Package ‘HDclust’

April 11, 2019

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Clustering High Dimensional Data with Hidden Markov Model on Variable Blocks</td>
</tr>
<tr>
<td>Version</td>
<td>1.0.3</td>
</tr>
<tr>
<td>Date</td>
<td>2019-04-05</td>
</tr>
<tr>
<td>Description</td>
<td>Clustering of high dimensional data with Hidden Markov Model on Variable Blocks (HMM-VB) fitted via Baum-Welch algorithm. Clustering is performed by the Modal Baum-Welch algorithm (MBW), which finds modes of the density function. Lin Lin and Jia Li (2017) http://jmlr.org/papers/v18/16-342.html.</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>Imports</td>
<td>Rcpp (>= 0.12.16), RcppProgress (>= 0.1), Rtsne (>= 0.11.0)</td>
</tr>
<tr>
<td>Depends</td>
<td>methods</td>
</tr>
<tr>
<td>LinkingTo</td>
<td>Rcpp, RcppProgress</td>
</tr>
</tbody>
</table>
| Collate | 'AllClass.R' 'AllGeneric.R' 'AllMethod.R' 'clustControl.R'
| | 'trainControl.R' 'hmmvbClust.R' 'hmmvbTrain.R'
| | 'vbSearchControl.R' 'package-HDclust.R' 'RcppExports.R'
| | 'sim3.R' 'sim2.R' 'hmmvbBIC.R' 'hmmvbFindModes.R'
| | 'clustModes.R' |
| RoxygenNote| 6.1.1 |
| Suggests | knitr, rmarkdown |
| VignetteBuilder | knitr |
| NeedsCompilation | yes |
| Encoding | UTF-8 |
| Author | Yevhen Tupikov [aut],
| | Lin Lin [aut],
| | Lixiang Zhang [aut],
| | Jia Li [aut, cre] |
| Maintainer | Jia Li <jial1@psu.edu> |
| Repository | CRAN |
| Date/Publication | 2019-04-11 21:57:32 UTC |
R topics documented:

HDclust-package .. 2
clustControl ... 3
clustModes ... 4
getBdim ... 5
getBIC ... 6
getClsid ... 6
getClustParam .. 7
getDiagCov ... 7
getDim ... 7
getHmmChain .. 8
getHmmParam ... 9
getLoglikehd ... 9
getNb ... 10
getNumst ... 10
getOptHMMVB .. 11
getPrenumst ... 12
getSize ... 12
getVarorder ... 13
getVb ... 13
HMM-class ... 14
HMMVB-class ... 15
hmmvbBIC ... 15
HMMVBBClass .. 17
hmmvbClust .. 17
HMMVBclass .. 19
hmmvbFindModes .. 20
hmmvbTrain ... 21
sim2 ... 22
sim3 ... 23
trainControl ... 23
vb ... 24
VB-class ... 25
vbSearchControl ... 26

Index 27

HDclust-package

Cluster high dimensional data with Hidden Markov Model on Variable Blocks

Description

Clustering of high dimensional data with Hidden Markov Model on Variable Blocks (HMM-VB) fitted via Baum-Welch algorithm. Clustering is performed by the Modal Baum-Welch algorithm (MBW), which finds modes of the density function.
Details
For a quick introduction to HDclust see the vignette vignette("HDclust").

Author(s)
Jia Li, Lin Lin and Yevhen Tupikov.
Maintainer: Yevhen Tupikov <yzt116@psu.edu>

References

See Also
hmmvBTrain, hmmvBClust

Examples
data("sim3")
set.seed(12345)
Vb <- vb2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
hmmvB <- hmmvBTrain(sim3[,1:40], VbStructure=Vb)
clust <- hmmvBClust(sim3[,1:40], model=hmmvB)
show(clust)

clustControl Parameters for MBM clustering algorithm.

Description
This function creates a list with parameters for Modal Baum-Welch (MBW) clustering algorithm used as an argument for hmmvBClust.

Usage
clustControl(minSize = 1, modeTh = 0.01, useL1norm = FALSE, getlikelh = FALSE)

Arguments
minSize Minimum cluster size. Clusters that contain the number of data points smaller than minSize are merged to the closest big cluster.
modeTh Distance parameter that controls mode merging. Larger values promote merging of different clusters.
useL1norm A logical value indicating whether or not L1 norm will be used to calculate the distance.
getlikelh A logical value indicating whether or not to calculate the loglikelihood for every data point.
Value

The named list with parameters.

See Also

hmmvbTrain

Examples

avoid clusters of size < 60
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb)
clust <- hmmvbClust(iris[,1:4], model=hmmvb, control=clustControl(minSize=60))
show(clust)
getBdim

Examples
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbcTrain(unique(iris[,1:4]), VbStructure=Vb)
modes <- hmmvbcFindModes(unique(iris[,1:4]), model=hmmvb)

default mode clustering
merged <- clustModes(modes, cutree.args=list(h=1.0))

mode clustering using Manhattan distance
merged <- clustModes(modes, dist.args=list(method="manhattan"), cutree.args=list(h=1.0))

mode clustering using single linkage
merged <- clustModes(modes, hclust.args=list(method="single"), cutree.args=list(h=1.0))

getBdim

Accessor for 'bdim' slot

Description
This function outputs dimensionality of blocks of variable block structure.

Usage
getBdim(object)

S4 method for signature 'VB'
getBdim(object)

S4 method for signature 'HMMVB'
getBdim(object)

Arguments
object Object of class "VB" or "HMMVB".

Examples
accessing bdim in instance of class VB
Vb <- vb(2, dim=10, bdim=c(4,6), numst=c(3,11), varorder=list(c(1:4),c(5:10)))
getBdim(Vb)

accessing bdim in instance of class HMMVB
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
set.seed(12345)
hmmvb <- hmmvbcTrain(sim3[,1:40], VbStructure=Vb)
getBdim(hmmvb)
getBIC

Accessor for 'BIC' slot.

Description

This function outputs BIC for a trained HMM-VB model or a vector with BIC values calculated in model selection.

Usage

```r
getBIC(object)

## S4 method for signature 'HMMVB'
getBIC(object)

## S4 method for signature 'HMMVBBIC'
getBIC(object)
```

Arguments

- `object`

 Object of class "HMMVB" or "HMMVBBIC".

getClsid

Accessor for 'clsid' slot.

Description

This function outputs the cluster labels for the object of class HMMVBClust.

Usage

```r
getClsid(object)
```

Arguments

- `object`

 Object of class "HMMVBClust".
getClustParam

Accessor for ‘clustParam’ slot.

Description
This function outputs clusterPar for the object of class HMMVBclust.

Usage
getClustParam(object)

Arguments
object Object of class "HMMVBclust".

getDiagCov

Accessor for ‘diagCov’ slot.

Description
This function outputs diagCov logical indicator of diagonal covariance matrices for HMM-VB model.

Usage
getDiagCov(object)

Arguments
object Object of class "HMMVB".

getDim

Accessor for ‘dim’ slot

Description
This function outputs dimensionality.
Usage

getDim(object)

S4 method for signature 'VB'
getDim(object)

S4 method for signature 'HMM'
getDim(object)

S4 method for signature 'HMMVB'
getDim(object)

Arguments

object Object of class "VB", "HMM" or "HMMVB".

Examples

accessing dim in instance of class VB
Vb <- vb(nb=2, dim=10, bdim=c(4,6), numst=c(3,11), varorder=list(c(1:4),c(5:10)))
getDim(Vb)

accessing dim in instance of class HMM
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
set.seed(12345)
hmmvb <- hmmvbTrain(sim3[,1:40], VbStructure=Vb)
getDim(getHmmpChain(hmmvb)[[1]])

accessing dim in instance of class HMMVB
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
set.seed(12345)
hmmvb <- hmmvbTrain(sim3[,1:40], VbStructure=Vb)
getDim(hmmvb)

getHmmpChain

Accessor for 'HmmpChain' slot.

Description

This function outputs a list with trained HMMs.

Usage

getHmmpChain(object)
getHnmParam

Arguments

object Object of class "HMMVB".

getHnmParam Accessor for parameters of HMM

Description

This function outputs a list with means, covariance matrices, inverse covariance matrices and logarithms of the determinants of the covariance matrices for all states of the HMM.

Usage

gethnmParam(object)

Arguments

object Object of class "HMM".

getLoglikehd Accessor for 'Loglikehd' slot.

Description

This function outputs Loglikelihood for each data point in a trained HMM-VB model or Loglikelihood for a new dataset in a HMM-VB model.

Usage

geloglikehd(object)

S4 method for signature 'HMMVB'
geloglikehd(object)

S4 method for signature 'HMMVBIC'
geloglikehd(object)

S4 method for signature 'HMMVBclust'
geloglikehd(object)

Arguments

object Object of class "HMMVB", "HMMVBIC" "HMMVBclust".
getNb

Accessor for 'nb' slot

Description

This function outputs number of blocks of the variable block structure.

Usage

getNb(object)

```r
## S4 method for signature 'VB'
getNb(object)
```

```r
## S4 method for signature 'HMMVB'
getNb(object)
```

Arguments

- `object` Object of class "VB" or "HMMVB".

Examples

```r
# accessing nb in instance of class VB
Vb <- vb(2, dim=10, bdim=c(4,6), numst=c(3,11), varorder=list(c(1:4),c(5:10)))
getNb(Vb)

# accessing nb in instance of class HMMVB
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
set.seed(12345)
hmmvb <- hmmvbTrain(sim3[,1:40], VbStructure=Vb)
getNb(hmmvb)
```

getNumst

Accessor for 'numst' slot

Description

This function outputs the number of states for each variable block in the variable block structure, the number of states of the HMM, or the number of states for each variable block of the HMM-VB.
getOptHMMVB

Usage

getNumst(object)

S4 method for signature 'VB'
getNumst(object)

S4 method for signature 'HMM'
getNumst(object)

S4 method for signature 'HMMVB'
getNumst(object)

Arguments

object Object of class "VB", "HMM" or "HMMVB".

Examples

accessing numst in instance of class VB
Vb <- vb(2, dim=10, bdim=c(4,6), numst=c(3,11), varorder=list(c(1:4),c(5:10)))
getNumst(Vb)

accessing getNumst in instance of class HMM
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
set.seed(12345)
hmmvb <- hmmvbTrain(sim3[,1:40], VbStructure=Vb)
getNumst(getHmmpChain(hmmvb)[[1]])

accessing numst in instance of class HMMVB
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
set.seed(12345)
hmmvb <- hmmvbTrain(sim3[,1:40], VbStructure=Vb)
getNumst(hmmvb)

getOptHMMVB

Accessor for 'optHMMVB' slot.

Description

This function outputs the optimal HMM-VB found via BIC model selection.

Usage

getOptHMMVB(object)
Arguments

object Object of class "HMMVBBIC".

getPrenumst accessor for 'prenumst' slot

Description

This function outputs the number of states in the HMM for the preceding block of HMM-VB.

Usage

getPrenumst(object)

Arguments

object Object of class "HMM".

getSize accessor for 'size' slot

Description

This function outputs the number of points in each cluster for the object of class HMMVBclust.

Usage

getSize(object)

Arguments

object Object of class "HMMVBclust".
getVarorder

Accessor for 'varorder' slot

Description

This function outputs the ordering of the variable blocks.

Usage

```r
getVarorder(object)
```

```r
## S4 method for signature 'VB'
getVarorder(object)
```

```r
## S4 method for signature 'HMMVB'
getVarorder(object)
```

Arguments

- **object** Object of class "VB" or "HMMVB".

Examples

- Accessing varorder in instance of class VB
  ```r
  vb <- vb(2, dim=10, bdim=c(4,6), numst=c(3,11), varorder=list(c(1:4),c(5:10)))
  getVarorder(vb)
  ```

- Accessing varorder in instance of class HMMVB
  ```r
  data("sim3")
  vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
  set.seed(12345)
  hmmvb <- hmmvbTrain(sim3[,1:40], VbStructure=vb)
  getVarorder(hmmvb)
  ```

getVb

Accessor for 'VbStructure' slot.

Description

This function outputs the variable block structure in the HMM-VB.

Usage

```r
getVb(object)
```
Arguments

object Object of class "HMMVB".

HMM-class

Class "HMM" to represent parameters associated with a variable block in the HMM-VB

Description

An S4 class to represent the model parameters associated with one variable block in the HMM-VB. For brevity, we call this part of HMM-VB, specific to a particular variable block, an "HMM" for the block. New instances of the class are created by `hmmvBTrain`.

Methods

- **show** signature(object = "HMM") : show parameters of the HMM object.
- **getPrenumst** signature(object = "HMM") : accessor for `prenumst` slot.
- **getHmmParam** signature(object = "HMM") : accessor for parameters of the HMM object. This function outputs a list with means, covariance matrices, inverse covariance matrices and logarithms of the determinants of the covariance matrices for all states of the HMM.

Slots

- **dim** Dimensionality of the data in HMM.
- **numst** An integer vector specifying the number of HMM states.
- **prenumst** An integer vector specifying the number of states of previous variable block HMM.
- **a00** Probabilities of HMM states.
- **a** Transition probability matrix from states in the previous variable block to the states in the current one.
- **mean** A numerical matrix with state means. kth row corresponds to the kth state.
- **sigma** A list containing the covariance matrices of states.
- **sigmaInv** A list containing the inverse covariance matrices of states.
- **sigmaDetLog** A vector with `log(|sigma|)` for each state.
HMMVB-class

Class "HMMVB" to represent a Hidden Markov Model on Variable Blocks (HMM-VB).

Description

An S4 class to represent a Hidden Markov Model on Variable Blocks (HMM-VB). New instances of the class are created by hmmvbTrain.

Methods

- `show` signature(object = "HMMVB") : show parameters of the HMM-VB.
- `getHmmChain` signature(object = "HMMVB") : accessor for 'HmmChain' slot.
- `getDiagCov` signature(object = "HMMVB") : accessor for 'diagCov' slot.
- `getBIC` signature(object = "HMMVB") : accessor for 'BIC' slot.
- `getVb` signature(object = "HMMVB") : accessor for 'VbStructure' slot.

Slots

- `VbStructure` An object of class 'VB' that contains the variable block structure.
- `HmmChain` A list of objects of class 'HMM' with trained Hidden Markov Models for each variable block.
- `diagCov` A logical value indicating whether or not covariance matrices for mixture models are diagonal.
- `loglikehd` Loglikelihood value for each data point.
- `BIC` BIC value for provided variable block structure or optimal BIC value for found variable block structure.

hmmvbBIC

BIC for HMM-VB

Description

This function finds an optimal number of mixture components (states) for HMM-VB using the Bayesian Information Criterion (BIC). The variable block structure is provided as input and then BIC is estimated for HMM-VB with different configurations of states for the variable blocks.

Usage

hmmvbBIC(data, VbStructure, configList = NULL, numst = 1:10, trControl = trainControl(), nthread = 1)
Arguments

- **data**
 A numeric vector, matrix, or data frame of observations. Categorical values are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **VbStructure**
 An object of class 'VB'. Variable block structure stored in VbStructure is used to train HMM-VB model. `numst` parameter of the variable block structure is ignored.

- **configList**
 A list of integer vectors specifying number of states in each variable block for which BIC is to be calculated.

- **numst**
 An integer vector specifying the numbers of mixture components (states) in each variable block for which BIC is to be calculated. Number of states is the same for all variable blocks. The argument is ignored if `configList` argument is provided.

- **trControl**
 A list of control parameters for HMM-VB training algorithm. The defaults are set by the call `hmmvbTrainControl()`.

- **nthread**
 An integer specifying the number of threads used in searching and training routines.

Value

A named list with estimated BIC values and the number of states or state configurations for which BIC was calculated.

See Also

- `VB`, `vb`, `trainControl`

Examples

```r
# Default search for the optimal number of states for HMM-VB model
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(1,1), varorder=list(c(1:10), c(11:40)))
set.seed(12345)
hmmvbBIC(sim3[1:40], VbStructure)

# Search for the optimal number of states for HMM-VB model using # provided values for the number of states
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(1,1), varorder=list(c(1:10), c(11:40)))
set.seed(12345)
hmmvbBIC(sim3[1:40], VbStructure=Vb, numst=c(2L, 4L, 6L))

# Search for the optimal number of states for HMM-VB model using # provided configurations of the number of states
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(1,1), varorder=list(c(1:10), c(11:40)))
set.seed(12345)
configs = list(c(1,2), c(3,5), c(6,7))
```
Class "HMMVBBIC" to represent results of HMM-VB model selection.

Description

An S4 class to represent results of HMM-VB model selection. New instances of the class are created by `hmmvbbic`.

Methods

- `show` (signature: `object = "HMMVBBIC"`) : show optimal model.
- `plot` (signature: `x = "HMMVBBIC", y = "missing", ...`) : plot model selection results (doesn’t work for configuration list provided as input to model selection).
- `getBIC` (signature: `object = "HMMVBBIC"`) : accessor for ‘BIC’ slot.
- `getLoglikehd` (signature: `object = "HMMVBBIC"`) : accessor for ‘Loglikehd’ slot.
- `getOptHMMVB` (signature: `object = "HMMVBBIC"`) : accessor for `optHMMVB` slot.

Slots

- `bic` : A numeric vector specifying calculated BIC values.
- `opthmmvb` : The optimal HMM-VB model with smallest BIC value.
- `numst` : An integer vector specifying the number of mixture components (states) in each variable block for which BIC was calculated. Number of states is the same for all variable blocks.

See Also

- `hmmvbbic`

Cluster data with HMM-VB

Description

This function clusters dataset with HMM-VB. First, for each data point it finds an optimal state sequence using Viterbi algorithm. Next, it uses Modal Baum-Welch algorithm (MBW) to find the modes of distinct Viterbi state sequences. Data points associated the same modes form clusters. If different data sets are clustered using the same HMM-VB, clustering results of one data set can be supplied as a reference during clustering of another data set to produce aligned clusters.

Usage

```r
hmmvbClust(data, model = NULL, control = clustControl(),
            rfsClust = NULL, nthread = 1, bicObj = NULL)
```
Arguments

data A numeric vector, matrix, or data frame of observations. Categorical values are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

model An object of class ‘HMMVB’ that contains trained HMM-VB obtained by the call to function hmmvbTrain.

control A list of control parameters for clustering. The defaults are set by the call clustControl().

rfsClust A list of parameters for the reference cluster that can be used for alignment. See hmmvbClust for details.

nthread An integer specifying the number of threads used in clustering.

bicObj An object of class ‘HMMVBBIC’ which stores results of model selection. If provided, argument model is ignored.

Value

An object of class ‘HMMVBClust’.

See Also

HMMVB-class, HMMVBclust-class, hmmvbTrain

Examples

cluster using trained HMM-VB
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb)
clust <- hmmvbClust(iris[,1:4], model=hmmvb)
show(clust)
pairs(iris[,1:4], col=getClsid(clust))

cluster using HMMVBBIC object obtained in model selection
Vb <- vb(1, dim=4, numst=1)
set.seed(12345)
modelBIC <- hmmvbBIC(iris[,1:4], VbStructure=Vb)
clust <- hmmvbClust(iris[,1:4], bicObj=modelBIC)
show(clust)
pairs(iris[,1:4], col=getClsid(clust))
HMMVBclust-class

Class "HMMVBclust" to represent clustering results with Hidden Markov Model on variable block structure.

Description

An S4 class to represent a clustering result based on HMM-VB. New instances of the class are created by `hmmvbClust`.

Methods

- `show` signature(object = "HMMVBclust") : show clustering results based on HMM-VB.
- `plot` signature(x = "HMMVBclust", y = "missing", method = "t-sne", ...) : plot clustering results. 'method' controls the visualization algorithm. Two algorithms are supported: method = 'PCA' plots the data using 2 component PCA space; and method = 't-SNE' plots the data using 2 component t-SNE space. Default setting is t-SNE.
- `getClustParam` signature(object = "HMMVBclust") : accessor for 'clustParam' slot.
- `getLoglikehd` signature(object = "HMMVBclust") : accessor for 'Loglikehd' slot.
- `getClsid` signature(object = "HMMVBclust") : accessor for 'clsid' slot.
- `getSize` signature(object = "HMMVBclust") : accessor for 'size' slot.

Slots

data The input data matrix
clustParam A list with cluster parameters:
 - ncls The number of clusters (same as the number of modes)
 - mode A numeric matrix with cluster modes. kth row of the matrix stores coordinates of the kth mode.
 - ndseq The number of distinct Viterbi sequences for the dataset
 - vseqid An integer vector representing the map between Viterbi sequences and clusters. kth value in the vector stores cluster id for kth Viterbi sequence.
 - vseq A list with integer vectors representing distinct Viterbi sequences for the dataset
 - sigma A numeric vector with the dataset variance

clsid An integer vector with cluster ids.
Loglikehd Loglikelihood value for each data point.
size An integer vector with cluster sizes.
hmmvbFindModes
Find density modes with HMM-VB

Description

This function finds the density modes with HMM-VB. First, for each data point it finds an optimal state sequence using Viterbi algorithm. Next, it uses Modal Baum-Welch algorithm (MBW) to find the modes of distinct Viterbi state sequences. Data points associated the same modes form clusters.

Usage

```r
hmmvbFindModes(data, model = NULL, nthread = 1, bicobj = NULL)
```

Arguments

- `data`: A numeric vector, matrix, or data frame of observations. Categorical values are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- `model`: An object of class 'HMMVB' that contains trained HMM-VB obtained by the call to function `hmmvbTrain`.
- `nthread`: An integer specifying the number of threads used in clustering.
- `bicobj`: An object of class 'HMMVBBIC' which stores results of model selection. If provided, argument `model` is ignored.

Value

An object of class 'HMMVBclust'.

See Also

`HMMVB-class`, `HMMVBclust-class`, `hmmvbTrain`

Examples

```r
# find modes using trained HMM-VB
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb)
modes <- hmmvbFindModes(iris[,1:4], model=hmmvb)
show(modes)

# find modes using HMMVBBIC object obtained in model selection
Vb <- vb(1, dim=4, numst=1)
set.seed(12345)
modelBIC <- hmmvbBIC(iris[,1:4], VbStructure=Vb)
modes <- hmmvbClust(iris[,1:4], bicObj=modelBIC)
show(modes)
```
Description

This function estimates parameters for HMM-VB using the Baum-Welch algorithm. If the variable block structure is not provided, the function will first find the structure by a greedy search algorithm that minimizes BIC.

Usage

hmmvbTrain(data, VbStructure = NULL, searchControl = vbSearchControl(),
trControl = trainControl(), nthread = 1)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical values are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

VbStructure An object of class 'VB'. If supplied, variable block structure stored in VbStructure is used to train HMM-VB. If not provided, a search algorithm will be performed to find a variable block structure with minimal BIC.

searchControl A list of control parameters for variable block structure search. This parameter is ignored if variable block structure VbStructure is provided. The defaults are set by the call vbSearchControl().

trControl A list of control parameters for HMM-VB training algorithm. The defaults are set by the call hmmvbTrainControl().

nthread An integer specifying the number of threads used in searching and training routines.

Value

An object of class 'HMMVB' providing estimation for HMM-VB. The details of output components are as follows:

VbStructure An object of class 'VB' with variable block structure for HMM-VB

HmmChain A list of objects of class 'HMM' with trained Hidden Markov Models for each variable block.

diagCov A logical value indicating whether or not covariance matrices for mixture models are diagonal.

BIC BIC value for provided variable block structure or optimal BIC value for found variable block structure.

See Also

vbSearchControl, trainControl
Examples

```r
# Train HMM-VB with known variable block structure
data("sim3")
Vb <- vb(2, dim=40, bdim=c(10,30), numst=c(3,5), varorder=list(c(1:10),c(11:40)))
set.seed(12345)
hmmvb <- hmmvbTrain(sim3[,1:40], VbStructure=Vb)
show(hmmvb)

# Train HMM-VB with unknown variable block structure using default parameters
data("sim2")
set.seed(12345)
hmmvb <- hmmvbTrain(sim2[,1:5])
show(hmmvb)

# Train HMM-VB with unknown variable block structure using with ten permutations
# and several threads
data("sim2")
set.seed(12345)
hmmvb <- hmmvbTrain(sim2[1:5], searchControl=vbSearchControl(nperm=10), nthread=3)
show(hmmvb)
```

Description

Dataset used for testing clustering with HMM-VB. The data dimension is 5. Data points were drawn from a 10-component Gaussian Mixture Model. By specific choice of the means, the data contains 10 distinct clusters. For details see the references.

Usage

`sim2`

Format

A data frame with 5000 rows and 5 variables. Last column contains ground truth cluster labels.

References

Description

Dataset used for testing clustering with HMM-VB. The data dimension is 40. The first 10 dimensions were generated from a 3-component Gaussian Mixture Model (GMM). The remaining 30 dimensions were generated from a 5-component GMM. By specific design of the means, covariance matrices and transition probabilities, the data contain 5 distinct clusters. For details see the references.

Usage

sim3

Format

A data frame with 1000 rows and 40 variables. Last column contains ground truth cluster labels.

References

trainControl

Parameters for HMM-VB training.

Description

This function creates a list with parameters for estimating an HMM-VB, which is used as an argument for `hmmvbTrain`.

Usage

`trainControl(ninit0 = 1, ninit1 = 0, ninit2 = 0, epsilon = 1e-04, diagCov = FALSE)`

Arguments

- **ninit0**
 - The number of initializations for default scheme 0, under which the k-means clustering for entire dataset is used to initialize the model.

- **ninit1**
 - The number of initializations for default scheme 1, under which the k-means clustering for a subset of data is used to initialize the model.

- **ninit2**
 - The number of initializations for default scheme 2, under which a random subset of data is used as cluster centroids to initialize the model.
epsilon Stopping criteria for Baum-Welch algorithm. Should be a small number in range (0,1).
diagCov A logical value indicating whether or not variable block covariance matrices will be diagonal.

Value
The named list with parameters.

See Also
hmmvbTrain

Examples

setting up multiple initialization schemes
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb,
 trControl=trainControl(ninit0=2, ninit1=2, ninit2=2))
show(hmmvb)

forcing diagonal covariance matrices
Vb <- vb(1, dim=4, numst=2)
set.seed(12345)
hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb,
 trControl=trainControl(diagCov=TRUE))
show(hmmvb)

vb Make an instance of class "VB"

Description
This function creates a variable block structure.

Usage
vb(nb, dim, bdim = NULL, numst, varorder = NULL)

Arguments

nb The number of variable blocks.
dim Dimensionality of the data.
bdim An integer vector specifying dimensionality of each variable block. This argument can be omitted if the variable block structure has a single block (case of GMM).
VB-class

numst
An integer vector specifying the number of mixture models in each variable block.

varorder
A list of integer vectors specifying the variable order in each variable block. This argument can be omitted if variable structure has a single variable block (GMM).

Value
An object of class "VB".

See Also

`vb`

Examples

variable block structure for GMM with 3 dimensions and 2 mixture states
dvb <- vb(1, dim=3, numst=2)

variable block structure with 2 variable blocks
dvb <- vb(2, dim=10, bdim=c(4,6), numst=c(3,11), varorder=list(c(1:4),c(5:10)))

Description
An S4 class to represent a variable block structure. To create a new instance of the class, use `vb`.

Methods

- `show` signature(object = "VB") : show parameters of variable blocks structure.
- `getNb` signature(object = "VB") : accessor for 'nb' slot.
- `getDim` signature(object = "VB") : accessor for 'dim' slot.
- `getBdim` signature(object = "VB") : accessor for 'bdim' slot.
- `getNumst` signature(object = "VB") : accessor for 'numst' slot.
- `getVarorder` signature(object = "VB") : accessor for 'varorder' slot.

Slots

- `nb` The number of variable blocks.
- `dim` Dimensionality of the data.
- `bdim` An integer vector specifying dimensionality of each variable block.
- `numst` An integer vector specifying the number of mixture models in each variable block.
- `varorder` A list of integer vectors specifying the variable order in each variable block.
vbSearchControl
Parameters for variable block structure search.

Description

This function creates a list with parameters for the search of a variable block structure used as an argument for hmmvbTrain.

Usage

```r
vbSearchControl(perm = NULL, numstPerDim = NULL, dim = NULL,
maxDim = 10, minDim = 1, nperm = 1, relax = FALSE)
```

Arguments

- `perm` A list of integer vectors specifying variable permutations. If provided, the argument `dim` must be supplied.
- `numstPerDim` An integer vector of length `maxDim` specifying a map from the variable block dimensionality to the number of states in the block. The `k`th value in the vector corresponds to number of states for dimensionality `k`.
- `dim` Data dimensionality. Must be provided with `perm` argument, otherwise is ignored.
- `maxDim` Maximum variable block dimension.
- `minDim` Minimum variable block dimension. Should be an integer equal to 1 or 2.
- `nperm` The number of variable permutations. This parameter is ignored if permutations are provided in `perm` argument.
- `relax` A logical value indicating whether or not variable block structure search will be performed under less restricting conditions.

Value

The named list with parameters.

See Also

- `hmmvbTrain`

Examples

```r
# setting up permutations
perm <- list(c(1,2,3), c(1,3,2), c(3,2,1))
searchControl <- vbSearchControl(perm=perm, dim=3)

# setting up a map between block dimensionality and number of states
searchControl <- vbSearchControl(maxDim=5, numstPerDim=c(3,4,5,6,7))
```
Index

*Topic datasets
 sim2, 22
 sim3, 23

clustControl, 3
clustModes, 4

getBdim, 5
getBdim, HMMVB-method (getBdim), 5
getBdim, VB-method (getBdim), 5
getBIC, 6
getBIC, HMMVB-method (getBIC), 6
getBIC, HMMVBbic-method (getBIC), 6
getClsid, 6
getClsid, HMMVBclust-method (HMMVBclust-class), 19
getClustParam, 7
getClustParam, HMMVBclust-method (HMMVBclust-class), 19
getDiagCov, 7
getDiagCov, HMMVB-method (HMMVB-class), 15
getDim, 7
getDim, HMM-method (getDim), 7
getDim, HMMVB-method (getDim), 7
getDim, VB-method (getDim), 7
getHMMChain, 8
getHMMChain, HMMVB-method (HMMVB-class), 15
getHMMParam, 9
getHMMParam, HMM-method (HMM-class), 14
getLogLikelihood, 9
getLogLikelihood, HMMVB-method (getLogLikelihood), 9
getLogLikelihood, HMMVBbic-method (getLogLikelihood), 9
getLogLikelihood, HMMVBclust-method (getLogLikelihood), 9
getLogLikelihood, HMMVBclust-method (getLogLikelihood), 9
getNb, 10
getNb, HMMVB-method (getNb), 10
getNumst, 10
getNumst, HMM-method (getNumst), 10
getNumst, HMMVB-method (getNumst), 10
getNumst, VB-method (getNumst), 10
getOptHMMVB, 11
getOptHMMVB, HMMVBbic-method (HMMVBbic-class), 17
getPrenumst, 12
getPrenumst, HMM-method (HMM-class), 14
getSize, 12
getSize, HMMVBclust-method (HMMVBclust-class), 19
getVarorder, 13
getVarorder, HMMVB-method (getVarorder), 13
getVarorder, VB-method (getVarorder), 13
getVb, 13
getVb, HMMVB-method (HMMVB-class), 15

HDclust (HDclust-package), 2
HDclust-package, 2
HMM (HMM-class), 14
HMM-class, 14
HMMVB (HMMVB-class), 15
HMMVB-class, 15
HMMVBbic (HMMVBbic-class), 17
hmmvbbic, 15, 17
HMMVBbic-class, 17
HMMVBclust (HMMVBclust-class), 19
hmmvbbicluster, 3, 4, 17, 19
HMMVBclust-class, 19
hmmvbfindmodes, 4, 20
hmmvbtrain, 3, 4, 14, 15, 18, 20, 21, 24, 26
plot, HMMVBbic, missing-method (HMMVBbic-class), 17
plot, HMMVBclust, missing-method (HMMVBclust-class), 19

27
show,HMM-method (HMM-class), 14
show,HMMVB-method (HMMVB-class), 15
show,HMMVBIC-method (HMMVBIC-class), 17
show,HMMVBclust-method (HMMVBclust-class), 19
show, VB-method (VB-class), 25
sim2, 22
sim3, 23

trainControl, 16, 21, 23

VB, 16, 21, 25
VB (VB-class), 25
vb, 16, 21, 24, 25
VB-class, 25
vbSearchControl, 21, 26