Package ‘Ghat’

December 14, 2022

Title Quantifying Evolution and Selection on Complex Traits
Version 0.2.0
Description Functions are provided for quantifying evolution and selection on complex traits. The package implements effective handling and analysis algorithms scaled for genome-wide data and calculates a composite statistic, denoted Ghat, which is used to test for selection on a trait. The package provides a number of simple examples for handling and analysing the genome data and visualising the output and results. Beissinger et al., (2018) <doi:10.1534/genetics.118.300857>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends R (>= 3.0.0)
BugReports https://github.com/Medhat86/Ghat/issues
Suggests knitr, rmarkdown
Imports rrBLUP
NeedsCompilation no
Author Medhat Mahmoud [aut], Ngoc-Thuy Ha [aut], Tim Beissinger [aut, cre]
Maintainer Tim Beissinger <timbeissinger@gmail.com>
Repository CRAN
Date/Publication 2022-12-14 12:00:08 UTC

R topics documented:

Ghat .. 2
ld_decay .. 4
Maize_wqs .. 5
Index .. 6
Ghat

Quantifying evolution and selection on complex traits

Description

G-hat: R function to estimate G-hat from allele frequency and effect size data.

Usage

Ghat(effects = effects, change = change, method = "scale", perms = 1000, plot = "Both", blockSize = 1000, num_eff = NULL)

Arguments

 effects Vector of allele effects.
 change Vector of changes in allele frequency (could be positive, negative or zero).
 method "vanilla" (assumes complete linkage equilibrium between markers), "trim" (ex-
 cludes markers to approximate linkage equilibrium some of the extreme values)
 or "scale" (scales results to reflect underlying levels of linkage LD)
 perms Number of permutations to run.
 plot "Ghat", "Cor", or "Both", Should a plot of the Ghat or correlation test be re-
 turned?
 blockSize How large should blocks for trimming be? Only required if method = "trim".
 num_eff The effective number of independent markers, to be used only in conjunction
 with the "scale" method, above (see "ld_decay" function or use help (?ld_decay).

Value

 Ghat G-hat-value
 Cor Correlation between alleles frequencies and their effects
 p.val two-sided P-value of Evidence of selection
 plot relationship between estimated allelic effects at individual SNPs and the change in allele fre-
 quency over generations

Examples

#Example-1 Both SNP effects and change in allele frequency are known
maize <- Maize_wqs[[1]]
result.adf <- Ghat(effects =maize[,1], change=maize[,2], method="scale",
 perms=1000, plot="Ghat", num_eff=54.74819)
mtext(paste("WQS ADF test for selection, pval = ", round(result.adf$p.val,4)))
message (c(result.adf$Ghat , result.adf$Cor , result.adf$p.va))

Not run:
Example-2 Both SNP effects and change in allele frequency are known

step 1: run rrBLUP and estimating alleles effects

```r
library(Ghat)
library(parallel)
library(rrBLUP)

phe <- Maize_wqs[[2]]
map <- Maize_wqs[[3]]
gen <- Maize_wqs[[4]]
phe <- phe[which(is.na(phe[,2])==FALSE),]
gen <- gen[which(is.na(phe[,2])==FALSE),]
result <- mixed.solve(phe[,2],
                      Z = as.matrix(gen[,2:ncol(gen)]),
                      X = model.matrix(phe[,2]~phe[,3]),
                      K = NULL, SE = FALSE, return.Hinv = FALSE,
                      method = "ML")
```

step 2: is to calculate the allele frequency at Cycle 1 and 3

```r
CycleIndicator <- as.numeric(unlist(strsplit(gen$X, split="_C")) [seq(2,2*nrow(gen),2)])
Cycle1 <- gen[which(CycleIndicator == 1),]
Cycle3 <- gen[which(CycleIndicator == 3),]
CycleList <- list(Cycle1,Cycle3)
frequencies <- matrix(nrow=ncol(gen)-1,ncol=2)
for(i in 1:2){
frequencies[,i] <- colMeans(CycleList[[i]][,-1],na.rm=TRUE)/2
}
frequencies <- as.data.frame(frequencies)
names(frequencies) <- c("Cycle1","Cycle3")
change <- frequencies$Cycle3-frequencies$Cycle1
```

step 3: Calculate LD Decay

```r
ld <- ld_decay (gen=gen, map=map,
                 max_win_snp=2000, max.chr=10,
                 cores=1, max_r2=0.03)
```

step 4: Calculate Ghat

```r
Ghat.adf <- Ghat(effects=result$u, change=change, method = "scale",
                 perms=1000,plot="Ghat", num_eff = 54.74819)

message (paste("Ghat=" , Ghat.adf$Ghat,
               "Cor=" , Ghat.adf$Cor,
               "P-val=" , Ghat.adf$p.va, sep = " "))
```

End(Not run)
Description

ld_decay: R function for calculating the effective number of independent markers

Usage

```r
ld_decay(gen = gen, map = map, max_win_snp = 2000,
          max.chr = max.chr, cores = 1, max_r2 = max_r2)
```

Arguments

gene Matrix of genotype data. Individuals in rows, genotypes (0, 1, 2) in columns.
map Dataframe including the name for each marker with a corresponding chromosome number and physical position.
max_win_snp The maximum number of markers in each window. Sets the maximum number of markers allowed per window within a chromosome before estimating the LD. Default is 2000.
max.chr Chromosomes above this number will be excluded from the analysis.
cores Number of cores for using parallelized calculation, Default is 1 for windows machine.
max_r2 the threshold of r^2 to calculate the effective number of independent markers.

Value

cor: Correlation matrix
ch_eff_nmark: The Number of independent marker per chromosome
eff_nmark: The effective number of independent markers

Examples

```r
## Not run:
library("parallel")
gen <- Maize_wqs[[4]]
map <- Maize_wqs[[3]]
Res_ld <- ld_decay (gen=gen, map=map, max_win_snp=2000,
                    max.chr=10, cores=1, max_r2=0.03)

## End(Not run)
```
Maize_wqs

The Wisconsin Quality Synthetic (WQS) maize population datasets.

Description

The Wisconsin Quality Synthetic (WQS) maize population datasets.

Usage

Maize_wqs

Format

A list of 4 data sets:

- **Dataset-1** Data frame including all SNP effects and changes in allele frequencies between cycle 2 and 5.
- **Dataset-2** BLUP breeding values for Acid Detergent Fiber (ADF) involving 5 generations of selection.
- **Dataset-3** Map file: Each line of the Map file describes a single marker and must contain at least three columns. 1: chromosome number; 2: SNP (snp id); 3: SNP position (in base-pairs (bp)).
- **Dataset-4** Maize Genotype (Illumina MaizeSNP50 BeadChip); an Infinium HD assay (Illumina, Inc. San Diego, CA). 10,017 SNP markers (0,1 and 2) after filtration, distributed across the maize genome (Ganal et al.2011).

Source

Examples

```r
maize <- Maize_wqs[[1]]
phe <- Maize_wqs[[2]]
map <- Maize_wqs[[3]]
gen <- Maize_wqs[[4]]
```
Index

* datasets
 Maize_wqs, 5

Ghat, 2
ld_decay, 4
Maize_wqs, 5