Package ‘HDXBoxeR’

April 10, 2024

Type Package

Title Analysis of Hydrogen-Deuterium Exchange Mass-Spectrometry Data

Version 0.0.1

Author Maria K. Janowska [aut, cre] (<https://orcid.org/0000-0002-8232-461X>),
 Katherine Reiter [ctb],
 Pearl Magala [ctb],
 Miklos Guttman [ctb],
 Rachel E. Klevit [ctb]

Maintainer Maria K. Janowska <mka.janowska@gmail.com>

Description A protocol that facilitates the processing and analysis of Hydrogen-Deuterium Exchange Mass Spectrometry data using p-value statistics and Critical Interval analysis.

It provides a pipeline for analyzing data from 'HDXExaminer' (Sierra Analytics, Trajan Scientific), automating matching and comparison of protein states through Welch’s T-test and the Critical Interval statistical framework.

Additionally, it simplifies data export, generates 'Pymol' scripts, and ensures calculations meet publication standards.

'HDXBoxeR' assists in various aspects of hydrogen-deuterium exchange data analysis, including reprocessing data, calculating parameters, identifying significant peptides, generating plots, and facilitating comparison between protein states.

For details check papers by Hageman and Weis (2019) <doi:10.1021/acs.analchem.9b01325>

License GPL (>= 2)

Imports dplyr, graphics, grDevices, RColorBrewer, stats, stringr,
 tidyr, utils, methods, wrapr

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

RoxygenNote 7.2.3

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-04-10 20:10:02 UTC
R topics documented:

- all_summary .. 4
- arguments_call1 .. 5
- arguments_call2 .. 5
- arguments_call3 .. 6
- arg_df ... 6
- arg_UN_FD .. 7
- average_timecourse 7
- ave_timepoint .. 8
- av_tc .. 8
- av_tp .. 9
- backHX_calculations 9
- boxplot_tp ... 10
- CI_2pts ... 10
- CI_single ... 11
- CI_tcient ... 12
- CI_tp .. 12
- color_ranges_Blue_Red_heat_map 13
- color_ranges_Spectral 14
- coverage_residue ... 14
- deuteration_woods_timecourse 15
- deuteration_woods_timepoints 16
- dif_ave .. 17
- dif_tp .. 17
- dif_tp_proc .. 18
- duplicate_sets ... 18
- extreme_input_gap ... 19
- extreme_input_undeut 19
- general_info .. 20
- getCoords1 ... 21
- heat_map_tc .. 21
- heat_map_tp .. 22
- heat_map_tp_maxuptake 22
- heat_map_tp_maxuptake_proc 23
- heat_map_tp_proc ... 24
- is.nan.data.frame ... 25
- lab_dif .. 25
- lab_dif_proc ... 26
- lab_vol .. 26
- legend_heat_map ... 27
- legend_heat_map_tc 27
- legend_heat_map_timecourse 28
- legend_heat_map_tp 28
- legend_heat_map_tp_proc 29
- legend_mm_bottom .. 29
- legend_raw_ave ... 30
- legend_raw_ave_proc 30
R topics documented:

- `legend_raw_ave_tc` .. 31
- `legend_sig_peptides` .. 31
- `legend_states_PerD_bottom` 32
- `legend_tc_bottom` ... 32
- `nm_states` .. 33
- `output_FD` .. 33
- `output_FD_proc` ... 34
- `output_prep` .. 34
- `output_tc` ... 35
- `output_tp` ... 36
- `output_UD` ... 38
- `output_UD_proc` ... 38
- `pallette_legend` ... 39
- `pallette_ll` ... 39
- `peptide_pv_tp` ... 40
- `peptide_pv_tp_proc` .. 40
- `plots_av_tcourse` ... 41
- `plots_av_tp` .. 42
- `plots_av_tp_proc` ... 43
- `plots_diff_tp` .. 43
- `plots_diff_tp_proc` .. 44
- `plots_vol_tp` .. 45
- `plot_heat_map_max_uptake_tp` 45
- `plot_heat_map_max_uptake_tp_proc` 46
- `plot_heat_map_tc` ... 47
- `plot_heat_map_tp` ... 48
- `plot_heat_map_tp_proc` ... 49
- `plot_peptide_sig_tp` .. 50
- `plot_peptide_sig_tp_proc` .. 50
- `pl_gen_ch2` ... 51
- `pl_gen_uptake` ... 52
- `ppar` ... 52
- `pparLM` ... 53
- `ppar_bottom_legend` ... 53
- `ppar_wider` .. 54
- `prep_timecourse_plot_ave` ... 54
- `prep_timecourse_plot_sd` .. 55
- `pv_timecourse` .. 55
- `pv_timepoint` ... 56
- `pymol_script_average_residue` 56
- `pymol_script_significant_peptide` 57
- `pymol_script_significant_peptide_proc` 58
- `pymol_script_significant_residue` 59
- `pymol_script_significant_residue_proc` 60
- `pymol_str` ... 61
- `qpcr.cbind.na` ... 62
- `ranges_function` ... 62
- `ranges_function_tc` ... 63
all_summary

returns full summary table.

Description

Returns summary data. Function returns: Protein states, timepoints, number of replicates, # peptides, % coverage, average peptide length and redundancy, backexchange calculations (average and range), Critical interval and standard deviation. Function requires undeuterated and Fully deuterated sets marked in Deut.time as 0s and FD respectively.

Usage

all_summary(filepath, replicates = 3, Dfact = 0.85)

Arguments

filepath filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.
replicates number of replicates. Default set to 3.
Dfact Dfact is the fraction of D/H in the labeling buffer used. Default set up to 0.85

Value

Returns summary table.

Examples

file_nm<- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- all_summary(file_nm, replicates=3, Dfact=0.85)
arguments_call1

Returns default arguments for the output_tp functions. States

Description
Function used as internal function

Usage
arguments_call1(filepath)

Arguments
filepath input file location

Value
The default arguments to output_tp functions.

arguments_call2

Returns default arguments for the output_tp functions. Deut.Time

Description
Function used as internal function

Usage
arguments_call2(filepath, states)

Arguments
filepath input file location
states states used

Value
The default arguments to output_tp functions.
arguments_call3
Returns default arguments for the output_tp functions. # replicates

Description
Function used as internal function

Usage
arguments_call3(filepath, states, times)

Arguments
- **filepath**: input file location
- **states**: states used
- **times**: deuteration times

Value
The default arguments to output_tp functions.

arg_df
Returns initially processed data.frame from the export from the HDX-Examiner

Description
Function used as internal function

Usage
arg_df(filepath)

Arguments
- **filepath**: input file location

Value
Data.frame for further processing
arg_UN_FD

Returns initially processed data.frame from the export from the HDX-Examiner

Description
Function used as internal function

Usage
arg_UN_FD(filepath)

Arguments
filepath input file location

Value
Data.frame for further processing

average_timecourse
Calculates average for time course data.

Description
Calculates average for time course data.

Usage
average_timecourse(filepath)

Arguments
filepath filepath to the All_results input file.

Value
data frame with average deuteration uptake data.
ave_timepoint

Returns average value for either uptake of procent data.

Description

Calculates average of uptake or procent data. Returns data frame with average values. Default for the number of replicates is 3.

Usage

```r
ave_timepoint(df, replicates = 3)
```

Arguments

- `df`: output from functions `output_tp` or `output_tp_proc`.
- `replicates`: number of replicates used. Default is set to `replicates=3`.

Value

Data.frame with average values

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
ave<-ave_timepoint(df=a) ##if number of replicates is equal 3
ave<-ave_timepoint(df=a, replicates=4) ##if number of replicates is equal 4
```

av_tc

Preparatory function for average plot for timecourses

Description

Returns plots with average deuteration at each peptide.

Usage

```r
av_tc(df, cola)
```

Arguments

- `df`: output from functions `output_tp` or `output_tp_proc`.
- `cola`: color pallette for different Protein States. As default Paired pallette from color.Brewer is used.

Value

plots of averages
av_tp

Preparatory function for average plot

Description

Returns plots with average deuteration at each peptide.

Usage

```r
av_tp(df, cola)
```

Arguments

- `df`: output from functions output_tp or output_tp or output_tp_proc.
- `cola`: color pallette for different Protein States. As default Paired pallette from color.Brewer is used.

Value

plots of averages

backHX_calculations

Summary of backexchange summary

Description

Returns average and ranges of backexchange. Function calculates as: \(1 - (m100\%-m0\%)/N/D\text{fact}\). \(m0\%\) is the non-deuterated peptide centroid mass, \(m100\%\) is the maximally labeled peptide centroid mass, \(N\) is the theoretical number of backbone amides in the peptide and \(D\text{frac}\) is the fraction of \(D/H\) in the labeling buffer used. Function requires undeuterated and Fully deuterated sets marked in Deut.time as 0s and FD respectively.

Usage

```r
backHX_calculations(filepath, Dfact = 0.85)
```

Arguments

- `filepath`: filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.
- `Dfact`: is the fraction of \(D/H\) in the labeling buffer used. Default set up to 0.85

Value

Returns summary table for backexchange.
Examples

```r
ci_2pts <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- backHX_calculations(filepath=ci_2pts, Dfact=0.85)
```

boxplot_tp

Plots boxplots for all the averages in the set

Description

Returns boxplots to compare sets between each other

Usage

```r
boxplot_tp(df, replicates = 3, ...)
```

Arguments

- `df`: average data frame. Generated using `ave_timepoint()` function.
- `replicates`: number of replicates in sample. Default set to 3.
- `...`: inherited boxplot parameters

Value

boxplots for average deuterium uptake per set.

Examples

```r
ci_2pts <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- output_tp(ci_2pts)
boxplot_tp(df=a, replicates=3)
```

CI_2pts

Global confidence interval threshold from experimental standard deviation for 2 samples.

Description

Calculation of global confidence interval using approach by: Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325 calculations for alpha 0.99

Usage

```r
CI_2pts(s1, s2, replicates = 3)
```
Description
Calculation of global confidence interval using approach by: Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325 calculations for alpha 0.99

Usage

CI_single(s1, replicates = 3)

Arguments

- **s1** standard deviation from one sample
- **replicates** number of replicates. Default set to 3.

Value

treshold for determining significance.

Examples

```r
sd1<-data.frame(c(0.1, 0.12, 0.13, 0.09, 0.11, 0.10))  
sd2<-data.frame(c(0.18, 0.11, 0.13, 0.08, 0.11, 0.06))  
CI_2pts(s1=sd1, s2=sd2, replicates=3)
```
CI_tc

Critical interval calculation two sets of timecourses

Description
Preparatory function for calculation of pvalue between sets.

Usage
CI_tc(sd_c, sd_v, replicates = 3, pv_cutoff = 0.01)

Arguments
sd_c: dataframe of control
sd_v: dataframe for variant
replicates: number of replicates. Default set to 3.
pv_cutoff: pvalue cutoff. Default set to 0.01

Value
Critical interval for 2 sets

CI_tp

Global confidence interval treshold from experimental standard deviation

Description
Calculation of global confidence interval using approach by for all protein states compared to first state in the data.frame. Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325

Usage
CI_tp(df, replicates = 3, alpha = 0.01)

Arguments
df: standard deviation dataframe.
replicates: number of replicates. Default set to 3.
alpha: significance level. Set as default to 0.01
Value

treshold for determining significance.

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm, seq_match=FALSE)
sd<-sd_timepoint(df=a, replicates=3)
CI_tp(df=sd, replicates=3, alpha=0.01 )
CI_tp(sd)
```

Description

Returns color pallete from red to blue with number of colors for defined ranges

Usage

```r
color_ranges_Blue_Red_heat_map(ranges, colors_initial)
```

Arguments

- `ranges`: vector of numbers. Should have the same number of positive and negative values and contain 0.
- `colors_initial`: additional color that should be first in the pallete.

Value

color scheme for number

Examples

```r
color_ranges_Blue_Red_heat_map(ranges=c(-Inf, -100, -50, 0, 50, 100, Inf), colors_initial="white")
```
color_ranges_Spectral \textit{Returns Spectral palette with colors matching defined ranges}

\textbf{Description}

Spectral pallette for timecourse data

\textbf{Usage}

\texttt{color_ranges_Spectral(ranges, colors_initial)}

\textbf{Arguments}

- \texttt{ranges} \hspace{1cm} vector of numbers. Should have the same number of positive and negative values and contain 0.
- \texttt{colors_initial} \hspace{1cm} additional color that should be first in the pallette.

\textbf{Value}

color scheme for number

\textbf{Examples}

\texttt{color_ranges_Spectral(ranges=c(-Inf, -100, -50, 0, 50, 100, Inf), colors_initial="white")}

coverage_residue \textit{Returns coverage per residue}

\textbf{Description}

returns vector with coverage information

\textbf{Usage}

\texttt{coverage_residue(df1, start_col, end_col)}

\textbf{Arguments}

- \texttt{df1} \hspace{1cm} output from functions output_tp or output_tp_proc.
- \texttt{start_col} \hspace{1cm} number of "Start" column in data.frame
- \texttt{end_col} \hspace{1cm} number of "Start" column in data.frame

\textbf{Value}

vector with coverage per residue
Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- output_tp(file_nm)
coverage_residue(df1 = a, start_col = 2, end_col = 3)
```
deuteratior_woods_timepoints

Return woods plots for the timepoints

Description

All the peptides are plotted based on their uptake.

Usage

deuteratior_woods_timepoints(
 input_data,
 times,
 replicates = 3,
 cola = NA,
 ylim = c(0, 120),
 ...
)

Arguments

input_data output from function output_tp(..., percent=TRUE)
times Deuteration times, if missing all deuteration times used
replicates replicates
cola colors, default NA
ylim y axis limits
...
other parameters

Value

Woods plots for the timepoints

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm, percent=TRUE)
deuteratior_woods_timepoints(a[1:12,])
dif_ave

Returns data frame with difference of averages between State1 and other states provided.

Description

Returns average difference data.frame. Sets are compared to the first state in the input file. If other order of the sets is required use Default for the number of replicates is 3.

Usage

dif_ave(df)

Arguments

- df: output from functions output_tp, output_tp_proc, output_tp_states or output_tp_proc_states.

Value

Data.frame with difference values btw control and other protein states.

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pv<-pv_timepoint(df=a) ##if number of replicates is equal 3
pv1<-pv_timepoint(df=a, replicates=3) ##if number of replicates is equal 4
#b<-output_tp_states(file_nm, states=c("4EHP", "State2", "State3"))
#pv_states<-pv_timepoint(df=b) ### here means of State4, will be compared to State2 and State4

dif_tp

Preparatory function for difference plot

Description

Returns plots with difference deuteration at each peptide.

Usage

dif_tp(df, cola)

Arguments

- df: output from functions output_tp or output_tp_proc.
- cola: color pallette for different Protein States. As default Paired pallette from color.Brewer is used.
dif_tp_proc
Preparatory function for difference plot

Description
Returns plots with difference deuteration at each peptide.

Usage
```
dif_tp_proc(df, cola)
```

Arguments
- `df`: output from functions output_tp or output_tp_proc.
- `cola`: color palette for different Protein States. As default Paired palette from color.Brewer is used.

Value
plots of difference in average

duplicate_sets
Duplicate set function

Description
Internal function

Usage
```
duplicate_sets(df)
```

Arguments
- `df`: dataframe

Value
duplicate sets
extreme_input_gap

Description

Makes input for Extreme for bimodal analysis.

Usage

```
extreme_input_gap(hm_dir, replicates, timepoints, output_path = "NA")
```

Arguments

- `hm_dir` directory in which all the folders which needs to be processed are
- `replicates` number of replicates in sample
- `timepoints` lists timepoints used in experiments.
- `output_path` directory where the output files will be saved, `hm_dir` default

Value

Inputs for extreme for all data prepared.

Examples

```
path_to_folders<-system.file("extdata", package = "HDXBoxeR")

extreme_input_gap(hm_dir =path_to_folders, replicates = 3,
                 timepoints =c(3, 60, 1800, 72000), output_path=tempdir())
```

extreme_input_undeut

Description

If data is missing it returns non-deuterated data in these columns.

Usage

```
extreme_input_undeut(hm_dir, replicates, timepoints, output_path = "NA")
```
Arguments

- `hm_dir` directory in which all the folders which needs to be processed are
- `replicates` number of replicates in sample
- `timepoints` lists timepoints used in experiments.
- `output_path` directory where output should be written

Value

Inputs for extreme for all data prepared.

Examples

```r
path_to_folders<-system.file("extdata", package = "HDXBoxeR")
eextreme_input_undeut(hm_dir=path_to_folders, replicates = 3,
timepoints =c(3, 60, 1800, 72000), output_path=tempdir())
```

general_info

Provides summary table for all data sets.

Description

Returns data frame summarizing general information about the data sets. Function returns: Protein states, timepoints, number of replicates, # peptides, % coverage, average peptide length and redundancy.

Usage

general_info(filepath)

Arguments

- `filepath` filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

Returns summary table.

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- general_info(file_nm)
```
getCoords1

function from plotfunctions package

Description
Margin coordinates

Usage
getCoords1(pos = 1.1, side = 1, input = "p")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>position</td>
</tr>
<tr>
<td>side</td>
<td>side of plot</td>
</tr>
<tr>
<td>input</td>
<td>plot or figure position</td>
</tr>
</tbody>
</table>

Value
coordinates of margins

heat_map_tc
Plots heat maps for time courses.

Description
Returns heat map on timecourses with raw data.

Usage
heat_map_tc(df, ranges = c(seq(0, 100, by = 10), Inf))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>timecourse input</td>
</tr>
<tr>
<td>ranges</td>
<td>ranges for coloring scheme. Default set to c(seq(0, 100, by=10), Inf)</td>
</tr>
</tbody>
</table>

Value
heat map for timecourses
heat_map_tp
Preparatory function for heat map

Description

Returns heat map

Usage

heat_map_tp(
 df,
 pv,
 sd,
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)

Arguments

- **df**: average data frame. Generated using ave_timepoint() function.
- **pv**: p-values dataframes calculated using pv_timepoint() function
- **sd**: standard deviation data.frame generated using sd_timepoint function
- **ranges**: ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
- **pv_cutoff**: p-value cutoff here set up to 0.01
- **replicates**: number of replicates in sample. Default set to 3.

Value

heat map for timepoints

heat_map_tp_maxuptake
Preparatory function for heat map of maximum uptake per residue.

Description

Returns heat map
heat_map_tp_maxuptake_proc

Usage

heat_map_tp_maxuptake(
 df,
 pv,
 sd,
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)

Arguments

df average data frame. Generated using ave_timepoint() function.
pv pvalues dataframes calculated using pv_timepoint() function
sd standard deviation data.frame generated using sd_timepoint function
ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff p-value cutoff here set up to 0.01
replicates number of replicates in sample. Default set to 3.

Value

maximum uptake heat map for timepoints

heat_map_tp_maxuptake_proc

Preparatory function for heat map of maximum procent deuteration per residue.

Description

Returns heat map

Usage

heat_map_tp_maxuptake_proc(
 df,
 dfup,
 pv,
 sd,
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)
Arguments

- **df**: average data frame for procent deuteration. Generated using `ave_timepoint()` function.
- **dfup**: average data frame for deuteration uptake. Generated using `ave_timepoint()` function.
- **pv**: p-values dataframes calculated using `pv_timepoint()` function.
- **sd**: standard deviation data.frame generated using `sd_timepoint` function.
- **ranges**: ranges for coloring scheme. Default set to `c(-Inf, seq(-30, 30, by=10), Inf)`.
- **pv_cutoff**: p-value cutoff here set up to `0.01`.
- **replicates**: number of replicates in sample. Default set to `3`.

Value

Maximum uptake heat map for timepoints

Description

Returns heat map

Usage

```r
df, dfup, pv, sd, ranges = c(-Inf, seq(-30, 30, by = 10), Inf), pv_cutoff = 0.01, replicates = 3
```

Arguments

- **df**: average data frame for procent deuteration. Generated using `ave_timepoint()` function.
- **dfup**: average data frame for deuteration uptake. Generated using `ave_timepoint()` function.
- **pv**: p-values dataframes calculated using `pv_timepoint()` function.
- **sd**: standard deviation data.frame generated using `sd_timepoint` function.
- **ranges**: ranges for coloring scheme. Default set to `c(-Inf, seq(-30, 30, by=10), Inf)`.
- **pv_cutoff**: p-value cutoff here set up to `0.01`.
- **replicates**: number of replicates in sample. Default set to `3`.

Preparatory function for heat map for procent deuteration
is.nan.data.frame Checks for NaN is data.frame

Description

Usage
S3 method for class 'data.frame'
is.nan(x)

Arguments
x Data frame to be checked for NaN

Value
logical. Returns info if data.frame contains NaNs.

Examples
this function will overwrite the is.nan function that works only on vectors and matrices
def<-data.frame(c(0,NaN), c(1, 2))
is.nan(def)
def[is.nan(def)]<- 0

lab_dif Legend for difference in averages plot.

Description
Returns legend for difference in average plots. Preparatory function.

Usage
lab_dif(df, cola)

Arguments
df output from functions average difference
cola color palette for different Protein States. As default Paired palette from color.Brewer is used.
Value

legend for difference in average plot for time points

lab_dif_proc
Preparatory function for difference plot for procent deuteration

Description

Returns legends for plots procent deuteration at each peptide.

Usage

lab_dif_proc(df, cola)

Arguments

df output from functions output_tp or output_tp_proc.
cola color pallette for different Protein States. As default Paired pallette from RColorBrewer is used.

Value

legends for procent deuteration plots

lab_vol
Preparatory function for volcano plot legends

Description

Returns volcano plots

Usage

lab_vol(df, cola)

Arguments

df output from functions output_tp

cola color pallette for different Protein States. As default Paired pallette from color.Brewer is used.

Value

legends for volcano plots
legend_heat_map

Legend for the heatmaps prep function.

Description

Returns names for legend for the heatmaps

Usage

```r
legend_heat_map(ranges = c(-Inf, seq(-30, 30, by = 10), Inf))
```

Arguments

- `ranges` ranges that are to be colored in the legend. Default ranges=c(-Inf,seq(-30, 30, by=10), Inf)

Value

legend for the heatmap

legend_heat_map_tc

Legend for the heatmaps for timecourses.

Description

Returns names for legend for the heatmaps. Extracts names from data.frame

Usage

```r
legend_heat_map_tc(df)
```

Arguments

- `df` generated using output_tcourse()

Value

legend for the heatmap
legend_heat_map_timecourse

Legend for the heatmaps prep function for timecourses.

Description

Returns names for legend for the heatmaps

Usage

```r
legend_heat_map_timecourse(ranges = c(-Inf, seq(0, 100, by = 10), Inf))
```

Arguments

- `ranges` ranges that are to be colored in the legend. Default ranges=c(-Inf, seq(-30, 30, by=10), Inf)

Value

legend for the heatmap

legend_heat_map_tp

Legend for the heatmaps. Extracts names from data frame

Description

Returns names for legend for the heatmaps

Usage

```r
legend_heat_map_tp(df)
```

Arguments

- `df` average data frame. Generated using ave_timepoint() function.

Value

legend for the heatmap

Examples

```r
file_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<output_tp(file_nm)
legend_heat_map_tp(df=a)
```
Legend for the heatmaps percent. Extracts names from data frame.

Description

Returns names for legend for the heatmaps.

Usage

```r
legend_heat_map_tp_proc(df)
```

Arguments

- **df**: average data frame.

Value

legend for the heatmap percent.

Legend, bottom of the plots

Description

Internal function.

Usage

```r
legend_nm_bottom(names, cols)
```

Arguments

- **names**: labels
- **cols**: colors

Value

legend at the bottom of the plot.
legend_raw_ave
Legend for average plot.

Description

Returns legend with average plots. Preparatory function.

Usage

`legend_raw_ave(df, cola)`

Arguments

- `df`: output from functions output_tp or output_tp_proc.
- `cola`: color palette for different Protein States. As default Paired palette from color.Brewer is used.

Value

legend for average plot for time points

legend_raw_ave_proc
Preparatory function to draw legends for average procent

Description

Returns legend with average procent deuteration at each peptide.

Usage

`legend_raw_ave_proc(df, cola)`

Arguments

- `df`: output from functions output_tp or output_tp_proc.
- `cola`: color palette for different Protein States. As default Paired palette from color.Brewer is used.

Value

legend for average deuteration procent for timepoints
legend_raw_ave_tc

Legend for average deuteration plot for timecourse.

Description

Returns legend with average plots. Preparatory function.

Usage

```
legend_raw_ave_tc(df, cola)
```

Arguments

- `df` output from functions `output_tp` or `output_tp_proc`.
- `cola` color pallette for different Protein States. As default Paired pallette from color.Brewer is used.

Value

legend for average plot for time course

legend_sig_peptides

Legend for the significant peptides

Description

Returns names for legend for the significant peptides plots.

Usage

```
legend_sig_peptides(ranges = c(-Inf, seq(-30, 30, by = 10), Inf))
```

Arguments

- `ranges` ranges that are to be colored in the legend. Default ranges=c(-Inf,seq(-30, 30, by=10), Inf)

Value

legend for the heatmap
legend_states_PerD_bottom

Legend, bottom of the plots

Description

Internal function

Usage

```r
legend_states_PerD_bottom(df, cols)
```

Arguments

- `df`: dataframe
- `cols`: colors

Value

legend at the bottom of the plot

legend_tc_bottom

Preparatory function returns legends for the timecourses.

Description

Preparatory function

Usage

```r
legend_tc_bottom(df, cols)
```

Arguments

- `df`: data frame from which names will be extracted
- `cols`: colors to be used in legend

Value

legend at the bottom of the plot
nm_states
Lists names of states in data sets

Description
Returns vector with name of states used for choosing states for input functions generation.

Usage
```
nm_states(filepath)
```

Arguments
- `filepath`
 filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value
list of Protein States.

Examples
```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
names_states<- nm_states(file_nm)
```

output_FD
Prepares output for HDX-MS Full deuteration data

Description
Returns a data frame for Full deuteration set

Usage
```
output_FD(filepath)
```

Arguments
- `filepath`
 filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value
data frame with reorganized data where in columns is uptake data for Protein States.
output_FD_proc

Prepares output for HDX-MS Full deuteration data for procent deuteration.

Description

Returns a data frame for Full deuteration set

Usage

output_FD_proc(filepath)

Arguments

filepath

filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

data frame with reorganized data where in columns is procent deuteration for Protein States.

Examples

file_nm<- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_FD(file_nm)

output_prep

Prepares output with HDX-MS data for publications

Description

Usage

output_prep(filepath, output_name, states, replicates, times, percent = FALSE)
Arguments

filepath
filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

output_name
Name of output file. It has to be csv file

states
function allows to choose what states should be used for analysis. Default all states are used.

replicates
number of replicates to be used in analysis. The function takes number of replicates up to specified number. If no argument provided number maximal common number of replicates it used.

times
lists the deuteration times to be used in analysis. Default all states used.

percent
return either uptake or percent deuteration, default=FALSE, return uptake

Value

Returns & saves data.frame in format that is accepted for the publications.

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
output_prep(filepath=file_nm, output_name=tempfile())
```

output_tc

Prepares output for HDX-MS for the deuteration uptake or percent deuteration for the time courses.

Description

Returns a data frame organized for additional analysis. In columns are deuteration uptake or percent deuteration data for the given protein states. Function allows for writing csv with data, matching sequences of peptide. Protein.States, Deut.times, or number of replicates can be specified.

Usage

```r
output_tc(  
  filepath,  
  replicates,  
  states,  
  times,  
  seq_match = FALSE,  
  csv = "NA",  
  percent = FALSE  
)
```
output_tp

Prepares output for HDX-MS for the deuteration uptake or percent deuteration for the time points.

Description

Returns a data frame organized for additional analysis. In columns are deuteration uptake or percent deuteration data for the given protein states. Function allows for writing csv with data, matching sequences of peptide. Protein.States, Deut.times, or number of replicates can be specified.
output tp

Usage

output_tp(
 filepath,
 replicates,
 states,
 times,
 seq_match = FALSE,
 csv = "NA",
 percent = FALSE
)

Arguments

 filepath filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.
 replicates number of replicates to be used in analysis. The function takes number of replicates up to specified number. If no argument provided number maximal common number of replicates it used.
 states function allows to choose what states should be used for analysis. Default all states are used.
 times lists the deuteration times to be used in analysis. Default all states used.
 seq_match Flag allows to choose if the peptide sequences should be matched between states. seq_match=FALSE signifies no sequence matching, seq_match=T states that the sequences are matched between the sets.
 csv Flag allowing saving the output as csv. With default csv="NA", data is not saved. If csv output is desided, provide output name.
 percent Flag allowing to choose output as deuteration uptake (FALSE) or percent deuteration (TRUE). Default deuteration uptake.

Value
data frame with reorganized data where in columns is the deuteration uptake for Protein States.

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(filepath=file_nm) ###all default parameters used

all possible flags listed & percent deuteration output,
with sequences matching for protein states.

a<-output_tp(filepath=file_nm, replicates=3, states=c("bound", "Unbound"),
times=c("3.00s", "72000.00s"), seq_match=TRUE, csv="NA", percent=TRUE)
output_UD

Prepares output for HDX-MS Undeuterated sample data.

Description

Returns a data frame for Full deuteration set

Usage

```r
output_UD(filepath)
```

Arguments

- `filepath` file path to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

data frame with reorganized data where in columns is uptake data for Protein States.

Examples

```r
cfile_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_UD(file_nm)
```

output_UD_proc

Prepares output for HDX-MS Undeuterated data for procent deuteration.

Description

Returns a data frame for Undeuterated control set

Usage

```r
output_UD_proc(filepath)
```

Arguments

- `filepath` file path to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.

Value

data frame with reorganized data where in columns is procent deuteration for Protein States.
Examples

```
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_UD_proc(file_nm)
```

pallette_legend

Color scheme using heatmap. Legend Extracts names from data.frame

Description

Returns names for legend for the heatmaps

Usage

```
pallette_legend(col_pallette)
```

Arguments

- `col_pallette`:
 - palette to be used in the heat map

Value

- legend for the heatmap

pallette_ll

Color scheme using heatmap. Legend extracts names from data frame

Description

Returns names for legend for the heatmaps

Usage

```
pallette_ll(pallette, lab)
```

Arguments

- `pallette`:
 - palette to be used in the heat map
- `lab`:
 - labels to be used in pallette

Value

- legend for the heatmap
peptide_pv_tp | Preparatory function for significant peptide plots

Description

Returns plot where significant peptides are colored in blue-red scheme.

Usage

```r
peptide_pv_tp(
  df,
  pv,
  sd,
  nb_row,
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv_cutoff = 0.01,
  replicates = 3
)
```

Arguments

- `df`: average data frame. Generated using `ave_timepoint()` function.
- `pv`: pvalues dataframes calculated using `pv_timepoint()` function.
- `sd`: standard deviation data.frame generated using `sd_timepoint` function.
- `nb_row`: number of peptides in each row. Plotting parameter.
- `ranges`: ranges for coloring scheme. Default set to `c(-Inf, seq(-30, 30, by=10), Inf)`.
- `pv_cutoff`: p-value cutoff here set up to 0.01.
- `replicates`: number of replicates in sample. Default set to 3.

Value

Plot with peptides which are significantly different between sets.

peptide_pv_tp_proc | Preparatory function for showing peptides with significant differences between sets.

Description

Returns plot where significantly different peptides are colored in blue-red scheme.
plots_av_tcourse

Usage

peptide_pv_tp_proc(
 df,
 dfup,
 pv,
 sd,
 nb_row = 100,
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)

Arguments

df average data frame for procent deuteration. Generated using ave_timepoint() function.
dfup average data frame for deuteration uptake. Generated using ave_timepoint() function.
pv pvalues dataframes calculated using pv_timepoint() function
sd standard deviation data.frame generated using sd_timepoint function
nb_row number of peptides in each row. Plotting parameter.
ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff p-value cutoff here set up to 0.01
replicates number of replicates in sample. Default set to 3.

Value

plot with peptides which are significantly different between sets.

Description

Returns plots with average deuteration at each peptide.

Usage

plots_av_tcourse(df, replicates = 3, cola)

Arguments

df output from functions output_tcourse or output_tcourse_proc.
replicates number of replicates in set as default set to 3.
cola color pallete for different Protein States. As default Paired pallette from RColorBrewer is used.
Value

average deuteration plots

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm)
plots_av_tcourse(df=a, replicates=3, cola=c(1:4))
plots_av_tcourse(df=a)
```

plots_av_tp

`plots_av_tp` returns average deuteration plot for timepoints in the data frame.

Description

Returns plots with average deuteration at each peptide.

Usage

```r
plots_av_tp(df, replicates = 3, cola)
```

Arguments

- `df`: output from functions `output_tp` or `output_tp_proc`.
- `replicates`: number of replicates in set as default set to 3.
- `cola`: color pallette for different Protein States. As default Paired pallette from color.Brewer is used.

Value

average deuteration plots

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plots_av_tp(df=a, replicates=3, cola=c(1:4))
plots_av_tp(df=a)
```
plots_av_tp_proc
Returns average percent deuteration plot for time points

Description

Returns plots with average percent deuteration at each peptide.

Usage

```r
plots_av_tp_proc(df, replicates = 3, cola)
```

Arguments

- `df`: output from functions `output_tp_proc`.
- `replicates`: number of replicates in set as default set to 3.
- `cola`: color palette for different Protein States. As default Paired palette from RColorBrewer is used.

Value

average deuteration plots

Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- output_tp(file_nm, percent = TRUE)
plots_av_tp_proc(df = a, replicates = 3, cola = c(1:4))
plots_av_tp_proc(df = a)
```

plots_diff_tp
Returns difference in average plot for timepoints in the data frame

Description

Returns plots with difference in average for each peptide.

Usage

```r
plots_diff_tp(df, replicates = 3, cola)
```

Arguments

- `df`: output from functions `output_tp` or `output_tp_proc`.
- `replicates`: number of replicates in set as default set to 3.
- `cola`: color palette for different Protein States. As default Paired palette from color.Brewer is used.
Value

plots of difference of averages

Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- output_tp(file_nm)
plots_diff_tp(df = a, replicates = 3, cola = c(1:4))
plots_diff_tp_proc(df = a)
```

`plots_diff_tp_proc` returns difference in average procent deuteration plot for timepoints in the data frame.

Description

Returns plots with difference in procent deuteration for each peptide.

Usage

```r
plots_diff_tp_proc(df, replicates = 3, cola)
```

Arguments

- `df`: output from functions output_tp_proc.
- `replicates`: number of replicates in set as default set to 3.
- `cola`: color pallette for different Protein States. As default Paired pallette from color.Brewer is used.

Value

plots of difference of average procent deuteration

Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- output_tp(file_nm, percent = TRUE)
plots_diff_tp_proc(df = a, replicates = 3, cola = c(1:4))
plots_diff_tp_proc(df = a)
```
plots_vol_tp

Returns volcano plots for timepoints in the data frame

Description

Returns volcano plots for each peptide. Critical interval is calculated according to Reliable Identification of Significant Differences in Differential Hydrogen Exchange-Mass Spectrometry Measurements Using a Hybrid Significance Testing Approach Tyler S. Hageman and David D. Weis Analytical Chemistry 2019 91 (13), 8008-8016 DOI: 10.1021/acs.analchem.9b01325 calculations for alpha 0.99 pvalues calculated using Welch t-test.

Usage

plots_vol_tp(df, replicates = 3, pv_cutoff = 0.01, cola)

Arguments

- `df`: output from functions output_tp
- `replicates`: number of replicates in set as default set to 3.
- `pv_cutoff`: p-value cutoff here set up to 0.01
- `cola`: color pallete for different Protein States. As default Paired pallete from color.Brewer is used.

Value

volcano plots

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plots_vol_tp(df=a, replicates=3, cola=c(1:4), pv_cutoff=0.01 )
plots_vol_tp(df=a, pv_cutoff=0.05)
```

plot_heat_map_max_uptake_tp

Plots heat maps for maximum uptake per residue.

Description

Returns heat map with maximum uptake per residue.
plot_heat_map_max_uptake_tp

Usage

plot_heat_map_max_uptake_tp(
 df,
 replicates = 3,
 mar_x = 3.5,
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01
)

Arguments

- df: average data frame. Generated using ave_timepoint() function.
- replicates: number of replicates in sample. Default set to 3.
- mar_x: margin x width. Default=3.5
- ranges: ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
- pv_cutoff: p-value cutoff here set up to 0.01

Value

heat map for maximum uptake per residue

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plot_heat_map_max_uptake_tp(df=a, replicates=3, pv_cutoff=0.01, ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf))
plot_heat_map_max_uptake_tp(df=a)

plot_heat_map_max_uptake_tp_proc

Plots heat maps for maximum percent deuteration per residue.

Description

Returns heat map with maximum percent_deuteration per residue.

Usage

plot_heat_map_max_uptake_tp_proc(
 input_proc,
 input_up,
 mar_x = 3.5,
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)
plot_heat_map_tc

Arguments

- `input_proc`: Dataframe with organized percent deuteration data. Input generated using `output_tp_proc()` function.
- `input_up`: Dataframe with organized deuteration uptake. Input generated using `output_tp()` function.
- `mar_x`: Margin x width. Default=3.5
- `ranges`: Ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
- `pv_cutoff`: P-value cutoff here set up to 0.01
- `replicates`: Number of replicates in sample. Default set to 3.

Value

Heat map for average uptake per residue for significant peptides.

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
plot_heat_map_max_uptake_tp_proc(input_proc=a_proc, input_up=a_up, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf) )
plot_heat_map_max_uptake_tp_proc(input_proc=a_proc, input_up=a_up)
```

```
plot_heat_map_tc          Plots heat maps for time courses.
```

Description

Returns heat map on timecourses with raw data.

Usage

```r
plot_heat_map_tc(
  df,
  replicates = 3,
  mar_x = 3.5,
  ranges = c(-Inf, seq(0, 100, by = 10), Inf)
)
```

Arguments

- `df`: Output from function `output_tcourse`
- `replicates`: Number of replicates in sample. Default set to 3.
- `mar_x`: Margin x width. Default=3.5
- `ranges`: Ranges for coloring scheme. Default set to c(seq(0, 100, by=10), Inf)
Value

heat map for time courses

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm)
plot_heat_map_tc(df=a, replicates=3, ranges=c(seq(0, 100, by=5), Inf))
plot_heat_map_tc(df=a)
```

```
plot_heat_map_tp  Plots heat maps for significant peptides.
```

Description

Returns heat map with average values for significant uptake per residue.

Usage

```r
plot_heat_map_tp(
  df,
  mar_x = 3.5,
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv_cutoff = 0.01,
  replicates = 3
)
```

Arguments

- `df`: average data frame. Generated using `ave_timepoint()` function.
- `mar_x`: margin x width. Default=3.5
- `ranges`: ranges for coloring scheme. Default set to `c(-Inf, seq(-30, 30, by=10), Inf)`
- `pv_cutoff`: p-value cutoff here set up to 0.01
- `replicates`: number of replicates in sample. Default set to 3.

Value

heat map for average uptake per residue for significant peptides.

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
plot_heat_map_tp(df=a, replicates=3, pv_cutoff=0.01, ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf) )
plot_heat_map_tp(df=a)
```
plot_heat_map_tp_proc Plots heat maps for significant peptides.

Description

Returns heat map with average values for significant uptake per residue.

Usage

plot_heat_map_tp_proc(
 input_proc,
 input_up,
 mar.x = 3.5,
 ranges = c(-Inf, -3, -2, -1, 0, 1, 2, 3, Inf),
 pv_cutoff = 0.01,
 replicates = 3
)

Arguments

input_proc Dataframe with organized procent deuteration data. Input generated using out-
put_tp_proc() function.
input_up Dataframe with organized deuteration uptake. Input generated using output_tp() function.
mar.x margin x width. Default=3.5
ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff p-value cutoff here set up to 0.01
replicates number of replicates in sample. Default set to 3.

Value

heat map for average uptake per residue for significant peptides.

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
plot_heat_map_tp_proc(input_proc=a_proc, input_up=a_up, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf))
plot_heat_map_tp_proc(input_proc=a_proc, input_up=a_up)
plot_peptide_sig_tp

Significant peptide plots.

Description

Returns plot where significant peptides are colored in blue-red scheme.

Usage

```r
plot_peptide_sig_tp(
  df1,
  replicates = 3,
  nb_pep_row = 100,
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv_cutoff = 0.01
)
```

Arguments

- `df1`: average data frame. Generated using `ave_timepoint()` function.
- `replicates`: number of replicates in sample. Default set to 3.
- `nb_pep_row`: number of peptides in each row. Plotting parameter. Default set to 100.
- `ranges`: ranges for coloring scheme. Default set to `c(-Inf, seq(-30, 30, by=10), Inf)`
- `pv_cutoff`: p-value cutoff here set up to 0.01

Value

plot with peptides which are significantly different between sets.

plot_peptide_sig_tp_proc

Draws peptides with significant differences between sets.

Description

Returns plot where significant peptides are colored in blue-red scheme.

Usage

```r
plot_peptide_sig_tp_proc(
  input.proc,
  input.up,
  nb_pep_row = 100,
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv_cutoff = 0.01,
  replicates = 3
)
```
Arguments

- **input_proc**: dataframe with organized procent deuteration data. Input generated using `output_tp_proc()` function.
- **input_up**: dataframe with organized deuteration uptake. Input generated using `output_tp()` function.
- **nb_pep_row**: number of peptides in each row. Plotting parameter. Default set to 100.
- **ranges**: ranges for coloring scheme. Default set to `c(-Inf, seq(-30, 30, by=10), Inf)`
- **pv_cutoff**: p-value cutoff here set up to 0.01
- **replicates**: number of replicates in sample. Default set to 3.

Value

Plot with peptides which are significantly different between sets.

Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up <- output_tp(file_nm)
a_proc <- output_tp(file_nm, percent=TRUE)
plot_peptide_sig_tp_proc(input_proc=a_proc, input_up=a_up, replicates=3, pv_cutoff=0.01, ranges=c(-Inf, -40, -30, -20, -10, 0, 10, 20, 30, 40, Inf), nb_pep_row=40)
```

Description

Internal function

Usage

`pl_gen_ch2(df, ddlab = 1, ...)`

Arguments

- **df**: dataframe
- **ddlab**: label
- **...**: other

Value

Plot window
pl_gen_uptake

Prepares the plot window for the woods functions

Description

Internal function

Usage

```r
pl_gen_uptake(df, timepoints, ddlab = 1, ...)
```

Arguments

- `df`: dataframe
- `timepoints`: deuteration times used
- `ddlab`: label
- `...`: other

Value

Plot window

ppar

Preparation of figure window.

Description

Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage

```r
ppar(mfrow2)
```

Arguments

- `mfrow2`: `mfrow`: number of Multiple Figures (use ROW-wise).

Value

modified par function with adjusted parameters

Examples

```r
ppar(c(2,1))
```
pparLM

Preparation of figure window. small margins

Description

Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage

```r
pparLM(mfrow2)
```

Arguments

- `mfrow2`: `mfrow`: number of Multiple Figures (use ROW-wise).

Value

modified par function with adjusted parameters

Examples

```r
pparLM(c(2,1))
```

ppar_bottom_legend

Preparation of figure window with area for figure at the bottom.

Description

Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage

```r
ppar_bottom_legend(mfrow2)
```

Arguments

- `mfrow2`: `mfrow`: number of Multiple Figures (use ROW-wise).

Value

modified par function with adjusted parameters

Examples

```r
ppar_bottom_legend(c(2,3))
```
ppar_wider
Preparation of figure window with more area on west side of plot.

Description
Prepares a plotting window with specified margins with specific number of figure row and columns.

Usage
ppar_wider(mfrow2)

Arguments
mfrow2
mfrow: number of Multiple Figures (use ROW-wise).

Value
default plotting window

Examples
ppar_wider(c(2,1))

prep_timecourse_plot_ave
Prepares function for plotting averages in timecourse

Description
Preparatory function

Usage
prep_timecourse_plot_ave(control_df, variant_df, replicates = 3)

Arguments
control_df
dataframe of control
variant_df
dataframe for variant
replicates
number of replicates. Default set to 3.

Value
dataframes with matched peptides in time course
prep_timecourse_plot_sd

Prepares function for Critical interval for timecourses

Description
Preparatory function

Usage

```r
prep_timecourse_plot_sd(
  control_df_up,
  variant_df_up,
  replicates = 3,
  pv_cutoff = 0.01
)
```

Arguments
- `control_df_up` dataframe of control
- `variant_df_up` dataframe for variant
- `replicates` number of replicates. Default set to 3.
- `pv_cutoff` cut off of pvalue used in calculation of critical interval. Default set to 0.01

Value
Critial interval for all sets

pv_timecourse

pvalue calculation between two sets of the data at certain timepoint

Description
Preparatory function for calculation of pvalue between sets.

Usage

```r
pv_timecourse(df_c, df_v, replicates = 3)
```

Arguments
- `df_c` dataframe of control
- `df_v` dataframe for variant
- `replicates` number of replicates. Default set to 3.
Value

pvalue comparisons between two sets.

pv_timepoint

Calculation of pvalue between first protein state and any other state from all_states file

Description

Compares means of sets of uptake data and return dataframe with pvalues. Welch t.test is used for analysis. Sets are compared to the first state in the input file. If other order of the sets is required use Default for the number of replicates is 3.

Usage

pv_timepoint(df, replicates = 3)

Arguments

df output from functions output_tp or output_tp_proc.
replicates number of replicates used. Default is set to replicates=3

Value

Data.frame with p-values

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pv<-pv_timepoint(df=a) ##if number of replicates is equal 3
pv1<-pv_timepoint(df=a, replicates=4) ##if number of replicates is equal 4
b<-output_tp_states(file_nm, states=c("State4", "State2", "State3"))
pv_states<-pv_timepoint(df=b) ### here means of State4, will be compared to State2 and State4

pymol_script_average_residue

Writes a text files with pymol scripts to list significant residues.

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user. Residues are being colored by average uptake values from the significant peptides per residues.
pymol_script_average_residue

Usage

pymol_script_average_residue(
 df,
 path = "",
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)

Arguments

- df: output from functions output_tp
- path: output folder location
- ranges: ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
- pv_cutoff: p-value cutoff here set up to 0.01
- replicates: number of replicates in sample. Default set to 3.

Value

pymol script with residues colored based on average of uptake per residue.

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pymol_script_average_residue(df=a, replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf), path=tempdir())
pymol_script_average_residue(df=a, path=tempdir())

pymol_script_significant_peptide

Writes a text files with pymol scripts to list significant peptides

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user.
Usage

pymol_script_significant_peptide(
 df, path = "",
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3,
 order.pep = TRUE
)

Arguments

- df: output from functions output_tp
- path: location where the scripts will be saved
- ranges: ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
- pv_cutoff: p-value cutoff here set up to 0.01
- replicates: number of replicates in sample. Default set to 3.
- order.pep: flag allowing to either order peptide according to the peptide length (default), or to position in the protein sequence.

Value

pymol script with colors assigned per peptide

Examples

file_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pymol_script_significant_peptide(df=a, replicates=3, path=tempdir(), pv_cutoff=0.01, ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf), order.pep=TRUE)
pymol_script_significant_peptide(df=a, path=tempdir())
Usage

```r
pymol_script_significant_peptide_proc(
  input_proc,
  input_up,
  path = "",
  ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
  pv_cutoff = 0.01,
  replicates = 3,
  order.pep = TRUE
)
```

Arguments

- `input_proc`: Dataframe with organized procent deuteration data. Input generated using `output_tp(.percent=T)` function.
- `input_up`: Dataframe with organized deuteration uptake. Input generated using `output_tp()` function.
- `path`: location where the Pymol scripts will be saved
- `ranges`: ranges for coloring scheme. Default set to `c(-Inf, seq(-30, 30, by=10), Inf)`
- `pv_cutoff`: p-value cutoff here set up to 0.01
- `replicates`: number of replicates in sample. Default set to 3.
- `order.pep`: flag allowing to either order peptide according to the peptide length (default), or to position in the protein sequence.

Value

pymol script with colors assigned per peptide

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
pymol_script_significant_peptide_proc(input_proc=a_proc,
  input_up=a_up, path=tempdir(), replicates=3, pv_cutoff=0.01,
  ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf), order.pep=TRUE)
```

pymol_script_significant_residue

Writes a text files with pymol scripts to list significant residues.
pymol_script_significant_residue

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user. Residues are being colored by maximum uptake from significant peptides per residues.

Usage

pymol_script_significant_residue(
 df,
 path = "",
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)

Arguments

df average data frame. Generated using ave_timepoint() function.
path location where the Pymol scripts will be saved
ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff p-value cutoff here set up to 0.01
replicates number of replicates in sample. Default set to 3.

Value

pymol script with colors assigned per residues by maximum uptake per residue

Examples

file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
pymol_script_significant_residue(df=a, path=tempdir(), replicates=3, pv_cutoff=0.01,
ranges=c(-Inf,-40, -30,-20,-10, 0,10, 20,30,40, Inf))
pymol_script_significant_residue(df=a, path=tempdir())

pymol_script_significant_residue_proc

Writes a text files with pymol scripts to list significant residues.

Description

Function write a script that can be used in pymol to color structure. Number of colors and corresponding to them ranges can be defined by user. Residues are colored by average percent_deuteration from the significant peptides per residues.
pymol_str

Usage

pymol_script_significant_residue_proc(
 input_up,
 input_proc,
 path = "",
 ranges = c(-Inf, seq(-30, 30, by = 10), Inf),
 pv_cutoff = 0.01,
 replicates = 3
)

Arguments

input_up Dataframe with organized deuteration uptake. Input generated using output_tp() function.
input_proc Dataframe with organized procent deuteration data. Input generated using output_tp_proc() function.
path location where the Pymol scripts will be saved
ranges ranges for coloring scheme. Default set to c(-Inf, seq(-30, 30, by=10), Inf)
pv_cutoff p-value cutoff here set up to 0.01
replicates number of replicates in sample. Default set to 3.

Value

pymol script with residues colored based on average of procent deuteration per residue.

Examples

file_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a_up<- output_tp(file_nm)
a_proc<- output_tp(file_nm, percent=TRUE)
pymol_script_significant_residue_proc(input_proc=a_proc,
 input_up=a_up, path=tempdir(), replicates=3, pv_cutoff=0.01,
 ranges=c(-Inf,-40,-30,-20,-10,0,10,20,30,40,Inf))

pymol_str Preparatory function writing pymol scripts

Description

Function rearrange vector to string by adding + sign between the numbers.

Usage

pymol_str(ind1)
Arguments

ind1 vector of numbers (residues)

Value

string with + as a separator.

Examples

```r
res <- c(1, 5, 19, 100, 109)
pymol_str(res)
```

Description

Combine data of unequal row length avoiding repetition or errors by filling with NAs. In contrast to classical `cbind`, `cbind.na` can be used to combine data such as

Usage

```r
qpcr.cbind.na(..., deparse.level = 1)
```

Arguments

... vectors

deparse.level set to 1 as default

Value

data frame with NA

Examples

```r
qpcr.cbind.na(1:10, 1:3)
```
ranges_function

Gives ranges for the averages

Description

Function used as internal function to get ranges in the function.

Usage

```
ranges_function(df_ave, values_df)
```

Arguments

- `df_ave`
 average per residues
- `values_df`
 data frame with values.

Value

ranges per set

ranges_function_tc

Gives ranges for the averages for time course analysis

Description

Function used as internal function to get ranges in the function.

Usage

```
ranges_function_tc(df_ave, values_df)
```

Arguments

- `df_ave`
 average per residues
- `values_df`
 data frame with values.

Value

ranges per set
rbind_na

bind non equal row

Description

Usage

```r
rbind_na(..., deparse.level = 1)
```

Arguments

- `...`: (generalized) vectors or matrices.
- `deparse.level`: integer controlling the construction of labels in the case of non-matrix-like arguments (for the default method): `deparse.level = 0` constructs no labels; the default, `deparse.level = 1` or `2` constructs labels from the argument names.

Value

a data frame with merged rows

Examples

```r
row1 <- c("a","b","c","d")
row2 <- c("A", "B", "C")
row3 <- rbind_na(row1, row2)
```

reset_par

Reset plotting window parameters to default

Description

Usage

```r
reset_par()
```

Value

default plotting window parameters

Examples

```r
reset_par()
```
robot_2states_indexes Returns a robot plot for selected peptides for 2 protein states.

Description
Modification of butterfly plot. x axis residues. y axis % deuteration for one variant above the axis and for second peptide below the axis. Peptides are compared between the sets for the significance change between sets. If there is significant change between sets peptides are plotted for all time-points. Significantly different timepoints for the peptides are colored. Peptides ranges are plotted as a line at corresponding % deuteration values.

Usage

\[
\text{robot}_2\text{states}_\text{indexes}(\thP, \th, \text{indexes}, \text{states}, \text{replicates} = 3, \text{pvalue} = 0.01, \text{ylim}, \text{xlim}, \text{CI}_\text{factor} = 1)
\]

Arguments

- \text{thP}
 output of output_tcourse_proc() function. Raw data for procent deuteration for time courses
- \text{th}
 output of output_tcourse() function. Raw data for uptake deuteration for time courses
- \text{indexes}
 indexes of peptides to be drawn.
- \text{states}
 Need to choose only two protein states
- \text{replicates}
 number of replicates in sample. Default set to 3.
- \text{pvalue}
 p-value cutoff here set up to 0.01
- \text{ylim}
 y-axis range
- \text{xlim}
 x-axis range. Set as default from max and minimum residues for the protein
- \text{CI}_\text{factor}

Value
Robot maps for timecourses for 2 protein states and selected indexes.
Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df <- output_tc(filepath = file_nm)
tmP_df <- output_ttc(filepath = file_nm, percent = TRUE)
names_states <- nm_states(file_nm) ### returns states names
ind1 <- robot_indexes(thP = tmP_df, th = tm_df, pvalue = 0.001, CI_factor = 3, states = names_states[1:2])
robot_2states_indexes(thP = tmP_df, th = tm_df,
                      states = names_states[1:2], indexes = ind1, pvalue = 0.001, CI_factor = 3)
```

robot_index

Returns indexes for peptides with significant difference between two sets

Description

Function to help decide which peptides will be drawn on Robot plots.

Usage

```r
robot_index(thP, th, replicates = 3, pvalue = 0.01, states, CI_factor = 1)
```

Arguments

- `thP` : output of `output_tcourse_proc()` function. Raw data for procent deuteration for time courses
- `th` : output of `output_tcourse()` function. Raw data for uptake deuteration for time courses
- `replicates` : number of replicates in sample. Default set to 3.
- `pvalue` : p-value cutoff. Default set up to 0.01
- `states` : Protein states from the set. As default all states are chosen.

Value

Returns indexes of significant peptides

Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df <- output_ttc(filepath = file_nm)
tmP_df <- output_ttc(filepath = file_nm, percent = TRUE)

# more restricted peptide selection
robot_index(thP = tmP_df, th = tm_df, pvalue = 0.001, CI_factor = 3)
```
robot_indexes_df

Returns dataframe with peptides which exhibit significant difference between two sets

Description

Function to help decide which peptides will be drawn on Robot plots.

Usage

robot_indexes_df(thP, th, replicates = 3, pvalue = 0.01, states, CI_factor = 1)

Arguments

- thP: output of output_tcourse_proc() function. Raw data for procent deuteration for time courses
- th: output of output_tcourse() function. Raw data for uptake deuteration for time courses
- replicates: number of replicates in sample. Default set to 3.
- pvalue: p-value cutoff. Default set up to 0.01
- states: Protein states from the set. As default all states are chosen.

Value

Returns dataframe listing peptides that are significantly different between sets.

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df<-output_tc(filepath=file_nm)
tmP_df<-output_tc(filepath=file_nm, percent=TRUE)

# more restrictive peptide selection
robot_indexes_df(thP = tmP_df, th=tm_df, pvalue=0.001, CI_factor=3)
```
robot_plot_All Returns a robot plot for comparisons of the timepoints samples

Description
Modification of butterfly plot. x axis residues. y axis % deuteration for one variant above the axis and for second peptide below the axis. Peptides are compared between the sets for the significance change between sets. If there is significant change between sets peptides are plotted for all time-points. Significantly different timepoints for the peptides are colored. Peptides ranges are plotted as a line at corresponding % deuteration values.

Usage
robot_plot_All(
 thP,
 th,
 replicates = 3,
 pv_cutoff = 0.01,
 states,
 CI_factor = 1
)

Arguments
- thP: output of output_tcourse_proc() function. Raw data for percent deuteration for time courses.
- th: output of output_tcourse() function. Raw data for uptake deuteration for time courses.
- replicates: number of replicates in sample. Default set to 3.
- pv_cutoff: p-value cutoff here set up to 0.01.
- states: Protein states from the set. As default all states are chosen.

Value
Robot maps for timecourses

Examples
file_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
tm_df<-output_tc(filepath=file_nm)
tmP_df<-output_tc(filepath=file_nm, percent=TRUE)
robot_plot_All(thP = tmP_df, th=tm_df, pv_cutoff=0.001)

more restrictive peptide selection
robot_plot_All(thP = tmP_df, th=tm_df, pv_cutoff=0.001, CI_factor=3)
sd_timecourse

Returns standard deviation for uptake data for timecourses.

Description

Calculates standard deviation for timecourse data.

Usage

sd_timecourse(filepath)

Arguments

filepath filepath to the All_results input file.

Value

Data.frame with standard deviation.

Examples

```r
file_nm<(system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
sd_timecourse(filepath=file_nm)
```

sd_timecourse_proc

Returns standard deviation for percent deuteration data for timecourses.

Description

Calculates standard deviation for time course data.

Usage

sd_timecourse_proc(filepath)

Arguments

filepath filepath to the All_results input file.

Value

Data.frame with standard deviation.

Examples

```r
file_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
sd_timecourse(filepath=file_nm)
```
select_indices

Returns standard deviation for dataframe.

Description
Calculates standard deviation for the number of replicates in the function.

Usage
sd_timepoint(df, replicates = 3)

Arguments
df output from functions output_tp or output_tp_proc.
replicates number of replicates used. Default is set to replicates=3

Value
Data.frame with standard deviation.

Examples
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
sd<-sd_timepoint(df=a, replicates=3)

select_indices

Allows for selecting some peptide from input data

Description
Function allows for picking indices from the inputs based on: peptide start or end residue, length, state or timepoint. If parameters set to NA, condition is skipped.

Usage
select_indices(df, start = NA, end = NA, length = NA, times = NA, states = NA)

Arguments
df input file (output of output_tc or output_tp)
start provide number for the staring residue, default NA
end provide number for the end residue, default NA
length provide max length of the peptide
times timepoints, only for the output_tp functions
states states, only for the output_tc functions
significant_peptide_uptake

Value

Row indices of the peptides that are fulfilling the conditions required.

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tp(file_nm)
indb<-select_indices(a,length=12, start=100, end=200)
smaller_df<-a[indb,]
```

significant_peptide_uptake
Function returns which peptides are significantly based of pv_cutoff and Critical interval

Description

Returns data frame with significant peptides.

Usage

```r
significant_peptide_uptake(df_av, pv, sd, pv_cutoff = 0.01, replicates = 3)
```

Arguments

- `df_av`: data.frame with averages created using ave_timepoint() function
- `pv`: data.frame with pvalues created using pv_timepoint() function
- `sd`: data.frame with standard deviations created using sd_timepoint() function
- `pv_cutoff`: cutoff for Critical interval. Default=0.01
- `replicates`: number of replicates as default set to 3.

Value

ranges per set
summary_sd_CI

Provides summary table with Critical interval and standard deviation within the set.

Description

Returns summary data. Function returns: Protein states, timepoints, number of replicates, # peptides, % coverage, average peptide length and redundancy.

Usage

```r
summary_sd_CI(filepath, replicates = 3)
```

Arguments

- `filepath`: filepath to the input file. Input file is All_results table from HDX_Examiner, where all the fields are marked for export.
- `replicates`: number of replicates. Default set to 3.

Value

Returns summary table.

Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- summary_sd_CI(file_nm, replicates = 3)
```

uptake_plots

Uptake plots

Description

Uptake plots per peptide

Usage

```r
uptake_plots(
  input_data,
  timepoints,
  replicates = 3,
  cola = NA,
  seq_match = TRUE
)
```
verbose_timecourse_output

Arguments

- **input_data**: output from function `output_tp(..., percent=T)`
- **timepoints**: the labeling times
- **replicates**: replicates
- **cola**: colors, default NA
- **seq_match**: Flag TRUE or FALSE, default TRUE, match sequence of the protein states

Value

Uptake plots

Examples

```r
file_nm <- system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a <- output_tc(file_nm, percent=TRUE)
x <- c(3, 60, 1800, 72000)
uptake_plots(a, x)
```

Returns csv with averages from analysis for procent deuteration file, standard deviation for time courses.

Description

Returns information from analysis and save it as csv file. Sets are compared to the first state in the input file.

Usage

```r
verbose_timecourse_output(filepath, output_name, replicates = 3, ...)
```

Arguments

- **filepath**: path to All.Data.csv input from HDX-Examiner.
- **output_name**: name of the output in csv format.
- **replicates**: number of replicates used
- **...**: other variables for `output_tc`

Value

csv with analysis for procent deuteration: standard deviation, for all protein states for time courses.
Examples

```r
file_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
verbose_timecourse_output(file_nm,tempfile(), replicates=3)
names_states<- nm_states(file_nm)
verbose_timecourse_output(file_nm, tempfile(), seq_match=TRUE, percent=TRUE,
states=names_states, replicates=3, times="3.00s")
```

```
verbose_timepoint_output
Returns csv with averages from analysis for uptake file, standard deviation, p-values.
```

Description

Returns information from analysis and save it as csv file. Sets are compared to the first state in the input file.

Usage

```r
verbose_timepoint_output(filepath, output_name, replicates = 3, ...)
```

Arguments

- `filepath` path to All.Data.csv input from HDX-Examiner.
- `output_name` name of the output in csv format.
- `replicates` number of replicates used
- `...` other variables for output_tp

Value

csv with analysis for uptake file, standard deviation, p-values for all protein states.

Examples

```r
file_nm<system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
verbose_timepoint_output(file_nm, tempfile())
names_states<- nm_states(file_nm)
verbose_timepoint_output(file_nm, tempfile(), seq_match=TRUE, percent=TRUE,
states=names_states, replicates=3, times="3.00s")
```
vol_tp

Preparatory function for volcano plot

Description

Returns volcano plots

Usage

vol_tp(df1, pv, CI, pv_cutoff = 0.01, cola)

Arguments

df1 differences in averages data.frame calculated using diff_ave function
pv p-values dataframes calculated using pv_timepoint function
CI critical interval, here is multiple sets are using maximun CI is used.
pv_cutoff p-value cutoff here set up to 0.01
cola color pallette for different Protein States. As default Paired pallette from color.Brewer is used.

Value

volcano plots

woods_CI_plot

Returns a woods plot for comparisons of the timepoints samples

Description

Modification of butterfly plot. x axis residues. y axis % deuteration for Peptides are compared between the sets for the significance change between sets. If there is significant change between sets peptides are plotted for all timepoints. Significanty different timepoints for the peptides are colored. Peptides ranges are plotted as a line at corresponding % deuteration values.

Usage

woods_CI_plot(
 thP,
 th,
 replicates = 3,
 pv_cutoff = 0.01,
 states,
 CI_factor = 1,
 ylim = c(0, 120),
 ...
)
Arguments

- **thP**: output of `output_tcourse_proc()` function. Raw data for procent deuteration for time courses.
- **th**: output of `output_tcourse()` function. Raw data for uptake deuteration for time courses.
- **replicates**: number of replicates in sample. Default set to 3.
- **pv_cutoff**: p-value cutoff here set up to 0.01.
- **states**: Protein states from the set. As default all states are chosen.
- **ylim**: y axis limit.
- **...**: other variables

Value

Woods plots with chosen statistically different peptides

Examples

```r
file_nm<-system.file("extdata", "All_results_table.csv", package = "HDXBoxeR")
a<- output_tc(file_nm)
b<-output_tc(file_nm, percent=TRUE)
woods_CI_plot(thP=b, th=a, pv_cutoff = 0.001, CI_factor = 1, replicates=3)
```
Index

all_summary, 4
arg_df, 6
arg_UN_FD, 7
arguments_call1, 5
arguments_call2, 5
arguments_call3, 6
av_tc, 8
av_tp, 9
ave_timepoint, 8
average_timecourse, 7
backHX_calculations, 9
boxplot_tp, 10
CI_2pts, 10
CI_single, 11
CI_tc, 12
CI_tp, 12
color_ranges_Blue_Red_heat_map, 13
color_ranges_Spectral, 14
coverage_residue, 14
deuteration_woods_timecourse, 15
deuteration_woods_timepoints, 16
dif_ave, 17
dif_tp, 17
dif_tp_proc, 18
duplicate_sets, 18
extreme_input_gap, 19
extreme_input_undeut, 19
general_info, 20
getCoords1, 21
heat_map_tc, 21
heat_map_tp, 22
heat_map_tp_maxuptake, 22
heat_map_tp_maxuptake_proc, 23
heat_map_tp_proc, 24
is.nan.data.frame, 25
lab_dif, 25
lab_dif_proc, 26
lab_vol, 26
legend_heat_map, 27
legend_heat_map_tc, 27
legend_heat_map_timecourse, 28
legend_heat_map_tp, 28
legend_heat_map_tp_proc, 29
legend_nm_bottom, 29
legend_raw_ave, 30
legend_raw_ave_proc, 30
legend_raw_ave_tc, 31
legend_sig_peptides, 31
legend_states_PerD_bottom, 32
legend_tc_bottom, 32
nm_states, 33
output_FD, 33
output_FD_proc, 34
output_prep, 34
output_tc, 35
output_tp, 36
output_UD, 38
output_UD_proc, 38
palette_legend, 39
palette_l1, 39
peptide_pv_tp, 40
peptide_pv_tp_proc, 40
pl_gen_ch2, 51
pl_gen_uptake, 52
plot_heat_map_max_uptake_tp, 45
plot_heat_map_max_uptake_tp_proc, 46
plot_heat_map_tc, 47
plot_heat_map_tp, 48
plot_heat_map_tp_proc, 49
plot_peptide_sig_tp, 50
plot_peptide_sig_tp_proc, 50
plots_av_tcourse, 41
plots_av_tp, 42
plots_av_tp_proc, 43
plots_diff_tp, 43
plots_diff_tp_proc, 44
plots_vol_tp, 45
ppar, 52
ppar_bottom_legend, 53
ppar_wider, 54
pparLM, 53
prep_timecourse_plot_ave, 54
prep_timecourse_plot_sd, 55
pv_timecourse, 55
pv_timepoint, 56
pymol_script_average_residue, 56
pymol_script_significant_peptide, 57
pymol_script_significant_peptide_proc, 58
pymol_script_significant_residue, 59
pymol_script_significant_residue_proc, 60
pymol_str, 61
qpcr.cbind.na, 62
ranges_function, 63
ranges_function_tc, 63
rbind_na, 64
reset_par, 64
robot_2states_indexes, 65
robot_indexes, 66
robot_indexes_df, 67
robot_plot_All, 68
sd_timecourse, 69
sd_timecourse_proc, 69
sd_timepoint, 70
select_indices, 70
significant_peptide_uptake, 71
summary_sd_CI, 72
uptake_plots, 72
verbose_timecourse_output, 73
verbose_timepoint_output, 74
vol_tp, 75
woods_CI_plot, 75