Package ‘HMM’

Type Package
Version 1.0.1
Title Hidden Markov Models
Date 2022-03-20
Maintainer Lin Himmelmann <hmm@linhi.de>
Author Scientific Software - Dr. Lin Himmelmann
URL www.linhi.de
Depends R (>= 2.0.0)
Description Easy to use library to setup, apply and make inference with discrete time and discrete space Hidden Markov Models.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-23 13:30:08 UTC

R topics documented:

backward ... 2
baumWelch .. 3
dishonestCasino .. 4
forward ... 5
HMM ... 6
initHMM ... 7
posterior .. 9
simHMM ... 10
viterbi ... 11
viterbiTraining .. 12

Index 14
backward

Description

The backward-function computes the backward probabilities. The backward probability for state X and observation at time k is defined as the probability of observing the sequence of observations e_{k+1}, \ldots, e_n under the condition that the state at time k is X. That is:

$$b[X,k] := \text{Prob}(E_{k+1} = e_{k+1}, \ldots, E_n = e_n | X_k = X).$$

Where $E_1 \ldots E_n = e_1 \ldots e_n$ is the sequence of observed emissions and X_k is a random variable that represents the state at time k.

Usage

backward(hmm, observation)

Arguments

- **hmm**: A Hidden Markov Model.
- **observation**: A sequence of observations.

Format

Dimension and Format of the Arguments.

- **hmm**: A valid Hidden Markov Model, for example instantiated by `initHMM`.
- **observation**: A vector of strings with the observations.

Value

Return Value:

- **backward**: A matrix containing the backward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

See Also

See `forward` for computing the forward probabilities.
Examples

```r
# Initialise HMM
hmm = initHMM(c("A","B"), c("L","R"), transProbs=matrix(c(.8,.2,.2,.8),2),
  emissionProbs=matrix(c(.6,.4,.4,.6),2))
print(hmm)
# Sequence of observations
observations = c("L","L","R","R")
# Calculate backward probabilities
logBackwardProbabilities = backward(hmm,observations)
print(exp(logBackwardProbabilities))
```

baumWelch

Inferring the parameters of a Hidden Markov Model via the Baum-Welch algorithm

Description

For an initial Hidden Markov Model (HMM) and a given sequence of observations, the Baum-Welch algorithm infers optimal parameters to the HMM. Since the Baum-Welch algorithm is a variant of the Expectation-Maximisation algorithm, the algorithm converges to a local solution which might not be the global optimum.

Usage

`baumWelch(hmm, observation, maxIterations=100, delta=1E-9, pseudoCount=0)`

Arguments

- `observation`: A sequence of observations.
- `maxIterations`: The maximum number of iterations in the Baum-Welch algorithm.
- `delta`: Additional termination condition, if the transition and emission matrices converge, before reaching the maximum number of iterations (`maxIterations`). The difference of transition and emission parameters in consecutive iterations must be smaller than `delta` to terminate the algorithm.
- `pseudoCount`: Adding this amount of pseudo counts in the estimation-step of the Baum-Welch algorithm.

Format

Dimension and Format of the Arguments.

- `hmm`: A valid Hidden Markov Model, for example instantiated by `initHMM`.
- `observation`: A vector of observations.
Value

Return Values:

hmm The inferred HMM. The representation is equivalent to the representation in `initHMM`.
difference Vector of differences calculated from consecutive transition and emission matrices in each iteration of the Baum-Welch procedure. The difference is the sum of the distances between consecutive transition and emission matrices in the L2-Norm.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

See Also

See `viterbiTraining`.

Examples

```r
# Initial HMM
hmm = initHMM(c("A","B"),c("L","R"),
transProbs=matrix(c(.9,.1,.1,.9),2),
emissionProbs=matrix(c(.5,.51,.5,.49),2))
print(hmm)
# Sequence of observation
a = sample(c(rep("L",100),rep("R",300)))
b = sample(c(rep("L",300),rep("R",100)))
observation = c(a,b)
# Baum-Welch
bw = baumWelch(hmm,observation,10)
print(bw$hmm)
```

dishonestCasino Example application for Hidden Markov Models

Description

The dishonest casino gives an example for the application of Hidden Markov Models. This example is taken from Durbin et. al. 1999: A dishonest casino uses two dice, one of them is fair the other is loaded. The probabilities of the fair die are (1/6,...,1/6) for throwing ("1",...,"6"). The probabilities of the loaded die are (1/10,...,1/10,1/2) for throwing ("1",...,"5","6"). The observer doesn’t know which die is actually taken (the state is hidden), but the sequence of throws (observations) can be used to infer which die (state) was used.
forward

Usage

dishonestCasino()

Format

The function dishonestCasino has no arguments.

Value

The function dishonestCasino returns nothing.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

Examples

Dishonest casino example
dishonestCasino()

forward Computes the forward probabilities

Description

The forward-function computes the forward probabilities. The forward probability for state X up to observation at time k is defined as the probability of observing the sequence of observations e_1, ... , e_k and that the state at time k is X. That is:

\[f[X,k] := \text{Prob}(E_1 = e_1, \ldots, E_k = e_k, X_k = X) \]

Where \(E_1 \ldots E_n = e_1 \ldots e_n \) is the sequence of observed emissions and \(X_k \) is a random variable that represents the state at time k.

Usage

forward(hmm, observation)

Arguments

hmm A Hidden Markov Model.
observation A sequence of observations.
Format

Dimension and Format of the Arguments.

hmm A valid Hidden Markov Model, for example instantiated by `initHMM`.

observation A vector of strings with the observations.

Value

Return Value:

forward A matrix containing the forward probabilities. The probabilities are given on a logarithmic scale (natural logarithm). The first dimension refers to the state and the second dimension to time.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

See Also

See `backward` for computing the backward probabilities.

Examples

```r
# Initialise HMM
hmm = initHMM(c("A","B"), c("L","R"), transProbs=matrix(c(.8,.2,.2,.8),2),
  emissionProbs=matrix(c(.6,.4,.4,.6),2))
print(hmm)
# Sequence of observations
observations = c("L","L","R","R")
# Calculate forward probabilities
logForwardProbabilities = forward(hmm,observations)
print(exp(logForwardProbabilities))
```

Description

Modelling, analysis and inference with discrete time and discrete space Hidden Markov Models.
\textbf{initHMM}

\textit{Initialisation of HMMs}

\section*{Description}

This function initialises a general discrete time and discrete space Hidden Markov Model (HMM). A HMM consists of an alphabet of states and emission symbols. A HMM assumes that the states are hidden from the observer, while only the emissions of the states are observable. The HMM is designed to make inference on the states through the observation of emissions. The stochastics of the HMM is fully described by the initial starting probabilities of the states, the transition probabilities between states and the emission probabilities of the states.

\section*{Usage}

\begin{verbatim}
initHMM(States, Symbols, startProbs=NULL, transProbs=NULL, emissionProbs=NULL)
\end{verbatim}

\section*{Arguments}

\begin{description}
 \item[States] Vector with the names of the states.
 \item[Symbols] Vector with the names of the symbols.
 \item[startProbs] Vector with the starting probabilities of the states.
 \item[transProbs] Stochastic matrix containing the transition probabilities between the states.
 \item[emissionProbs] Stochastic matrix containing the emission probabilities of the states.
\end{description}

\section*{Format}

Dimension and Format of the Arguments.

\begin{description}
 \item[States] Vector of strings.
 \item[Symbols] Vector of strings.
 \item[startProbs] Vector with the starting probabilities of the states. The entries must sum to 1.
\end{description}
transProbs transProbs is a (number of states)x(number of states)-sized matrix, which contains the transition probabilities between states. The entry transProbs[X,Y] gives the probability of a transition from state X to state Y. The rows of the matrix must sum to 1.

emissionProbs emissionProbs is a (number of states)x(number of states)-sized matrix, which contains the emission probabilities of the states. The entry emissionProbs[X,e] gives the probability of emission e from state X. The rows of the matrix must sum to 1.

Details

In transProbs and emissionProbs NA's can be used in order to forbid specific transitions and emissions. This might be useful for Viterbi training or the Baum-Welch algorithm when using pseudocounts.

Value

The function initHMM returns a HMM that consists of a list of 5 elements:

States Vector with the names of the states.
Symbols Vector with the names of the symbols.
startProbs Annotated vector with the starting probabilities of the states.
transProbs Annotated matrix containing the transition probabilities between the states.
emissionProbs Annotated matrix containing the emission probabilities of the states.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

For an introduction in the HMM-literature see for example:

See Also

See simHMM to simulate a path of states and observations from a Hidden Markov Model.

Examples

Initialise HMM nr.1
initHMM(c("X","Y"), c("a","b","c"))
Initialise HMM nr.2
initHMM(c("X","Y"), c("a","b"), c(.3,.7), matrix(c(.9,.1,.1,.9),2),
 matrix(c(.3,.7,.7,.3),2))
posterior

Computes the posterior probabilities for the states

Description

This function computes the posterior probabilities of being in state X at time k for a given sequence of observations and a given Hidden Markov Model.

Usage

```r
posterior(hmm, observation)
```

Arguments

- `hmm` A Hidden Markov Model.
- `observation` A sequence of observations.

Format

Dimension and Format of the Arguments.

- **hmm** A valid Hidden Markov Model, for example instantiated by `initHMM`.
- **observation** A vector of observations.

Details

The posterior probability of being in a state X at time k can be computed from the forward and backward probabilities:

\[
W_s(X_k = X | E_1 = e_1, \ldots, E_n = e_n) = \frac{f[X,k] \times b[X,k]}{\text{Prob}(E_1 = e_1, \ldots, E_n = e_n)}
\]

Where \(E_1\ldots E_n = e_1\ldots e_n\) is the sequence of observed emissions and \(X_k\) is a random variable that represents the state at time \(k\).

Value

Return Values:

- **posterior** A matrix containing the posterior probabilities. The first dimension refers to the state and the second dimension to time.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

See Also

See `forward` for computing the forward probabilities and `backward` for computing the backward probabilities.

Examples

```r
# Initialise HMM
hmm = initHMM(c("A","B"), c("L","R"), transProbs=matrix(c(.8,.2,.2,.8),2),
emissionProbs=matrix(c(.6,.4,.4,.6),2))
print(hmm)
# Sequence of observations
observations = c("L","L","R","R")
# Calculate posterior probabilities of the states
posterior = posterior(hmm,observations)
print(posterior)
```

simHMM

Simulate states and observations for a Hidden Markov Model

Description

Simulates a path of states and observations for a given Hidden Markov Model.

Usage

```r
simHMM(hmm, length)
```

Arguments

- **hmm** A Hidden Markov Model.
- **length** The length of the simulated sequence of observations and states.

Format

Dimension and Format of the Arguments.

- **hmm** A valid Hidden Markov Model, for example instantiated by `initHMM`.

Value

The function `simHMM` returns a path of states and associated observations:

- **states** The path of states.
- **observations** The sequence of observations.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development
See Also

See `initHMM` for instantiation of Hidden Markov Models.

Examples

```r
# Initialise HMM
hmm = initHMM(c("X","Y"),c("a","b","c"))
# Simulate from the HMM
simHMM(hmm, 100)
```

viterbi

Computes the most probable path of states

Description

The Viterbi-algorithm computes the most probable path of states for a sequence of observations for a given Hidden Markov Model.

Usage

```r
viterbi(hmm, observation)
```

Arguments

- **hmm** A Hidden Markov Model.
- **observation** A sequence of observations.

Format

Dimension and Format of the Arguments.

- **hmm** A valid Hidden Markov Model, for example instantiated by `initHMM`.
- **observation** A vector of observations.

Value

Return Value:

- **viterbiPath** A vector of strings, containing the most probable path of states.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

Examples

```r
# Initialise HMM
hmm = initHMM(c("A","B"), c("L","R"), transProbs=matrix(c(.6,.4,.4,.6),2),
emissionProbs=matrix(c(.6,.4,.4,.6),2))
print(hmm)
# Sequence of observations
observations = c("L","L","R","R")
# Calculate Viterbi path
viterbi = viterbi(hmm,observations)
print(viterbi)
```

viterbiTraining

Inferring the parameters of a Hidden Markov Model via Viterbi-training

Description

For an initial Hidden Markov Model (HMM) and a given sequence of observations, the Viterbi-training algorithm infers optimal parameters to the HMM. Viterbi-training usually converges much faster than the Baum-Welch algorithm, but the underlying algorithm is theoretically less justified. Be careful: The algorithm converges to a local solution which might not be the optimum.

Usage

```
viterbiTraining(hmm, observation, maxIterations=100, delta=1E-9, pseudoCount=0)
```

Arguments

- **hmm** A Hidden Markov Model.
- **observation** A sequence of observations.
- **maxIterations** The maximum number of iterations in the Viterbi-training algorithm.
- **delta** Additional termination condition, if the transition and emission matrices converge, before reaching the maximum number of iterations (maxIterations). The difference of transition and emission parameters in consecutive iterations must be smaller than delta to terminate the algorithm.
- **pseudoCount** Adding this amount of pseudo counts in the estimation-step of the Viterbi-training algorithm.

Format

Dimension and Format of the Arguments.

- **hmm** A valid Hidden Markov Model, for example instantiated by `initHMM`.
- **observation** A vector of observations.
Value

Return Values:

- **hmm**
 The inferred HMM. The representation is equivalent to the representation in `initHMM`.

- **difference**
 Vector of differences calculated from consecutive transition and emission matrices in each iteration of the Viterbi-training. The difference is the sum of the distances between consecutive transition and emission matrices in the L2-Norm.

Author(s)

Lin Himmelmann <hmm@linhi.com>, Scientific Software Development

References

See Also

See `baumWelch`.

Examples

```r
# Initial HMM
hmm = initHMM(c("A","B"),c("L","R"),
  transProbs=matrix(c(.9,.1,.1,.9),2),
  emissionProbs=matrix(c(.5,.51,.5,.49),2))
print(hmm)

# Sequence of observation
a = sample(c(rep("L",100),rep("R",300)))
b = sample(c(rep("L",300),rep("R",100)))
observation = c(a,b)

# Viterbi-training
vt = viterbiTraining(hmm,observation,10)
print(vt$hmm)
```
Index

* design
dishonestCasino, 4

* methods
 backward, 2
 baumWelch, 3
 forward, 5
 posterior, 9
 viterbi, 11
 viterbiTraining, 12

* models
 initHMM, 7
 simHMM, 10

* package
 HMM, 6

backward, 2, 6, 9, 10
baumWelch, 3, 13
dishonestCasino, 4
forward, 2, 5, 9, 10

HMM, 6
initHMM, 2–4, 6, 7, 9–13
posterior, 9
simHMM, 8, 10

viterbi, 11
viterbiTraining, 4, 12