Package ‘GeoTcgaData’

June 9, 2020

Type Package
Title Processing various types of data on GEO and TCGA
Version 0.2.4
Description Gene Expression Omnibus(GEO) and The Cancer Genome Atlas (TCGA) provide us with a wealth of data, such as RNA-seq, DNA Methylation, and Copy number variation data. It's easy to download data from TCGA using the gdc tool, but processing these data into a format suitable for bioinformatics analysis requires more work. This R package was developed to handle these data.

Depends R (>= 3.6.0)
License Artistic-2.0
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Suggests knitr, rmarkdown, DESeq2, S4Vectors
VignetteBuilder knitr
Imports utils, data.table
Language en-US
NeedsCompilation no
Author Erqiang Hu [aut, cre]
Maintainer Erqiang Hu <13766876214@163.com>
Repository CRAN
Date/Publication 2020-06-09 12:20:06 UTC

R topics documented:

 ann_merge .. 2
 cal_mean_module .. 3
 classify_sample .. 3
 countToFpkm_matrix 4
 countToTpm_matrix 4
ann_merge

Merge the copy number variation data downloaded from TCGA using gdc

Description
Merge the copy number variation data downloaded from TCGA using gdc

Usage
`
ann_merge(dirr, metadatafile)
```

#### Arguments
- `dirr` a string of direction, catalogue of copy number variation data
- `metadatafile` a metadata file download from TCGA

#### Value
A matrix, each column is a sample, each row is a gene
\textbf{cal\_mean\_module}

\textit{Find the mean value of the gene in each module}

\textbf{Description}

Find the mean value of the gene in each module

\textbf{Usage}

\texttt{cal\_mean\_module(geneExpress, module)}

\textbf{Arguments}

- \texttt{geneExpress} \quad a data.frame
- \texttt{module} \quad a data.frame

\textbf{Value}

a matrix, means the mean of gene expression value in the same module

\textbf{Examples}

\texttt{result <- cal\_mean\_module(geneExpress, module)}

\textbf{classify\_sample}

\textit{Get the differentially expressioned genes using DESeq2 package}

\textbf{Description}

Get the differentially expressioned genes using DESeq2 package

\textbf{Usage}

\texttt{classify\_sample(profile\_input)}

\textbf{Arguments}

- \texttt{profile\_input} \quad a data.frame
countToTpm_matrix

**Value**

a data.frame, a intermediate results of DESeq2

**Examples**

```r
profile2 <- classify_sample(kegg_liver)
```

---

countToFpkm_matrix  

*Convert count to FPKM*

**Description**

Convert count to FPKM

**Usage**

```r
countToFpkm_matrix(counts_matrix)
```

**Arguments**

- `counts_matrix` a matrix, colnames of `counts_matrix` are sample name, rownames of `counts_matrix` are gene symbols

**Value**

a matrix

**Examples**

```r
lung_squ_count2 <- matrix(c(1,2,3,4,5,6,7,8,9),ncol=3)
rownames(lung_squ_count2) <- c("DISC1","TCOF1","SPPL3")
colnames(lung_squ_count2) <- c("sample1","sample2","sample3")
jieguo <- countToFpkm_matrix(lung_squ_count2)
```

---

countToTpm_matrix  

*Convert count to Tpm*

**Description**

Convert count to Tpm

**Usage**

```r
countToTpm_matrix(counts_matrix)
```
**differential_cnv**

**Arguments**

- `counts_matrix`: a matrix, colnames of `counts_matrix` are sample name, rownames of `counts_matrix` are gene symbols

**Value**

- a matrix

**Examples**

```r
lung_squ_count2 <- matrix(c(1,2,3,4,5,6,7,8,9),ncol=3)
rownames(lung_squ_count2) <- c("DISC1","TCOF1","SPPL3")
colnames(lung_squ_count2) <- c("sample1","sample2","sample3")
jieguo <- countToTpm_matrix(lung_squ_count2)
```

---

**differential_cnv**

*Do chi-square test to find differential genes*

**Description**

Do chi-square test to find differential genes

**Usage**

```r
differential_cnv(rt)
```

**Arguments**

- `rt`: result of `prepare_chi()`

**Value**

- a matrix

**Examples**

```r
jieguo3 <- matrix(c(-1.09150,-1.47120,-0.87050,-0.50880,
 -0.50880,2.0,2.0,2.0,2.0,2.0,2.601962,2.621332,2.621332,
 2.621332,2.621332,2.0,2.0,2.0,2.0,2.0,2.0,2.0,
 2.0,2.0,2.0,2.0,2.0,2.0,2.0),nrow=5)
rownames(jieguo3) <- c("AJAP1","FHAD1","CLCNKB","CROCCP2","AL137798.3")
rt <- prepare_chi(jieguo3)
chiResult <- differential_cnv(rt)
```
diff_gene  Get the differentially expressioned genes using DESeq2 package

Description
Get the differentially expressioned genes using DESeq2 package

Usage
diff_gene(profile2_input)

Arguments
profile2_input  a result of classify_sample

Value
a matrix, information of differential expression genes

Examples
profile2 <- classify_sample(kegg_liver)
jieguo <- diff_gene(profile2)

fpkmToTpm_matrix  Convert fpkm to Tpm

Description
Convert fpkm to Tpm

Usage
fpkmToTpm_matrix(fpkm_matrix)

Arguments
fpkm_matrix  a matrix, colnames of fpkm_matrix are sample name, rownames of fpkm_matrix are genes

Value
a matrix
Examples

```r
lung_squ_count2 <- matrix(c(0.11,0.22,0.43,0.14,0.875,0.66,0.77,0.18,0.29),ncol=3)
rownames(lung_squ_count2) <- c("DISC1", "TCOF1", "SPPL3")
colnames(lung_squ_count2) <- c("sample1", "sample2", "sample3")
jieguo <- fpkmToTpm_matrix(lung_squ_count2)
```

geneExpress

*a data.frame of gene expression data*

Description

the first column is a vector of gene symbols

Usage

geneExpress

Format

A data.frame with 10779 rows and 3 columns

Details

the other columns are gene expression values

gene_ave

*Average the values of same genes in gene expression profile*

Description

Average the values of same genes in gene expression profile

Usage

gene_ave(file_gene_ave, k = 1)

Arguments

- `file_gene_ave` a data.frame
- `k` a number

Value

a data.frame, the values of same genes in gene expression profile
Examples

```r
aa <- c("Gene Symbol","MARCH1","MARC1","MARCH1","MARCH1","MARCH1")
bb <- c("GSM1629982","2.969058399","4.722410064","8.165514853","8.24243893","8.60815086")
cc <- c("GSM1629982","3.969058399","5.722410064","7.165514853","6.24243893","7.60815086")
file3 <- data.frame(aa=aa,bb=bb,cc=cc)
result <- gene_ave(file3)
```

---

**GSE66705_sample2**  
*a matrix of gene expression data in GEO*

**Description**

the first column represents the gene symbol

**Usage**

GSE66705_sample2

**Format**

A matrix with 999 rows and 3 column

**Details**

the other columns represent the expression of genes

---

**hgnc**  
*a matrix for Converting gene symbol to entrez_id or ensembl_gene_id*

**Description**

the columns represent "symbol", "locus_group", "locus_type", "entrez_id" and "ensembl_gene_id"

**Usage**

hgnc

**Format**

A matrix with 37647 rows and 5 column
**hgncc_file**  

---

**hgncc_file**  

*a matrix for Converting gene symbol.*

---

**Description**

a matrix for Converting gene symbol.

**Usage**

hgncc_file

**Format**

A matrix with 43547 rows and 52 column

---

**id_ava**  

*Gene id conversion types*

---

**Description**

Gene id conversion types

**Usage**

id_ava()

**Value**

a vector

**Examples**

id_ava()
id_conversion

**Convert ENSEMBL gene id to gene Symbol in TCGA**

**Description**
Convert ENSEMBL gene id to gene Symbol in TCGA

**Usage**
```r
id_conversion(profile)
```

**Arguments**
- **profile**: a data.frame

**Value**
a data.frame, gene symbols and their expression value

**Examples**
```r
result <- id_conversion(profile)
```

id_conversion_vector

**Gene id conversion**

**Description**
Gene id conversion

**Usage**
```r
id_conversion_vector(from, to, IDs)
```

**Arguments**
- **from**: one of "id_ava()"
- **to**: one of "id_ava()"
- **IDs**: the gene id which needed to convert

**Value**
a vector of genes

**Examples**
```r
id_conversion_vector("symbol","Ensembl_ID",c("A2ML1","A2ML1-AS1","A4GALT","A12M1","AAAS"))
```
**kegg_liver**

*a matrix of gene expression data in TCGA*

**Description**

the first column represents the gene symbol

**Usage**

`kegg_liver`

**Format**

A matrix with 100 rows and 150 column

**Details**

the other columns represent the expression(count) of genes

---

**Merge_methy_tcga**

*Merge methylation data downloaded from TCGA*

**Description**

Merge methylation data downloaded from TCGA

**Usage**

`Merge_methy_tcga(dirr)`

**Arguments**

| dirr       | a string for the directory of methylation data download from tcga using the tools gdc |

**Value**

a matrix, a combined methylation expression spectrum matrix

**Examples**

```r
merge_result <- Merge_methy_tcga(system.file(file.path("extdata","methy"),package="GeoTcgaData"))
```
## Description

A matrix with 176 rows and 3 columns containing module names, gene symbols, and the number of gene symbols.

## Usage

```r
module
```

## Format

A matrix with 176 rows and 3 columns.

## Description

Preparer file for chi-square test

## Usage

```r
prepare_chi(jieguo2)
```

## Arguments

- **jieguo2**: result of `ann_merge()`

## Value

A matrix

## Examples

```r
jieguo3 <- matrix(c(-1.09150,-1.47120,-0.87050,-0.50880,-0.50880,2.0,2.0,2.0,2.0,2.0,2.601962,2.621332,2.621332,2.621332,2.621332,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0),nrow=5)
rownames(jieguo3) <- c("AJAP1", "FHAD1", "CLCNKB", "CROCCP2", "AL137798.3")
cnv_chi_file <- prepare_chi(jieguo3)
```
profile a matrix of gene expression data in TCGA

Description
the first column represents the gene symbol

Usage
profile

Format
A matrix with 10 rows and 10 column

Details
the other columns represent the expression(FPKM) of genes

rep1 Handle the case where one id corresponds to multiple genes

Description
Handle the case where one id corresponds to multiple genes

Usage
rep1(input_file1, string)

Arguments
input_file1 input file, a data.frame or a matrix
string a string,sep of the gene

Value
a data.frame, when an id corresponds to multiple genes, the expression value is assigned to each gene

Examples
aa <- c("MARCH1 /// MMA","MARC1","MARCH2 /// MARCH3","MARCH3 /// MARCH4","MARCH1")
bb <- c("2.969058399","4.722410064","8.165514853","8.24243893","8.60815086")
c <- c("3.969058399","5.722410064","7.165514853","6.24243893","7.60815086")
input_fil <- data.frame(aa=aa,bb=bb,cc=cc)
rep1_result <- rep1(input_fil," /// ")
**rep2**

*Handle the case where one id corresponds to multiple genes*

**Description**

Handle the case where one id corresponds to multiple genes

**Usage**

`rep2(input_file1, string)`

**Arguments**

- `input_file1`: input file, a data.frame or a matrix
- `string`: a string, sep of the gene

**Value**

a matrix, when an id corresponds to multiple genes, the expression value is deleted

**Examples**

```r
aa <- c("MARCH1 /// MMA","MARC1","MARCH2 /// MARCH3","MARCH3 /// MARCH4","MARCH1")
bb <- c("2.969058399","4.722410064","8.165514853","8.24243893","8.60815086")
cc <- c("3.969058399","5.722410064","7.165514853","6.24243893","7.60815086")
input_fil <- data.frame(aa=aa,bb=bb,cc=cc)
rep2_result <- rep2(input_fil," /// ")
```

**tcga_cli_deal**

*Combine clinical information obtained from TCGA and extract survival data*

**Description**

Combine clinical information obtained from TCGA and extract survival data

**Usage**

`tcga_cli_deal(Files_dir1)`

**Arguments**

- `Files_dir1`: a dir data

**Value**

a matrix, survival time and survival state in TCGA
ventricle

Examples

tcga_cli_deal(system.file(file.path("extdata","tcga_cli"),package="GeoTcgaData"))

| ventricle | a matrix of gene expression data in GEO |

Description

the first column represents the gene symbol

Usage

ventricle

Format

A matrix with 32 rows and 20 column

Details

the other columns represent the expression of genes
Index

+Topic datasets
  - geneExpress, 7
  - GSE66705_sample2, 8
  - hgnc, 8
  - hgnc_file, 9
  - kegg_liver, 11
  - module, 12
  - profile, 13
  - ventricle, 15

  - ann_merge, 2
  - cal_mean_module, 3
  - classify_sample, 3
  - countToFpm_matrix, 4
  - countToTpmmatrix, 4
  - diff_gene, 6
  - differential_cnv, 5

  - fpkmToTpmmatrix, 6
  - gene_ave, 7
  - geneExpress, 7
  - GSE66705_sample2, 8

  - hgnc, 8
  - hgnc_file, 9

  - id_ava, 9
  - id_conversion, 10
  - id_conversion_vector, 10

  - kegg_liver, 11
  - Merge_methy_tcga, 11
  - module, 12

  - prepare_ch, 12
  - profile, 13

  - rep1, 13

  - rep2, 14
  - tcga_cli_deal, 14
  - ventricle, 15