Package ‘GlmSimulatoR’

October 12, 2022

Type Package

Title Creates Ideal Data for Generalized Linear Models

Version 0.2.5

Author Greg McMahan

Maintainer Greg McMahan <gmcmacran@gmail.com>

Description Creates ideal data for all distributions in the generalized linear model framework.

License GPL-3

Encoding UTF-8

Imports assertthat, stats, stringr, dplyr, statmod, magrittr, MASS, tweedie, ggplot2, cplm

RoxygenNote 7.1.1

Suggests testthat (>= 3.0.0), knitr, rmarkdown, covr

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2021-11-04 18:10:02 UTC

R topics documented:

simulate_gaussian ... 2

Index 6
simulate_gaussian

Create ideal data for a generalized linear model.

Description

Create ideal data for a generalized linear model.

Usage

```r
simulate_gaussian(
  N = 10000,
  link = "identity",
  weights = 1:3,
  xrange = 1,
  unrelated = 0,
  ancillary = 1
)
```

```r
simulate_binomial(
  N = 10000,
  link = "logit",
  weights = c(0.1, 0.2),
  xrange = 1,
  unrelated = 0
)
```

```r
simulate_gamma(
  N = 10000,
  link = "inverse",
  weights = 1:3,
  xrange = 1,
  unrelated = 0,
  ancillary = 0.05
)
```

```r
simulate_poisson(
  N = 10000,
  link = "log",
  weights = c(0.5, 1),
  xrange = 1,
  unrelated = 0
)
```

```r
simulate_inverse_gaussian(
  N = 10000,
  link = "1/mu^2",
  weights = 1:3,
)
simulate_gaussian

  xrange = 1,
  unrelated = 0,
  ancillary = 0.3333
)

simulate_negative_binomial(
  N = 10000,
  link = "log",
  weights = c(0.5, 1),
  xrange = 1,
  unrelated = 0,
  ancillary = 1
)

simulate_tweedie(
  N = 10000,
  link = "log",
  weights = 0.02,
  xrange = 1,
  unrelated = 0,
  ancillary = 1.15
)

Arguments

N       Sample size. (Default: 10000)
link    Link function. See family for details.
weights Betas in glm model.
xrange   range of x variables.
unrelated Number of unrelated features to return. (Default: 0)
ancillary Ancillary parameter for continuous families and negative binomial. See details.

Details

For many families, it is possible to pick weights that cause inverse link(X * weights) to be mathematically invalid. For example, the log link for binomial regression defines \( P(Y=1) = \exp(X \times \text{weights}) \) which can be above one. If this happens, the function will error with a helpful message.

The intercept in the underlying link(Y) = X * weights + intercept is always max(weights). In simulate_gaussian(link = "inverse", weights = 1:3), the model is \( 1/Y = 1*X_1 + 2*X_2 + 3*X_3 + 3 \).

links

- gaussian: identity, log, inverse
- binomial: logit, probit, cauchit, loglog, cloglog, log, logc, identity
- gamma: inverse, identity, log
- poisson: log, identity, sqrt
- inverse gaussian: 1/\mu^2, inverse, identity, log
- negative binomial: log, identity, sqrt
- tweedie: log, identity, sqrt, inverse

The default link is the first link listed for each family.

Ancillary parameter
- gaussian: standard deviation
- binomial: N/A
- gamma: scale parameter
- poisson: N/A
- inverse gaussian: dispersion parameter
- negative binomial: theta.
- tweedie: rho

Value
A tibble with a response variable and predictors.

Examples

```r
library(GlmSimulatoR)
library(ggplot2)
library(MASS)

Do glm and lm estimate the same weights? Yes
set.seed(1)
simdata <- simulate_gaussian()
linearModel <- lm(Y ~ X1 + X2 + X3, data = simdata)
glmModel <- glm(Y ~ X1 + X2 + X3, data = simdata, family = gaussian(link = "identity"))
summary(linearModel)
summary(glmModel)
rm(linearModel, glmModel, simdata)

If the link is not identity, will the response variable still be normal? Yes
set.seed(1)
simdata <- simulate_gaussian(N = 1000, link = "log", weights = c(.1, .2))

ggplot(simdata, aes(x = Y)) +
 geom_histogram(bins = 30)
rm(simdata)

Is AIC lower for the correct link? For ten thousand data points, depends on seed!
set.seed(1)
simdata <- simulate_gaussian(N = 10000, link = "inverse", weights = 1)
glmCorrectLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "inverse"))
glmWrongLink <- glm(Y ~ X1, data = simdata, family = gaussian(link = "identity"))
summary(glmCorrectLink)$aic
summary(glmWrongLink)$aic
rm(simdata, glmCorrectLink, glmWrongLink)
```
# Does a stepwise search find the correct model for logistic regression? Yes
# 3 related variables. 3 unrelated variables.
set.seed(1)
simdata <- simulate_binomial(N = 10000, link = "logit", weights = c(.3, .4, .5), unrelated = 3)

scopeArg <- list(
    lower = Y ~ 1,
    upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3
)

startingModel <- glm(Y ~ 1, data = simdata, family = binomial(link = "logit"))
glmModel <- stepAIC(startingModel, scopeArg)
summary(glmModel)
rm(simdata, scopeArg, startingModel, glmModel)

# When the resposne is a gamma distribution, what does a scatter plot between X and Y look like?
set.seed(1)
simdata <- simulate_gamma(weights = 1)
ggplot(simdata, aes(x = X1, y = Y)) +
    geom_point()
rm(simdata)
Index

family, 3

simulate_binomial(simulate_gaussian), 2
simulate_gamma(simulate_gaussian), 2
simulate_gaussian, 2
simulate_inverse_gaussian
(simulate_gaussian), 2
simulate_negative_binomial
(simulate_gaussian), 2
simulate_poisson(simulate_gaussian), 2
simulate_tweedie(simulate_gaussian), 2