Package ‘GroupBN’

May 18, 2020

Type Package
Date 2020-05-18
Title Learn Group Bayesian Networks using Hierarchical Clustering
Version 0.2.0
Author Ann-Kristin Becker
Maintainer Ann-Kristin Becker <annkristinbecker@web.de>
Description Learn group Bayesian Networks using hierarchical Clustering. This package implements the inference of group Bayesian networks based on hierarchical Clustering, and the adaptive refinement of the grouping regarding an outcome of interest.
Depends R (>= 3.5.0), bnlearn, ClustOfVar, PCAmixdata, arules, zoo
Imports PRROC, MLmetrics, rlist, stats, magrittr, visNetwork, plyr, stringr
Suggests
License GPL (>= 2)
URL https://www.r-project.org
Encoding UTF-8
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2020-05-18 15:30:09 UTC

R topics documented:
cross.en .. 2
discretize.dens ... 3
groupbn .. 4
groupbn.output.table ... 6
groupbn.vis.html.plot ... 6
groupbn_refinement .. 7
is.groupbn .. 9
Description

Calculates the weighted cross entropy / log-loss for a vector of observations and predicted probabilities (weighted by class proportions)

Usage

cross.en(pred, obs, sdpred=NULL, weighted=T)

Arguments

pred a numeric vector, the predicted probabilities of the reference class
obs the vector of observations, a categorical variable with 2-4 levels
sdpred either NULL or a vector containing the standard deviations of every estimate
weighted a boolean, if FALSE, the unweighted logloss is calculated. By default, the weighted cross entropy is calculated.

Details

if sdpred contains the standard deviations for each estimated probability, then a lower bound of the log loss is returned.

Value

a numeric value: cross entropy / log loss for comparison of classifiers. The smaller, the better.

Author(s)

Ann-Kristin Becker

Examples

#observations
obs<-as.factor(c("A","A","B"))
#correct prediction
pred1<-c(1,1,0)
#wrong prediction
pred2<-c(0,0,1)
```r
cross.en(pred=pred1, obs=obs) #small
cross.en(pred=pred2, obs=obs) #large

#prediction of only majority class
pred3<-c(1,1,1)
#prediction of only minority class
pred4<-c(0,0,0)

cross.en(pred=pred3, obs=obs, weighted=TRUE)
cross.en(pred=pred4, obs=obs, weighted=TRUE)
#both equal (as weighted)
cross.en(pred=pred3, obs=obs, weighted=FALSE)
cross.en(pred=pred4, obs=obs, weighted=FALSE)
#unweighted, majority class is favored
```

discretize.dens

Description

density approximative discretization. Significant peaks in the density are determined and used as starting points for k-means based discretization. If only one peak is present, distribution quartiles are used for binning.

Usage

discretize.dens(data, graph=F, title="Density-approxmative Discretization", rename.level=F, return.all=T, cluster=F, seed=NULL)

Arguments

data a vector containing the data that may be discretized
data graph a boolean value, if TRUE, the density and the determined binning are plotted
title a boolean value, if TRUE, factor levels are replaced by integers 1:nrename.level a boolean value, if FALSE, only the discretized data are returned.
return.all a boolean value, if data is a cluster variable and may already be discrete or notcluster seed a random seed number

Value

discretized the discretized datalevels the factor levelsoptima the x and y coordinates of the determined peaks
Author(s)

Ann-Kristin Becker

Examples

testdata = c(rnorm(100,-3,1), rnorm(100,3,1))
d<-discretize.dens(testdata, graph=TRUE)
summary(d$discretized)

Description

creates groupbn object (determines an initial clustering based on a hierarchy with target variable and 'separated' variables separated, learns a Bayesian network from grouped data and saves discretization and pca parameters)

Usage

groupbn(hierarchy, k, target, separate, separate.as.roots=FALSE, X.quanti, X.quali,
depdebug=FALSE, R=100, seed=NULL)

Arguments

hierarchy a cluster object from ClustOfVar.
k a positive integer number, the number of initial clusters.
target a string, the name of the target variable.
separate a vector of strings, names of variables that should be separated from the groups, such as age, sex,...
separate.as.roots a boolean; if TRUE separated variables are used as roots in the network. Can be ignored if separate is empty.
X.quanti a numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).
X.quali a categorical matrix of data, or an object that can be coerced to such a matrix (such as a character vector, a factor or a data frame with all factor columns).
depdebug a boolean, if TRUE, debugging messages are printed
R number of bootstrap replicates for model averaging, default is 100
seed a random seed number
Value

an object of class groupbn

bn a Bayesian Network structure of bn class from bnlearn.

fit a Bayesian Network with fitted parameters of bn.fit class from bnlearn.

X.quanti a data.frame containing only the quantitative variables.

X.quali a data.frame containing only the qualitative variables.

grouping a vector of positive integers, giving the cluster assignment.

k the number of clusters.

group.data a data.frame containing the cluster representants.

target a string, the name of the target variable.

separate a vector of strings, names of variables that should be separated from the groups.

pca.param the PCAmix used to determine the cluster representants.

disc.param the cutpoints used to discretize the cluster representants.

score Different prediction scores for the target variable using the fitted network.

Author(s)

Ann-Kristin Becker

See Also

groupbn_refinement

Examples

load example data
data(wine)
wine.test<-wine[wine$Soil%in%c("Reference", "Env1"),1:29]
wine.test$Soil<-factor(wine.test$Soil)
levels(wine.test$Soil)<-c("0", "1")

cluster data
hierarchy<-hclustvar(X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2])

Learn group network among 5 clusters with "Soil" as target variable
wine.groupbn<-groupbn(hierarchy, k=5, target="Soil", separate=NULL,
X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2], seed=321)

Plot network
plot(wine.groupbn)
groupbn.output.table

Description
Create an output table with clusters and included variables with similarity scores

Usage
groupbn.output.table(res)

Arguments
res
gn object

Value
a table with one column per group, similarity scores to cluster centers are calculated for each variable

Author(s)
Ann-Kristin Becker

See Also
groupbn groupbn_refinement

Examples
data("wine.groupbn.refined")
df<-groupbn.output.table(wine.groupbn.refined)

groupbn.vis.html.plot

Description
Create an interactive html network object with visNet (displaying similarity scores and number of variables in a score)

Usage
groupbn.vis.html.plot(res, df=NULL, save.file=TRUE, save.name=NULL, hierarchical=FALSE, nodecolor.all="#E0F3F8", nodecolor.special="cornflowerblue", main=NULL)
Arguments

- **res**: a groupbn object
- **df**: output from output.table if already calculated, otherwise the same table is calculated internally
- **save.file**: boolean; if TRUE a html file is produced
- **save.name**: name for saving html object, date is additionally used
- **hierarchical**: boolean; if TRUE the network is plotted with a hierarchical layout
- **nodecolor.all**: a color for "normal" nodes
- **nodecolor.special**: a color for the target variable and all separated nodes, if any.
- **main**: optionally a title for the plot

Details

Plots an interactive network plot using visNetwork package.

Value

an html widget of class visNetwork

Author(s)

Ann-Kristin Becker

See Also

- groupbn
- groupbn_refinement

Examples

```R
data("wine.groupbn.refined")
groupbn.vis.html.plot(wine.groupbn.refined, hierarchical=TRUE, save.file=FALSE)
```

Description

Adaptive Refinement of a group Bayesian Network using hierarchical Clustering

Usage

```R
groupbn_refinement(res, hierarchy, refinement.part="mb", restart=0, perturb=1, max.step=10, max.min=Inf, R=100, return.all=FALSE, debug=FALSE, seed=NULL)
```
Arguments

res an object of class groupbn
hierarchy a cluster object from ClustOfVar
refinement.part "mb", "mb2" or "all", selects if the refinement steps should be done only within
the markov blanket of the target variable, within the second-order markov blank-
et or within all clusters. Default: "mb"
restart a positive integer number, the number of restarts
perturb a positive integer number, the number of perturbations (splits) in each restart
max.step a positive integer number, the maximal number of refinement steps, default is 10
max.min a positive integer number, the maximal run time in minutes, default is unlimited
R number of bootstrap replicates for model averaging, default is 100
return.all a boolean, if TRUE, the output is a whole list of group models, if FALSE, the
output is only the best-scoring model.
debug a boolean, if TRUE, debugging messages are printed
seed a random seed number

Details

Based on a variable grouping, data are aggregated and a Bayesian network is learned. The target
variable is kept separated during this procedure, so that the resulting network model can be used
for risk prediction and classification. Starting from a coarse group network, groups are iteratively
refined to smaller groups. The heuristic refinement happens downwards along the dendrogram, and
stops, if it no longer improves the predictive performance of the model. The refinement part is
implemented using a hill-climbing procedure.

Value

returns an object of class groupbn

Author(s)

Ann-Kristin Becker

See Also

groupbn groupbn.output.table

Examples

#load example data
data(wine)
wine.test<-wine[wine$Soil%in%c("Reference", "Env1"),1:29]
wine.test$Soil<-factor(wine.test$Soil)
levels(wine.test$Soil)<-c("0", "1")
#cluster data
hierarchy<-hclustvar(X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2])

#Learn group network among 5 clusters with "Soil" as target variable
wine.groupbn<-groupbn(hierarchy, k=5, target="Soil", separate=NULL,
X.quanti=wine.test[,3:29], X.quali=wine.test[,1:2], seed=321)

#Do one refinement step
#Set max.step higher to optimize completely
wine.groupbn.refined<-groupbn_refinement(wine.groupbn, hierarchy,
refinement.part="mb", max.step = 1, seed=321)

#Plot refined network
plot(wine.groupbn.refined)

is.groupbn

Description

Generic function for groupbn objects

Usage

is.groupbn(x)

Arguments

- **x**: an object of class groupbn

Value

A boolean; TRUE if x is of class groupbn, FALSE otherwise.

Author(s)

Ann-Kristin Becker

See Also

- groupbn

Examples

data("wine.groupbn.refined")
is.groupbn(wine.groupbn.refined)
Description

generic plot function for class groupbn

Usage

```r
## S3 method for class 'groupbn'
plot(x, ...)
```

Arguments

- `x` an object of class `groupbn`
- `...` further arguments

Details

Plot the group bayesian network structure

Value

No return value, called for plotting

Author(s)

Ann-Kristin Becker

See Also

`groupbn`

Examples

```r
data("wine.groupbn.refined")
plot(wine.groupbn.refined)
```
predict.groupbn

Description

Predict the target variable from a group Bayesian network

Usage

```r
# S3 method for class 'groupbn'
predict(object, X.quanti, X.quali, rename.level=F, return.data=F, ...)
```

Arguments

- `object`: An object of class groupbn generated by the functions groupbn or groupbn_refinement
- `X.quanti`: quantitative variables
- `X.quali`: qualitative variables
- `rename.level`: a boolean; if TRUE, all levels of categorical variables are renamed by integers. Default is FALSE.
- `return.data`: a boolean; if TRUE, a list with predictions and group.data is returned instead of only predictions. Default is FALSE.
- `...`: further arguments

Value

Returns a dataframe with a column of predictions and a column of the target data. If the target is discrete, class probabilities are returned. Otherwise continuous scores are returned. If return.data is TRUE, additionally the transformed group data are returned.

Author(s)

Ann-Kristin Becker

Examples

```r
# load example data
data(wine)
wine.test <- wine[wine$Soil %in% c("Reference", "Env1"), 1:29]
wine.test$Soil <- factor(wine.test$Soil)
levels(wine.test$Soil) <- c("0", "1")
data(wine.groupbn.refined)
predict(wine.groupbn.refined, X.quanti = wine.test[, 3:29], X.quali = wine.test[, 1:2])
```
print.groupbn

Description
This is a method for the function print for objects of the class groupbn.

Usage
S3 method for class 'groupbn'
print(x, ...)

Arguments
x An object of class groupbn generated by the functions groupbn or groupbn_refinement
...

Value
No return value, prints a description of the object

Author(s)
Ann-Kristin Becker

See Also
groupbn

Examples
data("wine.groupbn.refined")
print(wine.groupbn.refined)

description

Description
A refined group Bayesian network with 8 groups learned from dataset 'wine'.

Usage
data("wine.groupbn.refined")
Format

 group Bayesian network (class 'groupbn')

 name of target variable: Soil
 number of groups: 8
 achieved scoring: F1: 0.92;
 Precision: 1;
 Recall: 0.86;
 AUC-PR: 1;
 AUC-ROC: 1;
 cross-entr.: 1.43;
 BIC (netw.): -77.21

 name description
 "$bn" "Bayesian network structure"
 "$fit" "fitted Bayesian network (multinomial)"
 "$arc.confid" "arc confidence"
 "$X.quali" "qualitative variables in a data.frame"
 "$X.quanti" "quantitative variables in a data.frame"
 "$grouping" "group memberships"
 "$k" "number of groups of initial grouping"
 "$group.data" "group representatives used for network inference"
 "$target" "name of target variable"
 "$separate" "name of any other separated variables"
 "$pca.param" "pca parameters of each group"
 "$disc.param" "discretization intervals of each group"
 "$score" "cross entropy and additional scoring information"

Examples

 data(wine.groupbn.refined)
Index

*Topic datasets
 wine.groupbn.refined, 12

cross.en, 2

discretize.dens, 3

groupbn, 4, 6–10, 12
groupbn.output.table, 6, 8
groupbn.vis.html.plot, 6
groupbn_refinement, 5–7, 7

is.groupbn, 9

plot.groupbn, 10
predict.groupbn, 11
print.groupbn, 12

wine.groupbn.refined, 12