 100 km/h
- **V** numeric value, the volume of the trunk (l)
- **S** numeric value, the maximum speed (km/h)
- **C** numeric value, the gas consumption (l per 100 km)

FuzzyDistance

The "Fuzzy" distance

Description
Function to create a "Fuzzy" distance
The fuzzy distance function is based on a fuzzy partition that allows for integrating expert knowledge into distance calculations
To be used with the Zoning attribute_distance field
Usage

FuzzyDistance(fisin)

Arguments

fisin
FisIn object, The partition used for the fuzzy distance (must be a standardized fuzzy partition)

Value

Fuzzy distance object

References

GeoFIS
GeoFIS package

Description

GeoFIS is an open source software that provides methods for processing spatial data for decision making through a user-friendly interface (Leroux et al. 2018). This R package implements two main functionalities: management zone delineation (Pedroso et al. 2010) and data aggregation (Mora-Herrera et al. 2020; Guillaume et al. 2020). All the mentioned publications are available from the *GeoFIS* web site.

Author(s)

GeoFIS Team <contact@geofis.org>

References

See Also

https://www.geofis.org

LearnOwaWeights

Learn the OWA weights

Description

Learn the OWA weights using a non-negative least-square optimization method with the constraint that the sum of weights must be equal to 1. The input values are previously sorted in increasing order. The resulting weights are given from min to max. More information is available in the vignette "Data Fusion with GeoFIS", section "Learning illustration".

Usage

```
LearnOwaWeights(data, target, digits = 3)
```

Arguments

data
data.frame or *numeric* matrix, The input data (all columns must be in range [0, 1])

target
numeric vector, The target data (must be in range [0, 1])

digits
integer value, The number of digits to which weights are to be rounded (default is 3)

Value

numeric vector, The OWA weights
LearnWamWeights

Learn the WAM weights

Description
Learn the WAM weights using a non-negative least-square optimization method with the constraint that the sum of weights must be equal to 1.
More information is available in the vignette "Data Fusion with GeoFIS", section "Learning illustration".

Usage
LearnWamWeights(data, target, digits = 3)

Arguments
- `data`: data.frame or numeric matrix, The input data (all columns must be in range [0, 1])
- `target`: numeric vector, The target data (must be in range [0, 1])
- `digits`: integer value, The number of digits to which weights are to be rounded (default is 3)

Value
numeric vector, The WAM weights

MaximumDistance

The "Maximum" distance

Description
Function to create a "Maximum" distance
To be used with the Zoning zone_distance field

Usage
MaximumDistance()

Value
Maximum distance object
MeanDistance \textit{The "Mean" distance}

\textbf{Description}

Function to create a "Mean" distance
To be used with the \texttt{Zoning} \texttt{zone_distance} field

\textbf{Usage}

\begin{verbatim}
MeanDistance()
\end{verbatim}

\textbf{Value}

Mean distance object

MinimumDistance \textit{The "Minimum" distance}

\textbf{Description}

Function to create a "Minimum" distance
To be used with the \texttt{Zoning} \texttt{zone_distance} field

\textbf{Usage}

\begin{verbatim}
MinimumDistance()
\end{verbatim}

\textbf{Value}

Minimum distance object

MinkowskiDistance \textit{The "Minkowski" distance}

\textbf{Description}

Function to create a "Minkowski" distance
To be used with the \texttt{Zoning} \texttt{combine_distance} field

\textbf{Usage}

\begin{verbatim}
MinkowskiDistance(power = 2)
\end{verbatim}
NewAggregFis

Arguments

power numeric value, The power of the Minkowski distance
The default value is 2 (equivalent to euclidean distance)

Value

Minkowski distance object

NewAggregFis Create object of class "AggregFis"

Description

Function to create an aggregation operator of class AggregFis to be used in Fusion

Usage

NewAggregFis(fis, output_index = 1)

Arguments

fis Fis object, The Fis to be used in the aggregation operator
output_index integer value, The index (1-based index) of the output in the Fis to be used in
the aggregation (the default is 1)

Value

AggregFis object

See Also

Aggregation using linguistic rules

NewAggregFunction Create object of class "AggregFunction"

Description

Function to create an aggregation operator of class AggregFunction to be used in Fusion

Usage

NewAggregFunction(func)

Arguments

func The function to be used for the aggregation
NewAggregOwa

Create object of class "AggregOwa"

Description
Function to create an aggregation operator of class AggregOwa to be used in Fusion

Usage
NewAggregOwa(weights)

Arguments
weights numeric vector, The weights of the OWA aggregation operator (the sum of the weights must be equal to 1 without negative values)

See Also
Aggregation using numerical operators

NewAggregWam

Create object of class "AggregWam"

Description
Function to create an aggregation operator of class AggregWam to be used in Fusion

Usage
NewAggregWam(weights)

Arguments
weights numeric vector, The weights of the WAM aggregation operator (the sum of the weights must be equal to 1 without negative values)

See Also
Aggregation using numerical operators
Description

Function to create object of class `Fis` to be used in `AggregFis`

Usage

```
NewFisFusion(
  fis_name,
  input_names,
  input_granularities,
  output_name,
  output_conclusions
)
```

Arguments

- `fis_name` character vector, The name of the Fis
- `input_names` character vector, The Fis inputs names
- `input_granularities` integer vector, The granularity (number of membership functions) for each Fis input (granularity must be in range \([2, 5]\))
- `output_name` character vector, The name of the Fis output
- `output_conclusions` numeric or character vector, The conclusions of the rules in the Fis, the rules are generated according to the granularity of each input, in the lexicographic order of inputs Mfs \((\text{prod}(\text{input_granularities}) \text{ rules are generated})\)
 - if numeric vector, a crisp output `FisOutCrisp` will be added to the Fis (all output conclusions must be in range \([0, 1]\))
 - if character vector, a fuzzy output `FisOutFuzzy` will be added to the Fis, the output_conclusions contains the labels of Mfs in the fuzzy output (labels defined on `FusionLabel`)
- the length of output_conclusions must be equal to the number of generated rules.

Value

`Fis` object

See Also

Aggregation using linguistic rules
NewFusion

Create object of class "Fusion"

Description

Function to create object of class Fusion

Usage

NewFusion(...)

Arguments

... arguments of Fusion constructor

Value

Fusion object

NewFusionAggreg

Create an aggregation node to be used in data fusion

Description

Function to create an aggregation node to be used in Fusion

Usage

NewFusionAggreg(name, aggreg, ...)

Arguments

name character vector, The name of the node
aggreg Agreg object, The aggregation operator to be used to compute the aggregation of satisfaction degrees
must be an AgregWam, AgregOwa, AgregFis or AgregFunction object
... Node objects, The nodes to aggregate
can be an input node built with NewFusionInput or an aggregate node built with NewFusionAggreg for a hierarchical aggregation structure

Value

Node object

See Also

Aggregation of the degrees
NewFusionInput

Create an input node to be used in data fusion

Description

Function to create an input node to be used in Fusion

Usage

NewFusionInput(name, mf, attribute = name)

Arguments

name	character vector, The name of the node
mf	Mf object, The membership function to be used to compute the satisfaction degree of the input
attribute	character vector, The attribute name in the source dataset (default is the same as name)

Value

Node object

See Also

From raw data to satisfaction degrees

NewZoning

Create object of class "Zoning"

Description

Function to create object of class Zoning

Usage

NewZoning(...)

Arguments

... arguments of Zoning constructor

Value

Zoning object
ZoneArea

tolima

Tolima dataset

Description

Soil experimental data in three municipalities of Tolima department in Colombia (Mora-Herrera et al. 2020)

Usage

```r
data(tolima)
```

Format

- `data.frame` object with 30 observations and 8 attributes:
 - `Cadmium` numeric value, Cadmium in Soil (ppm)
 - `pH` numeric value, pH Soil (°pH)
 - `OM` numeric value, Organic Matter (%)
 - `P` numeric value, Available Phosphorus (ppm)
 - `K` numeric value, Exchangeable Potassium (meq/100 g)
 - `BalanceGap` numeric value, Balance Gap (%)
 - `Ngap_N_OpN` numeric value, N Gap (N/Ntarget)
 - `Base_S` numeric value, Base Saturation (%)

References

ZoneArea

The "Area" smallest zone

Description

Function to create an "Area" smallest zone

To be used with the `Zoning smallest_zone` field

Usage

```r
ZoneArea(area)
```
ZoneSize

Arguments

area numeric value, The minimum area of the zone to retain the zone in the Zoning process

Value

Area Smallest zone object

ZoneSize

The "Size" smallest zone

Description

Function to create a "Size" smallest zone
To be used with the Zoning smallest_zone field

Usage

ZoneSize(number_of_points)

Arguments

number_of_points integer value, The minimum number of points in the zone to retain the zone in the Zoning process

Value

Size Smallest zone object

Zoning

Class "Zoning"

Description

The main class to perform zoning
A complete use-case example is described in the vignette “Zoning with GeoFIS”
Active bindings

border SpatialPolygons object, The border used to limit the processed area, or NULL if the Convex Hull of data source is used
Only data points within the border polygon are processed
The default value is NULL

neighborhood numeric value, The minimum edge length shared by two Voronoi polygons for being considered as neighbors
or NULL if all contiguous Voronoi polygons are considered as neighbors
The default value is NULL

attribute_distance list of Distance object (write-only), The functions used to compute the distance between two data points in the attribute space
The length of the list must be equal to the number of zonable attributes, the distance objects are treated in the order of zonable attributes
In case of a single attribute into the zonable dataset, the list is optional and a single Distance object can be provided
Allowed distance objects: EuclideanDistance, FuzzyDistance or NULL if the attribute should not be used in the zoning process
The default value is a list of EuclideanDistance
See Zoning documentation main parameters univariate distance

combine_distance Distance object (write-only), The function used to combine attribute distances in case of multivariate zoning
Allowed distance objects: EuclideanDistance or MinkowskiDistance
The default value is EuclideanDistance See Zoning documentation main parameters multivariate combination

zone_distance Distance object (write-only), The function used to compute the distance between 2 zones
Allowed distance objects: MaximumDistance, MinimumDistance or MeanDistance
The default value is MaximumDistance
The pair of zones to be merged are those for which the zone_distance is minimum.
See Zoning documentation main parameters between zone distance

smallest_zone Smallest zone object (write-only), This criterion is used to determine the smallest size for a zone (number of points or area) to be kept in the final map
Allowed Smallest zone objects: ZoneSize or ZoneArea
The default value is ZoneSize with 1 point

Methods

Public methods:
- Zoning$new()
- Zoning$zonable_data()
- Zoning$perform_voronoi()
- Zoning$voronoi_map()
- Zoning$perform_neighborhood()
Method new(): Constructor, create a new instance of Zoning

Usage:
Zoning$new(source, warn = TRUE)

Arguments:
source SpatialPointsDataFrame or SpatialMultiPointsDataFrame object. The data source
warn logical value, Show warnings if TRUE, default value is TRUE

Method zonable_data(): Get the zonable data

Keep only the attributes that can be used in the zoning process, meaning numeric attributes, without
missing values and with a range that is not limited to a unique value

The last condition is required by the min-max standardization process

Usage:
Zoning$zonable_data()

Returns: SpatialPointsDataFrame object

Method perform_voronoi(): Compute the Voronoi diagram

Usage:
Zoning$perform_voronoi()

Method voronoi_map(): Get the Voronoi map

Usage:
Zoning$voronoi_map()

Returns: SpatialPolygons object

Method perform_neighborhood(): Identify adjacent polygons in the voronoi tessellation

Usage:
Zoning$perform_neighborhood()

Method neighborhood_map(): Get the neighborhood map

Usage:
Zoning$neighborhood_map()

Returns: SpatialLinesDataFrame object

Method perform_zoning(): Perform the zoning

Usage:
Zoning$perform_zoning()

Method map_size(): Get the number of maps with different number of zones available after perform zoning
Usage:
Zoning$map_size()

Returns: integer value

Method map(): Get the map corresponding to a number of zones

Usage:
Zoning$map(number_of_zones)

Arguments:
number_of_zones integer value, The number of zones in the map

Returns: SpatialPolygonsDataFrame object

Method maps(): Get the maps corresponding to a number of zones

Usage:
Zoning$maps(number_of_zones)

Arguments:
number_of_zones integer vector, The number of zones in each map

Returns: list of SpatialPolygonsDataFrame object

References

See Also
NewZoning
Zoning documentation
Index

* datasets
 conductivity_2014, 4
 conductivity_border, 5
 fusion_cars, 8
 tolima, 18
 AggregFis, 2, 13, 15, 16
 AggregFunction, 3, 13, 16
 AggregOwa, 3, 14, 16
 AggregWam, 4, 14, 16
 character, 7, 8, 15–17
 conductivity_2014, 4
 conductivity_border, 5
 data.frame, 6, 8, 10, 11, 18
 EuclideanDistance, 5, 20
 Fis, 2, 7, 8, 13, 15
 FisIn, 9
 FisOutCrisp, 15
 FisOutFuzzy, 15
 Fusion, 2–4, 6, 6, 13, 14, 16, 17
 fusion_cars, 8
 FusionLabel, 7, 15
 FuzzyDistance, 8, 20
 GeoFIS, 9
 GeoFIS-package (GeoFIS), 9
 integer, 2, 5, 8, 10, 11, 13, 15, 19, 22
 LearnOwaWeights, 10
 LearnWamWeights, 11
 list, 6, 20, 22
 logical, 21
 MaximumDistance, 11, 20
 MeanDistance, 12, 20
 Mf, 7, 17
 MinimumDistance, 12, 20
 MinkowskiDistance, 12, 20
 NewAggregFis, 3, 13
 NewAggregFunction, 3, 13
 NewAggregOwa, 3, 14
 NewAggregWam, 4, 14
 NewFisFusion, 15
 NewFusion, 7, 16
 NewFusionAggreg, 16, 16
 NewFusionInput, 16, 17
 NewZoning, 17, 22
 Node, 6, 16, 17
 numeric, 3, 4, 8, 10, 11, 13–15, 18–20
 sp, 6
 Spatial, 6
 SpatialLinesDataFrame, 21
 SpatialMultiPointsDataFrame, 21
 SpatialPointsDataFrame, 4, 21
 SpatialPolygons, 20, 21
 SpatialPolygonsDataFrame, 5, 22
 tolima, 18
 ZoneArea, 18, 20
 ZoneSize, 19, 20
 Zoning, 5, 8, 11, 12, 17–19, 19, 21

23