Package ‘GeoTcgaData’

February 23, 2020

Type Package
Title Processing various types of data on GEO and TCGA
Version 0.2.3
Description Gene Expression Omnibus(GEO) and The Cancer Genome Atlas (TCGA) provide us with a wealth of data, such as RNA-seq, DNA Methylation, and Copy number variation data. It's easy to download data from TCGA using the gdc tool, but processing these data into a format suitable for bioinformatics analysis requires more work. This R package was developed to handle these data.

Depends R (>= 3.6.0)
License Artistic-2.0
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Suggests knitr, rmarkdown, DESeq2, S4Vectors
VignetteBuilder knitr
Imports utils, data.table
Language en-US
NeedsCompilation no
Author Erqiang Hu [aut, cre]
Maintainer Erqiang Hu <13766876214@163.com>
Repository CRAN
Date/Publication 2020-02-23 00:10:07 UTC

R topics documented:

ann_merge .. 2
cal_mean_module 3
classify_sample 3
countToFpkm_matrix 4
countToTpm_matrix 4
Merge the copy number variation data downloaded from TCGA using gdc

Usage

```
an_merge(dirr, metadatafile)
```

Arguments

- **dirr**: a string of direction, catalogue of copy number variation data
- **metadatafile**: a metadata file download from TCGA

Value

A matrix, each column is a sample, each row is a gene
cal_mean_module

Examples
metadatafile_name <- "metadata.cart.2018-11-09.json"
Not run: jieguo2 <- ann_merge(dirr = system.file(file.path("extdata","cnv"),
package="GeoTcgaData"),metadatafile=metadatafile_name)
End(Not run)

cal_mean_module Find the mean value of the gene in each module

Description
Find the mean value of the gene in each module

Usage
cal_mean_module(geneExpress, module)

Arguments
geneExpress a data.frame
module a data.frame

Value
a matrix, means the mean of gene expression value in the same module

Examples
result <- cal_mean_module(geneExpress,module)

classify_sample Get the differentially expressioned genes using DESeq2 package

Description
Get the differentially expressioned genes using DESeq2 package

Usage
classify_sample(profile_input)

Arguments
profile_input a data.frame
Value

a data.frame, a intermediate results of DESeq2

Examples

profile2 <- classify_sample(kegg_liver)

countToFpkm_matrix

Convert count to FPKM

Description

Convert count to FPKM

Usage

countToFpkm_matrix(counts_matrix)

Arguments

counts_matrix a matrix, colnames of counts_matrix are sample name, rownames of counts_matrix are gene symbols

Value

a matrix

Examples

lung_squ_count2 <- matrix(c(1,2,3,4,5,6,7,8,9),ncol=3)
rownames(lung_squ_count2) <- c("DISC1","TCOF1","SPPL3")
colnames(lung_squ_count2) <- c("sample1","sample2","sample3")
jieguo <- countToFpkm_matrix(lung_squ_count2)

countToTpm_matrix Convert count to Tpm

Description

Convert count to Tpm

Usage

countToTpm_matrix(counts_matrix)
differential_cnv

Arguments
- `counts_matrix`: a matrix, colnames of `counts_matrix` are sample name, rownames of `counts_matrix` are gene symbols

Value
- a matrix

Examples
```
lung_squ_count2 <- matrix(c(1,2,3,4,5,6,7,8,9),ncol=3)
rownames(lung_squ_count2) <- c("DISC1","TCOF1","SPPL3")
colnames(lung_squ_count2) <- c("sample1","sample2","sample3")
jieguo <- countToTpm_matrix(lung_squ_count2)
```

differential_cnv
Do chi-square test to find differential genes

Description
Do chi-square test to find differential genes

Usage
```
differential_cnv(rt)
```

Arguments
- `rt`: result of `prepare_chi()`

Value
- a matrix

Examples
```
jieguo3 <- matrix(c(-1.09150,-1.47120,-0.87050,-0.50880,
                    -0.50880,2.0,2.0,2.0,2.0,2.601962,2.621332,2.621332,
                    2.621332,2.621332,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,
                    2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0),nrow=5)
rownames(jieguo3) <- c("AJAP1","FHAD1","CLCNKB","CROCCP2","AL137798.3")
                        "TCGA-DD-A1EB-11A-11D-A12Y-01")
rt <- prepare_chi(jieguo3)
chiResult <- differential_cnv(rt)
```
diff_gene

Get the differentially expressioned genes using DESeq2 package

Description
Get the differentially expressioned genes using DESeq2 package

Usage

```r
diff_gene(profile2_input)
```

Arguments

- `profile2_input`: a result of `classify_sample`

Value

a matrix, information of differential expression genes

Examples

```r
profile2 <- classify_sample(kegg_liver)
jiegou <- diff_gene(profile2)
```

fpkmToTpm_matrix

Convert fpkm to Tpm

Description
Convert fpkm to Tpm

Usage

```r
fpkmToTpm_matrix(fpkm_matrix)
```

Arguments

- `fpkm_matrix`: a matrix, colnames of `fpkm_matrix` are sample name, rownames of `fpkm_matrix` are gene symbols

Value

a matrix
Examples

```r
lung_squ_count2 <- matrix(c(0.11,0.22,0.43,0.14,0.875,0.66,0.77,0.18,0.29),ncol=3)
rownames(lung_squ_count2) <- c("DISC1","TCOF1","SPPL3")
colnames(lung_squ_count2) <- c("sample1","sample2","sample3")
jieguo <- countToTpm_matrix(lung_squ_count2)
```

geneExpress

a data.frame of gene expression data

Description

The first column is a vector of gene symbols.

Usage

geneExpress

Format

A data.frame with 10779 rows and 3 columns

Details

The other columns are gene expression values.

gene_ave

Average the values of same genes in gene expression profile

Description

Average the values of same genes in gene expression profile.

Usage

gene_ave(file_gene_ave, k = 1)

Arguments

- `file_gene_ave` : a data.frame
- `k` : a number

Value

A data.frame, the values of same genes in gene expression profile.
Examples

```r
aa <- c("Gene Symbol", "MARCH1", "MARC1", "MARCH1", "MARCH1", "MARCH1")
cc <- c("GSM1629982", "3.969058399", "5.722410064", "7.165514853", "6.24243893", "7.60815086")
file3 <- data.frame(aa=aa, bb=bb, cc=cc)
result <- gene_ave(file3)
```

GSE66705_sample2 a matrix of gene expression data in GEO

Description

the first column represents the gene symbol

Usage

GSE66705_sample2

Format

A matrix with 999 rows and 3 column

Details

the other columns represent the expression of genes

hgnc a matrix for Converting gene symbol to entrez_id or ensembl_gene_id

Description

the columns represent "symbol", "locus_group", "locus_type", "entrez_id" and "ensembl_gene_id"

Usage

hgnc

Format

A matrix with 37647 rows and 5 column
Description

A matrix for converting gene symbol.

Usage

hgnc_file

Format

A matrix with 43547 rows and 52 columns

id_ava

Gene id conversion types

Description

Gene id conversion types

Usage

id_ava()

Value

a vector

Examples

id_ava()
id_conversion
Convert ENSEMBL gene id to gene Symbol in TCGA

Description
Convert ENSEMBL gene id to gene Symbol in TCGA

Usage
```
id_conversion(profile)
```

Arguments
- `profile`: a data.frame

Value
a data.frame, gene symbols and their expression value

Examples
```
result <- id_conversion(profile)
```

id_conversion_vector
Gene id conversion

Description
Gene id conversion

Usage
```
id_conversion_vector(from, to, IDs)
```

Arguments
- `from`: one of "id_ava()"
- `to`: one of "id_ava()"
- `IDs`: the gene id which needed to convert

Value
a vector of genes

Examples
```
id_conversion_vector("symbol","Ensembl_ID",c("A2ML1","A2ML1-AS1","A4GALT","A12M1","AAAS"))
```
kegg_liver

A matrix of gene expression data in TCGA

Description

the first column represents the gene symbol

Usage

kegg_liver

Format

A matrix with 100 rows and 150 column

Details

the other columns represent the expression(count) of genes

Merge_methy_tcga

Merge methylation data downloaded from TCGA

Description

Merge methylation data downloaded from TCGA

Usage

Merge_methy_tcga(dirr)

Arguments

- **dirr**: a string for the directory of methylation data download from tcga using the tools gdc

Value

a matrix, a combined methylation expression spectrum matrix

Examples

merge_result <- Merge_methy_tcga(system.file(file.path("extdata","methy"),package="GeoTcgaData"))
module

a matrix of module name, gene symbols, and the number of gene symbols

Description

a matrix of module name, gene symbols, and the number of gene symbols

Usage

module

Format

A matrix with 176 rows and 3 columns

prepare_chi Preparer file for chi-square test

Description

Preparer file for chi-square test

Usage

prepare_chi(jieguo2)

Arguments

jieguo2 result of ann_merge()

Value

a matrix

Examples

jieguo3 <- matrix(c(-1.09150,-1.47120,-0.87050,-0.50880,
 -0.50880,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.601962,2.621332,2.621332,
 2.621332,2.621332,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0),nrow=5)
rownames(jieguo3) <- c("AJAP1","FHAD1","CLCNKB","CROCCP2","AL137798.3")
cnv_chi_file <- prepare_chi(jieguo3)
Description
the first column represents the gene symbol

Usage
profile

Format
A matrix with 10 rows and 10 column

Details
the other columns represent the expression(FPKM) of genes

rep1
Handle the case where one id corresponds to multiple genes

Description
Handle the case where one id corresponds to multiple genes

Usage
rep1(input_file1, string)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_file1</td>
<td>input file, a data.frame or a matrix</td>
</tr>
<tr>
<td>string</td>
<td>a string, sep of the gene</td>
</tr>
</tbody>
</table>

Value
a data.frame, when an id corresponds to multiple genes, the expression value is assigned to each gene

Examples

```r
aa <- c("MARCH1 /// MMA","MARC1","MARCH2 /// MARCH3","MARCH3 /// MARCH4","MARCH1")
bb <- c("2.969058399","4.722410064","8.165514853","8.24243893","8.60815086")
cc <- c("3.969058399","5.722410064","7.165514853","6.24243893","7.60815086")
input_fil <- data.frame(aa=aa,bb=bb,cc=cc)
rep1_result <- rep1(input_fil," /// ")
```
rep2: Handle the case where one id corresponds to multiple genes

Description

Handle the case where one id corresponds to multiple genes

Usage

`rep2(input_file1, string)`

Arguments

- `input_file1`: input file, a data.frame or a matrix
- `string`: a string, sep of the gene

Value

A matrix, when an id corresponds to multiple genes, the expression value is deleted

Examples

```r
aa <- c("MARCH1 /// MMA", "MARC1", "MARCH2 /// MARCH3", "MARCH3 /// MARCH4", "MARCH1")
bb <- c("2.969058399", "4.722410064", "8.165514853", "8.24243893", "8.60815086")
cc <- c("3.969058399", "5.722410064", "7.165514853", "6.24243893", "7.60815086")
input_fil <- data.frame(aa=aa, bb=bb, cc=cc)
rep2_result <- rep2(input_fil, " /// ")
```

tcga_cli_deal: Combine clinical information obtained from TCGA and extract survival data

Description

Combine clinical information obtained from TCGA and extract survival data

Usage

`tcga_cli_deal(Files_dir1)`

Arguments

- `Files_dir1`: a dir data

Value

A matrix, survival time and survival state in TCGA
ventricle

Examples

```
tcga_cli_deal(system.file(file.path("extdata","tcga_cli"),package="GeoTcgaData"))
```

ventricle

a matrix of gene expression data in GEO

Description

the first column represents the gene symbol

Usage

```
ventricle
```

Format

A matrix with 32 rows and 20 column

Details

the other columns represent the expression of genes
Index

*Topic datasets
 geneExpress, 7
 GSE66705_sample2, 8
 hgnc, 8
 hgnc_file, 9
 kegg_liver, 11
 module, 12
 profile, 13
 ventricle, 15

ann_merge, 2

 cal_mean_module, 3
 classify_sample, 3
 countToFkm_matrix, 4
 countToTpm_matrix, 4

 diff_gene, 6
 differential_cnv, 5

 fpkmToTpm_matrix, 6

 gene_ave, 7
 geneExpress, 7
 GSE66705_sample2, 8

 hgnc, 8
 hgnc_file, 9

 id_ava, 9
 id_conversion, 10
 id_conversion_vector, 10

 kegg_liver, 11

 Merge_methyl_tcga, 11
 module, 12

 prepare_chi, 12
 profile, 13
 rep1, 13
 rep2, 14
 tcga_cli_deal, 14
 ventricle, 15