Package ‘GrabSVG’

December 6, 2023

Title Granularity-Based Spatially Variable Genes Identifications
Version 0.0.2
Description Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package implemented a granularity-based dimension-agnostic tool for the identification of spatially variable genes. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
License GPL (>= 2)
Encoding UTF-8
Imports Matrix, sparseMatrixStats, fitdistrplus, RANN, spam
Suggests knitr, rmarkdown
RoxygenNote 7.2.1
NeedsCompilation no
Author Jinpu Li [aut, cre] (<https://orcid.org/0000-0002-6656-2896>)
Maintainer Jinpu Li <castle.lee.f@gmail.com>
Repository CRAN
Date/Publication 2023-12-06 10:00:14 UTC

R topics documented:

GrabSVG ... 2
LoadSpatial .. 3
SpFilter ... 3

Index 5
GrabSVG

A Granularity-Based Approach to identify Spatially Variable Genes

Description

This function is designed to identify spatially variable genes through a granularity-based approach.

Usage

GrabSVG(Coords, ExpMat_Sp, D_1 = 1.0, D_2 = 3.0, Exp_Norm = TRUE, Coords_Norm_Method = c("Sliced", "Overall", "None"))

Arguments

- **Coords**: A M x D matrix representing D-dimensional coordinates for M spots
- **ExpMat_Sp**: A sparse, N x M expression matrix in dgCMatrix class with N genes and M spots
- **D_1**: Size of the small patch
- **D_2**: Size of the big patch
- **Exp_Norm**: A Boolean value indicating whether the expression matrix should be normalized
- **Coords_Norm_Method**: Normalization method for the coordinates matrix, which can be "None", "Sliced", or "Overall".

Details

This function utilizes a MxD matrix (Coords) representing D-dimensional coordinates with M spots and a sparse, NxM expression matrix (ExpMat_Sp) with N genes and M spots.

Value

A data frame with the name of genes and corresponding p-values.

Examples

```r
Coords <- expand.grid(1:100,1:100, 1:3)
RandFunc <- function(n) floor(10 * stats::rbeta(n, 1, 5))
Raw_Exp <- Matrix::rsparsematrix(nrow = 10^4, ncol = 3*10^4, density = 0.0001, rand.x = RandFunc)
Filtered_ExpMat <- SpFilter(Raw_Exp)
rownames(Filtered_ExpMat) <- paste0("Gene_", 1:nrow(Filtered_ExpMat))
P_values <- GrabSVG(Coords, Filtered_ExpMat)
```
LoadSpatial

Loading data from a Seurat object or a data frame.

Description
A function to load and filter data from a Seurat object or a data frame.

Usage
LoadSpatial(InputData, Dimension = 2)

Arguments
InputData
A Seurat spatial object or a M x (D + N) data matrix representing the D-dimensional coordinates and expressions of N genes on M spots. The coordinates should be placed at the first D columns

Dimension
The dimension of coordinates

Value
A list of two data frame:

Coords
A M x D matrix representing D-dimensional coordinates for M spots

ExpMatrix
A sparse, N x M expression matrix in dgCMatrix class with N genes and M spots

SpFilter
A function for filtering low expressed genes

Description
A function for filtering low expressed genes

Usage
SpFilter(ExpMat_Sp, Threshold = 5)

Arguments
ExpMat_Sp
A sparse, N x M expression matrix in dgCMatrix class with N genes and M spots

Threshold
A threshold set to filter out genes with a total read count below this specified value
Value

A sparse expression matrix in dgCMatrix class

Examples

```r
# create a sparse expression matrix
Raw_ExpMat <- Matrix::rsparsematrix(nrow = 10000, ncol = 2000,
  density = 0.01, rand.x = function(n) rpois(n, 15))
Filtered_ExpMat <- SpFilter(Raw_ExpMat)
```
Index

GrabSVG, 2
LoadSpatial, 3
SpFilter, 3