Package ‘GlmSimulatoR’

December 1, 2023

Type Package

Title Creates Ideal Data for Generalized Linear Models

Version 1.0.0

Author Greg McMahan

Maintainer Greg McMahan <gmcmacran@gmail.com>

Description Creates ideal data for all distributions in the generalized linear model framework.

License GPL-3

Encoding UTF-8

Imports assertthat, stats, stringr, dplyr, statmod, magrittr, MASS, tweedie, ggplot2, cplm

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0), knitr, rmarkdown, covr

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-12-01 10:50:04 UTC

R topics documented:

simulate_gaussian .. 2

Index 6
simulate_gaussian Create ideal data for a generalized linear model.

Description

Create ideal data for a generalized linear model.

Usage

simulate_gaussian(
 N = 10000,
 link = "identity",
 weights = 1:3,
 x_range = 1,
 unrelated = 0,
 ancillary = 1
)

simulate_binomial(
 N = 10000,
 link = "logit",
 weights = c(0.1, 0.2),
 x_range = 1,
 unrelated = 0
)

simulate_gamma(
 N = 10000,
 link = "inverse",
 weights = 1:3,
 x_range = 1,
 unrelated = 0,
 ancillary = 0.05
)

simulate_poisson(
 N = 10000,
 link = "log",
 weights = c(0.5, 1),
 x_range = 1,
 unrelated = 0
)

simulate_inverse_gaussian(
 N = 10000,
 link = "1/mu^2",
 weights = 1:3,
simulate_gaussian

```r
  x_range = 1,
  unrelated = 0,
  ancillary = 0.3333
)
```

```r
simulate_negative_binomial(
  N = 10000,
  link = "log",
  weights = c(0.5, 1),
  x_range = 1,
  unrelated = 0,
  ancillary = 1
)
```

```r
simulate_tweedie(
  N = 10000,
  link = "log",
  weights = 0.02,
  x_range = 1,
  unrelated = 0,
  ancillary = 1.15
)
```

Arguments

- **N**: Sample size. (Default: 10000)
- **link**: Link function. See `family` for details.
- **weights**: Betas in glm model.
- **x_range**: Range of x variables.
- **unrelated**: Number of unrelated features to return. (Default: 0)
- **ancillary**: Ancillary parameter for continuous families and negative binomial. See details.

Details

For many families, it is possible to pick weights that cause inverse link(X * weights) to be mathematically invalid. For example, the log link for binomial regression defines P(Y=1) as exp(X * weights) which can be above one. If this happens, the function will error with a helpful message.

The intercept in the underlying link(Y) = X * weights + intercept is always max(weights). In `simulate_gaussian(link = "inverse", weights = 1:3)`, the model is (1/Y) = 1*X1 + 2*X2 + 3*X3 + 3.

- **links**
 - gaussian: identity, log, inverse
 - binomial: logit, probit, cauchit, loglog, cloglog, log, logc, identity
 - gamma: inverse, identity, log
 - poisson: log, identity, sqrt
 - inverse gaussian: 1/mu^2, inverse, identity, log
simulate_gaussian

• negative binomial: log, identity, sqrt
• tweedie: log, identity, sqrt, inverse

The default link is the first link listed for each family.

ancillary parameter

• gaussian: standard deviation
• binomial: N/A
• gamma: scale parameter
• poisson: N/A
• inverse gaussian: dispersion parameter
• negative binomial: theta.
• tweedie: rho

Value

A tibble with a response variable and predictors.

Examples

```r
library(GlmSimulatoR)
library(ggplot2)
library(MASS)

# Do glm and lm estimate the same weights? Yes
set.seed(1)
simdata <- simulate_gaussian()
linear_model <- lm(Y ~ X1 + X2 + X3, data = simdata)
glm_model <- glm(Y ~ X1 + X2 + X3, data = simdata, family = gaussian(link = "identity")
)
summary(linear_model)
summary(glm_model)
rm(linear_model, glm_model, simdata)

# If the link is not identity, will the response variable still be normal? Yes
set.seed(1)
simdata <- simulate_gaussian(N = 1000, link = "log", weights = c(.1, .2))
ggplot(simdata, aes(x = Y)) +
  geom_histogram(bins = 30)
rm(simdata)

# Is AIC lower for the correct link? For ten thousand data points, depends on seed!
set.seed(1)
simdata <- simulate_gaussian(N = 10000, link = "inverse", weights = 1)
glm_correct_link <- glm(Y ~ X1,
data = simdata,
  family = gaussian(link = "inverse")
)
glm_wrong_link <- glm(Y ~ X1,
  data = simdata,
  family = gaussian(link = "identity")
)
summary(glm_correct_link)$aic
summary(glm_wrong_link)$aic
rm(simdata, glm_correct_link, glm_wrong_link)

# Does a stepwise search find the correct model for logistic regression? Yes
# 3 related variables. 3 unrelated variables.
set.seed(1)
simdata <- simulate_binomial(
  N = 10000, link = "logit",
  weights = c(.3, .4, .5), unrelated = 3
)
scope_arg <- list(
  lower = Y ~ 1,
  upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3
)
starting_model <- glm(Y ~ 1,
  data = simdata,
  family = binomial(link = "logit")
)
glm_model <- stepAIC(starting_model, scope_arg)
summary(glm_model)
rm(simdata, scope_arg, starting_model, glm_model)

# When the response is a gamma distribution, what does a scatter plot between
# X and Y look like?
set.seed(1)
simdata <- simulate_gamma(weights = 1)
ggplot(simdata, aes(x = X1, y = Y)) +
  geom_point()
rm(simdata)
Index

family, 3

simulate_binomial(simulate_gaussian), 2
simulate_gamma(simulate_gaussian), 2
simulate_gaussian, 2
simulate_inverse_gaussian
        (simulate_gaussian), 2
simulate_negative_binomial
        (simulate_gaussian), 2
simulate_poisson(simulate_gaussian), 2
simulate_tweedie(simulate_gaussian), 2