Package ‘HMMcopula’

April 21, 2020

Type Package

Title Markov Regime Switching Copula Models Estimation and Goodness of Fit

Version 1.0.4

Author Mamadou Yamar Thioub <mamadou-yamar.thioub@hec.ca>, Bouchra Nasri <bouchra.nasri@umontreal.ca>, Romanic Pieugueu <romanic.pieugueu@gerad.ca>, and Bruno Remillard <bruno.remillard@hec.ca>

Maintainer Mamadou Yamar Thioub <mamadou-yamar.thioub@hec.ca>

Description R functions to estimate and perform goodness of fit test for several Markov regime switching and mixture bivariate copula models. The goodness of fit test is based on a Cramer von Mises statistic and uses the Rosenblatt transform and parametric bootstrap to estimate the p-value. The estimation of the copula parameters are based on the pseudo-maximum likelihood method using pseudo-observations defined as normalized ranks.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends matrixcalc, mvtnorm, foreach, doParallel, copula

Imports stats

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-21 07:50:02 UTC

R topics documented:

dilog .. 2
EstHMMCop .. 3
EstKendallTau ... 4
EstMixturecop ... 4
dilog

Dilogarithm function

Description

This function computes the dilogarithm of a number.

Usage

dilog(x)

Arguments

x a real number

Value

out dilogarithm
EstHMMCop

Estimation of bivariate Markov regime switching bivariate copula model

Description
This function estimates parameters from a bivariate Markov regime switching bivariate copula model.

Usage
EstHMMCop(y, reg, family, max_iter, eps)

Arguments
- **y**: (nx2) data matrix (observations or residuals) that will be transformed to pseudo-observations.
- **reg**: number of regimes.
- **family**: 'gaussian', 't', 'clayton', 'frank', 'gumbel'.
- **max_iter**: maximum number of iterations of the EM algorithm.
- **eps**: precision (stopping criteria); suggestion 0.0001.

Value
- **theta**: (1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)) for each regime (except for degrees of freedom).
- **dof**: estimated degree of freedom, only for the Student copula.
- **Q**: (reg x reg) estimated transition matrix.
- **eta**: (n x reg) conditional probabilities of being in regime k at time t given observations up to time t.
- **tau**: estimated Kendall tau for each regime.
- **U**: (n x 2) matrix of Rosenblatt transforms.
- **W**: regime probabilities for the conditional distribution given the past Kendall’s tau.

Examples
Q <- matrix(c(0.8, 0.3, 0.2, 0.7),2,2) ; kendallTau <- c(0.3 ,0.7) ;
data <- SimHMMCop(Q, 'clayton', kendallTau, 10)$SimData;
estimations <- EstHMMCop(data,2,'clayton',10000,0.0001)
EstKendallTau \hspace{1cm} Sample Kendall’s tau Estimation

Description
This function estimates the sample Kendall’s tau of a bivariate data matrix

Usage
EstKendallTau(X)

Arguments
X \hspace{1cm} (n x 2) matrix

Value
KendallTau \hspace{1cm} estimated sample Kendall’s tau of the data

EstMixtureCop \hspace{1cm} Estimation of bivariate mixture bivariate copula model

Description
This function estimates parameters from a mixture bivariate copula model

Usage
EstMixtureCop(y, reg, family, max_iter, eps)

Arguments
y \hspace{1cm} (nx2) data matrix (observations or residuals) that will be transformed to pseudo-observations
reg \hspace{1cm} number of regimes
family \hspace{1cm} 'gaussian’, ’t’, ’clayton’, ’frank’, ’gumbel’
max_iter \hspace{1cm} maximum number of iterations of the EM algorithm
eps \hspace{1cm} precision (stopping criteria); suggestion 0.0001.
Value

- **theta**
 (1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)) for each component (except for degrees of freedom)

- **dof**
 estimated degree of freedom, only for the Student copula

- **Q**
 (1 x reg) estimated weights vector

- **eta**
 (n x reg) conditional probabilities of being in regime k at time t given observations up to time t

- **tau**
 estimated Kendall tau for each regime

- **U**
 (n x 2) matrix of Rosenblatt transforms

- **cvm**
 Cramer-von-Mises statistic for goodness-of-fit

GofHMMCop

Goodness-of-fit of Markov regime switching bivariate copula model

Description

This function performs goodness-of-fit test of a Markov regime switching bivariate copula model

Usage

GofHMMCop(R, reg, family, max_iter, eps, n_sample, n_cores)

Arguments

- **R**
 (n x 2) data matrix that will be transformed to pseudo-observations

- **reg**
 number of regimes

- **family**
 'gaussian', 't', 'clayton', 'frank', 'gumbel'

- **max_iter**
 maximum number of iterations of the EM algorithm

- **eps**
 precision (stopping criteria); suggestion 0.0001

- **n_sample**
 number of bootstrap; suggestion 1000

- **n_cores**
 number of cores to use in the parallel computing

Value

- **pvalue**
 pvalue (significant when the result is greater than 5)

- **theta**
 (1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)) for each regime (except for degrees of freedom)

- **dof**
 estimated degree of freedom, only for the Student copula

- **Q**
 (reg x reg) estimated transition matrix
GofMixtureCop

Description

This function performs goodness-of-fit test of a mixture bivariate copula model

Usage

GofMixtureCop(R, reg, family, max_iter, eps, n_sample, n_cores)

Arguments

R (nx2) data matrix (observations or residuals) that will be transformed to pseudo-observations
reg number of regimes
family 'gaussian', 't', 'clayton', 'frank', 'gumbel'
max_iter maximum number of iterations of the EM algorithm
eps precision (stopping criteria); suggestion 0.0001
n_sample number of bootstrap; suggestion 1000
n_cores number of cores to use in the parallel computing

Value

pvalue pvalue (significant when the result is greater than 5)
theta (1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)) for each component (except for degrees of freedom)
dof estimated degree of freedom, only for the Student copula
Q (1 x reg) estimated weights vector
eta (n x reg) conditional probabilities of being in regime k at time t given observations up to time t
tau estimated Kendall tau for each regime
U (n x 2) matrix of Rosenblatt transforms
cvm Cramer-von-Mises statistic for goodness-of-fit
KendallTau

| KendallTau | Kendall's tau of a copula |

Description
This function computes the Kendall’s tau of a copula family with a unconstrained parameter alpha.

Usage
KendallTau(family, alpha)

Arguments
- family: "gaussian", "t", "clayton", "frank", "gumbel"
- alpha: unconstrained parameters of the copula family

Value
- tau: estimated Kendall’s tau

ParamCop

| ParamCop | Theta estimation |

Description
This function computes the parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)), corresponding to the unconstrained parameters alpha.

Usage
ParamCop(family, alpha)

Arguments
- family: "gaussian", "t", "clayton", "frank", "gumbel"
- alpha: unconstrained parameters of the copula family

Value
- theta: matlab parameters
ParamTau
Alpha estimation

Description
This function computes the unconstrained parameter alpha for given Kendall’s tau value

Usage
```r
ParamTau(family, tau)
```

Arguments
- **family**: `'gaussian'`, `'t'`, `'clayton'`, `'frank'`, `'gumbel'`
- **tau**: Kendall’s tau of the copula family

Value
- **alpha**: estimated unconstrained parameter

RosenblattClayton
Rosenblatt transform for Clayton copula

Description
This function computes the Rosenblatt transform for the Clayton copula

Usage
```r
RosenblattClayton(u, theta)
```

Arguments
- **u**: `(n x d)` matrix of pseudos-observations (normalized ranks)
- **theta**: parameter of the Clayton copula

Value
- **R**: Rosenblatt transform
RosenblattFrank

Rosenblatt transform for Frank copula

Description

This function computes the Rosenblatt transform for the Frank copula

Usage

RosenblattFrank(U, theta)

Arguments

U (n x d) matrix of pseudos-observations (normalized ranks)
theta parameter of the Frank copula

Value

R Rosenblatt transform

RosenblattGaussian

Rosenblatt transform for Gaussian copula

Description

This function computes the Rosenblatt transform for the Gaussian copula

Usage

RosenblattGaussian(u, rho)

Arguments

u (n x d) matrix of pseudos-observations (normalized ranks)
rho (d x d) correlation matrix, or the correlation coefficient (if, d = 2)

Value

R Rosenblatt transform
RosenblattGumbel

Rosenblatt transform for Gumbel copula

Description

This function computes the Rosenblatt transform for the Gumbel copula.

Usage

\[\text{RosenblattGumbel}(U, \theta) \]

Arguments

- **U**: \((n \times d)\) matrix of pseudos-observations (normalized ranks)
- **\theta**: parameter of the Gumbel copula

Value

- **R**: Rosenblatt transform

RosenblattStudent

Rosenblatt transform for Student copula

Description

This function computes the Rosenblatt transform for the Student copula.

Usage

\[\text{RosenblattStudent}(u, \rho, \nu) \]

Arguments

- **u**: \((n \times d)\) matrix of pseudos-observations (normalized ranks)
- **\rho**: \((d \times d)\) correlation matrix
- **\nu**: degrees of freedom

Value

- **R**: Rosenblatt transform
SimHMMCop

Simulation of bivariate Markov regime switching copula model

Description

This function simulates observation from a bivariate Markov regime switching copula model

Usage

```r
SimHMMCop(Q, family, KendallTau, n, DoF)
```

Arguments

- `Q`: Transition probability matrix (d x d);
- `family`: 'gaussian', 't', 'clayton', 'frank', 'gumbel'
- `KendallTau`: Kendall's rank correlation
- `n`: number of simulated vectors
- `DoF`: degree of freedom only for the Student copula

Value

- `SimData`: Simulated Data
- `MC`: Markov chain regimes
- `alpha`: parameters alpha

Examples

```r
Q <- matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2)
kendallTau <- c(0.3, 0.7)
simulations <- SimHMMCop(Q, 'gumbel', kendallTau, 300)
```

SimMarkovChain

Markov chain simulation

Description

This function generates a Markov chain $X(1), ..., X(n)$ with transition matrix Q, starting from a state η_0 or the uniform distribution on $1, ..., r$

Usage

```r
SimMarkovChain(Q, n, eta0)
```
SimMixtureCop

Arguments

Q Transition probability matrix (d x d)
n number of simulated vectors
eta0 variable eta

SimMixtureCop Simulation of bivariate mixture copula model

Description

This function simulates observation from a bivariate mixture copula model

Usage

SimMixtureCop(Q, family, KendallTau, n, DoF)

Arguments

Q Weights vector (1 x component);
family 'gaussian', 't', 'clayton', 'frank', 'gumbel'
KendallTau Kendall’s rank correlation
n number of simulated vectors
DoF vector of degree of freedom only for the Student copula

Value

SimData Simulated Data
MC Markov chain regimes
alpha parameters alpha

Examples

Q <- matrix(c(0.8, 0.2),1,2) ; kendallTau <- c(0.3, 0.7) ;
simulations <- SimMixtureCop(Q, 'gaussian', kendallTau, 300)
SnB

Cramer-von Mises statistic SnB for GOF based on the Rosenblatt transform

Description

This function computes the Cramer-von Mises statistic SnB for GOF based on the Rosenblatt transform.

Usage

SnB(E)

Arguments

E
(n x d) matrix of pseudos-observations (normalized ranks)

Value

Sn
Cramer-von Mises statistic

Tau2Rho

Spearman’s rho

Description

This function estimates the Spearman’s rho corresponding to a constrained (matlab) parameter theta for a copula family.

Usage

Tau2Rho(family, theta)

Arguments

family
'gaussian', 't', 'clayton', 'frank', 'gumbel'

theta
parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package))

Value

rho
estimated Spearman’s rho
Index

dillog, 2

EstHMMCop, 3
EstKendallTau, 4
EstMixtureCop, 4

GofHMMCop, 5
GofMixtureCop, 6

KendallTau, 7

ParamCop, 7
ParamTau, 8

RosenblattClayton, 8
RosenblattFrank, 9
RosenblattGaussian, 9
RosenblattGumbel, 10
RosenblattStudent, 10

SimHMMCop, 11
SimMarkovChain, 11
SimMixtureCop, 12
SnB, 13

Tau2Rho, 13