Package ‘HMP’

August 31, 2019

Type Package

Title Hypothesis Testing and Power Calculations for Comparing Metagenomic Samples from HMP

Version 2.0.1

Date 2019-08-28

Author Patricio S. La Rosa, Elena Deych, Shrîna Carter, Berkley Shands, Dake Yang, William D. Shannon

Maintainer Berkley Shands <rpackages@bi.rankings.com>

Depends R (>= 3.1.0), dirmult

Imports ggplot2, stats, foreach, doParallel, MASS, vegan, gplots, rpart, rpart.plot, parallel, graphics, lattice

Description Using Dirichlet-Multinomial distribution to provide several functions for formal hypothesis testing, power and sample size calculations for human microbiome experiments.

License Apache License (== 2.0)

LazyData yes

NeedsCompilation no

Repository CRAN

Date/Publication 2019-08-31 11:00:06 UTC

R topics documented:

HMP-package .. 2
Barchart.data .. 3
C.alpha.multinomial 4
Data.filter .. 5
Dirichlet.multinomial 6
DM.MoM ... 7
DM.Rpart .. 8
dmrp_covars ... 10
dmrp_data .. 10
Est.PI ... 11
HMP-package

Hypothesis Testing and Power Calculations for Comparing Metagenomics Samples

Description

This package provides tools for generating data matrices following Multinomial and Dirichlet-Multinomial distributions, computing the following test-statistics and their corresponding p-values, and computing the power and size of the tests described above using Monte-Carlo simulations.

Details

<table>
<thead>
<tr>
<th>Hypothesis Test</th>
<th>Test Statistics Function</th>
<th>Power Calculation Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+ Sample Means w/ Reference Vector</td>
<td>Xmc.sevsample</td>
<td>MC.Xmc.statistics</td>
</tr>
<tr>
<td>1 Sample Mean w/ Reference Vector</td>
<td>Xsc.onesample</td>
<td>MC.Xsc.statistics</td>
</tr>
<tr>
<td>2+ Sample Means w/o Reference Vector</td>
<td>Xmcupo.sevsample</td>
<td>MC.Xmcupo.statistics</td>
</tr>
<tr>
<td>2+ Sample Overdispersions</td>
<td>Xoc.sevsample</td>
<td>MC.Xoc.statistics</td>
</tr>
<tr>
<td>2+ Sample DM-Distribution</td>
<td>Xdc.sevsample</td>
<td>MC.Xdc.statistics</td>
</tr>
<tr>
<td>Multinomial vs DM</td>
<td>C.alpha.multinomial</td>
<td>MC.ZT.statistics</td>
</tr>
</tbody>
</table>
In addition to hypothesis testing and power calculations you can:

1. Perform basic data management to exclude samples with fewer than pre-specified number of reads, collapse rare taxa and order the taxa by frequency. This is useful to exclude failed samples (i.e. samples with very few reads) - Data.filter
2. Plot your data - Barchart.data
3. Generate random sample of Dirichlet Multinomial data with pre-specified parameters - Dirichlet.multinomial

Note: Thought the description of the functions refer its application to ranked abundance distributions (RAD) data, every function is also applicable to model species abundance data. See references for a discussion and application to both type of ecological data.

Author(s)
Patricio S. La Rosa, Elena Deych, Berkley Shands, Sharina Carter, Dake Yang, William D. Shannon

References

Barchart.data

Description
Creates a bar plot of taxonomic proportions.

Usage
Barchart.data(data, title = "Taxa Proportions")

Arguments
- data: A matrix of taxonomic counts(columns) for each sample(rows).
- title: A string to be used as the plots title. The default is "Taxa Proportions".

Value
A bar plot of taxonomic proportions for all samples at a given taxonomic level.

Examples
data(saliva)
Barchart.data(saliva)
C(alpha.multinomial)

C(alpha.multinomial) - Optimal Test for Assessing Multinomial Goodness of Fit Versus Dirichlet-Multinomial Alternative

Description

A function to compute the C(α)-optimal test statistics of Kim and Margolin (1992) for evaluating the Goodness-of-Fit of a Multinomial distribution (null hypothesis) versus a Dirichlet-Multinomial distribution (alternative hypothesis).

Usage

C.alpha.multinomial(data)

Arguments

data
A matrix of taxonomic counts(columns) for each sample(rows).

Details

In order to test if a set of ranked-abundance distribution(RAD) from microbiome samples can be modeled better using a multinomial or Dirichlet-Multinomial distribution, we test the hypothesis H : θ = 0 versus H : θ ≠ 0, where the null hypothesis implies a multinomial distribution and the alternative hypothesis implies a DM distribution. Kim and Margolin (Kim and Margolin, 1992) proposed a C(α)-optimal test- statistics given by,

\[T = \sum_{j=1}^{K} \sum_{i=1}^{P} \frac{1}{x_{ij}} \left(x_{ij} - \frac{N_i \sum_{i=1}^{P} x_{ij}}{N_g} \right)^2 \]

Where \(K \) is the number of taxa, \(P \) is the number of samples, \(x_{ij} \) is the taxon \(j \), \(j = 1, \ldots, K \) from sample \(i \), \(i = 1, \ldots, P \), \(N_i \) is the number of reads in sample \(i \), and \(N_g \) is the total number of reads across samples.

As the number of reads increases, the distribution of the \(T \) statistic converges to a Chi-square with degrees of freedom equal to \((P - 1)(K - 1)\), when the number of sequence reads is the same in all samples. When the number of reads is not the same in all samples, the distribution becomes a weighted Chi-square with a modified degree of freedom (see (Kim and Margolin, 1992) for more details).

Note: Each taxa in data should be present in at least 1 sample, a column with all 0’s may result in errors and/or invalid results.

Value

A list containing the C(α)-optimal test statistic and p-value.
References

Examples

data(saliva)

calpha <- C.alpha.multinomial(saliva)
calpha

Data.filter

A Data Filter

Description

This function creates a new dataset from an existing one by ordering taxa in order of decreasing abundance, collapsing less-abundant taxa into one category as specified by the user and excluding samples with a total number of reads fewer than the user-specified value.

Usage

Data.filter(data, order.type = "data", minReads = 0, numTaxa = NULL, perTaxa = NULL)

Arguments

data A matrix of taxonomic counts(columns) for each sample(rows).

order.type If "sample": Rank taxa based on its taxonomic frequency.
If "data": Rank taxa based on cumulative taxonomic counts across all samples (default).

minReads Samples with a total number of reads less than read.crit value will be deleted.

numTaxa The number of taxa to keep, while collapsing the other (less abundant) taxa. Only one argument, numTaxa or perTaxa should be specified.

perTaxa The combined percentage of data to keep, while collapsing the remaining taxa. Only one argument, numTaxa or perTaxa should be specified.

Value

A data frame of taxa and samples with a total number of reads greater than the minimum value. The last taxon labeled 'Other' contains the sum of the least abundant taxa collapsed by setting 'numTaxa' or 'perTaxa'.

Examples

data(saliva)

Excludes all samples with fewer than 1000 reads and collapses
taxa with 11th or smaller abundance into one category
filterDataNum <- Data.filter(saliva, "data", 1000, numTaxa=10)

Excludes all samples with fewer than 1000 reads and collapses
the least abundant taxa to keep as close to 95% of the data as
possible
filterDataPer <- Data.filter(saliva, "data", 1000, perTaxa=.95)

dim(saliva)
dim(filterDataNum)
dim(filterDataPer)

Dirichlet.multinomial
Generation of Dirichlet-Multinomial Random Samples

Description

Random generation of Dirichlet-Multinomial samples.

Usage

Dirichlet.multinomial(Nrs, shape)

Arguments

- **Nrs**: A vector specifying the number of reads or sequence depth for each sample.
- **shape**: A vector of Dirichlet parameters for each taxa.

Details

The Dirichlet-Multinomial distribution is given by (Mosimann, J. E. (1962); Tvedebrink, T. (2010)),

\[
P(X_i = x_i; \{ \pi_j \}, \theta) = \frac{N_i!}{x_{i1}! \cdots x_{iK}!} \prod_{j=1}^{K} \prod_{r=1}^{x_{ij}} \left(\frac{\pi_j (1 - \theta) + (r - 1) \theta}{N_i (1 - \theta) + (r - 1) \theta} \right)
\]

where \(x_i = [x_{i1}, \ldots, x_{iK}] \) is the random vector formed by K taxa (features) counts (RAD vector), \(N_i = \sum_{j=1}^{K} x_{ij} \) is the total number of reads (sequence depth), \(\{ \pi_j \} \) are the mean of taxa-proportions (RAD-probability mean), and \(\theta \) is the overdispersion parameter.

Note: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.

Value

A data matrix of taxa counts where the rows are samples and columns are the taxa.
References

Examples
data(saliva)

Generate a the number of reads per sample
The first number is the number of reads and the second is the number of subjects
nrs <- rep(15000, 20)

Get gamma from the dirichlet-multinomial parameters
shape <- dirmult(saliva)$gamma
dmData <- Dirichlet.multinomial(nrs, shape)
dmData[1:5, 1:5]

DM.MoM

Method-of-Moments (MoM) Estimators of the Dirichlet-Multinomial Parameters

Description

Usage
DM.MoM(data)

Arguments
data A matrix of taxonomic counts(columns) for each sample(rows).

Details
Given a set of taxa-count vectors \(\{x_i, \ldots, x_P \} \), the methods of moments (MoM) estimator of the set of parameters \(\theta \) and \(\{\pi_j\}_{j=1}^K \) is given as follows (Mosimann, 1962; Tvedebrink, 2010):

\[
\hat{\pi}_j = \frac{\sum_{i=1}^P x_{ij}}{\sum_{i=1}^P N_i},
\]

and

\[
\hat{\theta} = \sum_{j=1}^K \frac{S_j - G_j}{\sum_{j=1}^K (S_j + (N_c - 1) G_j)},
\]
\[N_c = (P - 1)^{-1} \left(\sum_{i=1}^{P} N_i - \left(\sum_{i=1}^{P} N_i \right)^{-1} \sum_{i=1}^{P} N_i^2 \right), \]
and \[S_j = (P - 1)^{-1} \sum_{i=1}^{P} N_i (\hat{\pi}_{ij} - \hat{\pi}_j)^2, \]
and \[G_j = \left(\sum_{i=1}^{P} (N_i - 1) \right)^{-1} \sum_{i=1}^{P} N_i \hat{\pi}_{ij} (1 - \hat{\pi}_{ij}) \text{ with } \hat{\pi}_{ij} = \frac{x_{ij}}{N_i}. \]

Value

A list providing the MoM estimator for overdispersion, the MoM estimator of the RAD-probability mean vector, and the corresponding loglikelihood value for the given data set and estimated parameters.

References

Examples

```r
data(throat)
fit.throat <- DM.MoM(throat)
fit.throat
```

DM.Rpart

Dirichlet-Multinomial RPart

Description

This function combines recursive partitioning and the Dirichlet-Multinomial distribution to identify homogeneous subgroups of microbiome taxa count data.

Usage

```
DM.Rpart(data, covars, plot = TRUE, minsplit = 1, minbucket = 1, cp = 0, numCV = 10, numCon = 100, parallel = FALSE, cores = 3, use1SE = FALSE, lowerSE = TRUE)
```

Arguments

- **data**: A matrix of taxonomic counts(columns) for each sample(rows).
- **covars**: A matrix of covariates(columns) for each sample(rows).
- **plot**: When 'TRUE' a tree plot of the results will be generated.
- **minsplit**: The minimum number of observations to split on, see rpart.control.
- **minbucket**: The minimum number of observations in any terminal node, see rpart.control.
- **cp**: The complexity parameter, see rpart.control.
numCV The number folds for a k-fold cross validation. A value less than 2 will return the rpart result without any cross validation.
numCon The number of cross validations to repeat to achieve a consensus solution.
parallel When this is 'TRUE' it allows for parallel calculation of consensus. Requires the package doParallel.
cores The number of parallel processes to run if parallel is 'TRUE'.
use1SE See details.
lowerSE See details.

Details

There are 3 ways to run this function. The first is setting numCV to less than 2, which will run rpart once using the DM distribution and the specified minsplit, minbucket and cp. This result will not have any kind of branch pruning and the objects returned 'fullTree' and 'bestTree' will be the same.

The second way is setting numCV to 2 or greater (we recommend 10) and setting numCon to less than 2. This will run rpart several times using a k-fold cross validation to prune the tree to its optimal size. This is the best method to use.

The third way is setting both numCV and numCon to 2 or greater (We recommend at least 100 for numCon). This will repeat the second way numCon times and build a consensus solution. This method is ONLY needed for low sample sizes.

When the argument 'use1SE' is 'FALSE', the returned object 'bestTree' is the pruned tree with the lowest MSE. When it is 'TRUE', 'bestTree' is either the biggest pruned tree (lowerSE = FALSE) or the smallest pruned tree (lowerSE = TRUE), that is within 1 standard error of the lowest MSE.

Value

The 3 main things returned are:

fullTree An rpart object without any pruning.
bestTree A pruned rpart object based on use1SE and lowerSE’s settings.
cpTable Information about the fullTree rpart object and how it splits.

The other variables returned include surrogate/competing splits, error rates and a plot of the bestTree if plot is TRUE.

Examples

data(saliva)
data(throat)
data(tonsils)

Create some covariates for our data set
site <- c(rep("Saliva", nrow(saliva)), rep("Throat", nrow(throat)),
rep("Tonsils", nrow(tonsils)))
covars <- data.frame(Group=site)

Combine our data into a single object
data <- rbind(saliva, throat, tonsils)
For a single rpart tree
numCV <- 0
numCon <- 0
rpartRes <- DM.Rpart(data, covars, numCV=numCV, numCon=numCon)

Not run:
For a cross validated rpart tree
numCon <- 0
rpartRes <- DM.Rpart(data, covars, numCon=numCon)

For a cross validated rpart tree with consensus
numCon <- 2 # Note this is set to 2 for speed and should be at least 100
rpartRes <- DM.Rpart(data, covars, numCon=numCon)

End(Not run)

dmrp_covars
Paper Covariate Set

Description
This data set is used in the paper Microbiome Recursive Partitioning 2019. It contains 128 subjects and 11 cytokines.

Usage
```r
data(dmrp_covars)
```

Format
The format is a data frame of 128 rows by 11 columns, with each row being a separate subject and each column being a different cytokine.

Examples
```r
data(dmrp_covars)
```

dmrp_data
Paper Taxa Data Set

Description
This data set is used in the paper Microbiome Recursive Partitioning 2019. It contains 128 subjects and 29 genus level taxa.
Usage

data(dmrp_data)

Format

The format is a data frame of 128 rows by 29 columns, with the each row being a separate subject and each column being a different taxa.

Examples

data(dmrp_data)

Est.PI Estimate the Pi Vector

Description

Calculates Dirichlet-Multinomial parameters for every group using Maximum Likelihood and Method of Moments estimates: Taxa proportion estimates (PI vector) with standard errors and Confidence intervals, as well as theta values with standard errors.

Usage

Est.PI(group.data, conf = .95)

Arguments

group.data A list of matrices of taxonomic counts(columns) for each sample(rows).
conf The desired confidence limits. The default is 95%

Value

A list containing the parameters: PI, SE and the upper/lower bounds of the confidence interval for every taxa, and the theta values with standard errors for both MLE and MOM.

Examples

Not run:
data(saliva)
data(throat)
data(tonsils)

Combine the data sets into a single list
group.data <- list(saliva, throat, tonsils)

Get PI using MLE and MOM with CI
piEsts <- Est.PI(group.data)
formatDataSets

Description

For a list of datasets, this function finds the union of taxa across all datasets and transforms them such that they all have the same columns of taxa.

Usage

formatDataSets(group.data)

Arguments

group.data A list where each element is a matrix of taxonomic counts(columns) for each sample(rows). Note that the row names should correspond to sample names

Details

This function will also sort all the columns into the same order for every dataset and remove any columns that have 0's for every sample.

E.g. For two datasets, any taxa present in dataset1 but not dataset2 will be added to dataset2 with a 0 count for all samples and vice versa.

Value

The list given, but modified so every data set has the same ordering and number of columns

Examples

data(saliva)
data(throat)

Set each data set to have 10 different columns
saliva2 <- saliva[,1:10]
throat2 <- throat[,11:20]

Combine the data sets into a single list
group.data <- list(saliva2, throat2)

formattedData <- formatDataSets(group.data)
formattedData[[1]][1:5, 1:5]
Find Taxa Separating Two Groups using Genetic Algorithm (GA)

Description

GA-Mantel is a fully multivariate method that uses a genetic algorithm to search over possible taxa subsets using the Mantel correlation as the scoring measure for assessing the quality of any given taxa subset.

Usage

```r
Gen.Alg(data, covars, iters = 50, popSize = 200, earlyStop = 0,
dataDist = "euclidean", covarDist = "gower", verbose = FALSE,
plot = TRUE, minSolLen = NULL, maxSolLen = NULL, custCovDist = NULL,
penalty = 0)
```

Arguments

- `data`: A matrix of taxonomic counts(columns) for each sample(rows).
- `covars`: A matrix of covariates(columns) for each sample(rows).
- `iters`: The number of times to run through the GA.
- `popSize`: The number of solutions to test on each iteration.
- `earlyStop`: The number of consecutive iterations without finding a better solution before stopping regardless of the number of iterations remaining. A value of '0' will prevent early stopping.
- `dataDist`: The distance metric to use for the data. Either "euclidean" or "gower".
- `covarDist`: The distance metric to use for the covariates. Either "euclidean" or "gower".
- `verbose`: While 'TRUE' the current status of the GA will be printed periodically.
- `plot`: A boolean to plot the progress of the scoring statistics by iteration.
- `minSolLen`: The minimum number of columns to select.
- `maxSolLen`: The maximum number of columns to select.
- `custCovDist`: A custom covariate distance matrix to use in place of calculating one from covars.
- `penalty`: A number between 0 and 1 used to penalize the solutions based on the number of selected taxa using the following formula: score - penalty * ((number of selected taxa)/(number of taxa)).

Details

Use a GA approach to find taxa that separate subjects based on group membership or set of covariates.

The data and covariates should be normalized BEFORE use with this function because of distance functions.
This function uses modified code from the rbga function in the genalg package. rbga
Because the GA looks at combinations and uses the raw data, taxa with a small difference in their
PIs may be selected and large differences may not be.
The distance calculations use the vegdist package. vegdist

Value
A list containing

- **scoreSumm**: A matrix summarizing the score of the population. This can be used to figure
 out if the ga has come to a final solution or not. This data is also plotted if plot is 'TRUE'.
- **solutions**: The final set of solutions, sorted with the highest scoring first.
- **scores**: The scores for the final set of solutions.
- **time**: How long in seconds the ga took to run.
- **selected**: The selected columns by name.
- **nonSelected**: The columns that were NOT selected by name.
- **selectedIndex**: The selected taxa by column number.

Examples

```r
## Not run:
data(saliva)
data(throat)

### Combine the data into a single data frame
group.data <- list(saliva, throat)
group.data <- formatDataSets(group.data)
data <- do.call("rbind", group.data)

### Normalize the data by subject
dataNorm <- t(apply(data, 1, function(x){x/sum(x)}))

### Set covars to just be group membership
memb <- c(rep(0, nrow(saliva)), rep(1, nrow(throat)))
covars <- matrix(memb, length(memb), 1)

### We use low numbers for speed. The exact numbers to use depend
### on the data being used, but generally the higher iters and popSize
### the longer it will take to run. earlyStop is then used to stop the
### run early if the results aren't improving.
iters <- 500
popSize <- 200
earlyStop <- 250
gaRes <- Gen.Alg(dataNorm, covars, iters, popSize, earlyStop)

## End(Not run)
```
Find Taxa Separating Two Groups using Multiple Genetic Algorithm’s (GA) Consensus

Description

GA-Mantel is a fully multivariate method that uses a genetic algorithm to search over possible taxa subsets using the Mantel correlation as the scoring measure for assessing the quality of any given taxa subset.

Usage

```r
Gen.Alg.Consensus(data, covars, consensus = .5, numRuns = 10, parallel = FALSE, cores = 3, ...)
```

Arguments

- `data`: A matrix of taxonomic counts(columns) for each sample(rows).
- `covars`: A matrix of covariates(columns) for each sample(rows).
- `consensus`: The required fraction (0, 1] of solutions containing an edge in order to keep it.
- `numRuns`: Number of runs to do. In practice the number of runs needed varies based on data set size and the GA parameters set.
- `parallel`: When this is ‘TRUE’ it allows for parallel calculation of the bootstraps. Requires the package doParallel.
- `cores`: The number of parallel processes to run if parallel is ‘TRUE’.
- `...`: Other arguments for the GA function see Gen.Alg

Details

Use a GA consensus approach to find taxa that separate subjects based on group membership or set of covariates if you cannot run the GA long enough to get a final solution.

Value

A list containing

- `solutions`: The best solution from each run.
- `consSol`: The consensus solution.
- `selectedIndex`: The selected taxa by column number.
Not run:

data(saliva)
data(throat)

Combine the data into a single data frame

group.data <- list(saliva, throat)
group.data <- formatDataSets(group.data)
data <- do.call("rbind", group.data)

Normalize the data by subject

dataNorm <- t(apply(data, 1, function(x){x/sum(x)}))

Set covars to just be group membership

memb <- c(rep(0, nrow(saliva)), rep(1, nrow(throat)))
covars <- matrix(memb, length(memb), 1)

We use low numbers for speed. The exact numbers to use depend
on the data being used, but generally the higher iters and popSize
the longer it will take to run. earlyStop is then used to stop the
run early if the results aren't improving.

iters <- 500
popSize <- 200
earlyStop <- 250
numRuns <- 3

gaRes <- Gen.Alg.Consensus(dataNorm, covars, .5, numRuns, FALSE, 3,
iters, popSize, earlyStop)

End(Not run)

Kullback.Leibler

Calculates Kullback Leibler divergence for all pairs of the datasets.

Usage

Kullback.Leibler(group.data, plot = TRUE, main="Kullback Leibler Divergences",
parallel = FALSE, cores = 3)

Arguments

- **group.data**: A list where each element is a matrix of taxonomic counts(columns) for each sample(rows).
- **plot**: When 'TRUE' a heatmap of the results will also be generated.
- **main**: A string to be used as the plots title.
parallel When this is ‘TRUE’ it allows for parallel calculation of the KL distances. Requires the package doParallel.
cores The number of parallel processes to run if parallel is ‘TRUE’.

Value
A matrix of Kullback Leibler divergence values and a heatmap if plot is TRUE.

References

Examples
data(saliva)
data(throat)
data(tonsils)

Combine the data sets into a single list
group.data <- list(saliva, throat, tonsils)

Not run:
kl <- Kullback.Leibler(group.data)
kl

End(Not run)

MC.Xdc.statistics Size and Power for the Several-Sample DM Parameter Test Comparison

Description
This Monte-Carlo simulation procedure provides the power and size of the several sample Dirichlet-Multinomial parameter test comparison, using the likelihood-ratio-test statistics.

Usage
MC.Xdc.statistics(group.Nrs, numMC = 10, alphap, type = "ha",
siglev = 0.05, est = "mom")

Arguments

- **group.Nrs** A list specifying the number of reads/sequence depth for each sample in a group with one group per list entry.
- **numMC** Number of Monte-Carlo experiments. In practice this should be at least 1,000.
alphap

If "hnull": A matrix where rows are vectors of alpha parameters for the reference group.
If "ha": A matrix consisting of vectors of alpha parameters for each taxa in each group.

type

If "hnull": Computes the size of the test.
If "ha": Computes the power of the test. (default)

siglev

Significance level for size of the test / power calculation. The default is 0.05.

est

The type of parameter estimator to be used with the Likelihood-ratio-test statistics, 'mle' or 'mom'. Default value is 'mom'. (See Note 2 in details)

Details

1. Note 1: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.
2. Note 2: 'mle' will take significantly longer time and may not be optimal for small sample sizes; 'mom' will provide a more conservative result in such a case.
3. Note 3: All components of alphap should be non-zero or it may result in errors and/or invalid results.

Value

Size of the test statistics (under "hnull") or power (under "ha") of the test.

Examples

data(saliva)
data(throat)
data(tonsils)

Get a list of dirichlet-multinomial parameters for the data
fit.saliva <- DM.MoM(saliva)
fit.throat <- DM.MoM(throat)
fit.tonsils <- DM.MoM(tonsils)

Set up the number of Monte-Carlo experiments
We use 1 for speed, should be at least 1,000
numMC <- 1

Generate the number of reads per sample
The first number is the number of reads and the second is the number of subjects
nrsGrp1 <- rep(12000, 9)
rmGrp2 <- rep(12000, 11)
mGrp3 <- rep(12000, 12)
group.Nrs <- list(nrsGrp1, nrsGrp2, nrsGrp3)

Computing size of the test statistics (Type I error)
alphap <- fit.saliva$gamma
pval1 <- MC.Xdc.statistics(group.Nrs, numMC, alphap, "hnull")
pval1
Computing Power of the test statistics (Type II error)

```r
alphap <- rbind(fit.saliva$gamma, fit.throat$gamma, fit.tonsils$gamma)
pval2 <- MC.Xdc.statistics(group.Nrs, numMC, alphap)
pval2
```

MC.Xmc.statistics

Size and Power of Several Sample RAD-Probability Mean Test Comparison

Description

This Monte-Carlo simulation procedure provides the power and size of the several sample RAD-probability mean test comparison with known reference vector of proportions, using the Generalized Wald-type statistics.

Usage

```r
MC.Xmc.statistics(group.Nrs, numMC = 10, pi0, group.pi, group.theta, type = "ha", siglev = 0.05)
```

Arguments

- `group.Nrs`: A list specifying the number of reads/sequence depth for each sample in a group with one group per list entry.
- `numMC`: Number of Monte-Carlo experiments. In practice this should be at least 1,000.
- `pi0`: The RAD-probability mean vector.
- `group.pi`: If "hnull": This argument is ignored. If "ha": A matrix where each row is a vector pi values for each group.
- `group.theta`: A vector of overdispersion values for each group.
- `type`: If "hnull": Computes the size of the test. If "ha": Computes the power of the test. (default)
- `siglev`: Significance level for size of the test / power calculation. The default is 0.05.

Details

Note: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.

Value

Size of the test statistics (under "hnull") or power (under "ha") of the test.
Examples

data(saliva)
data(throat)
data(tonsils)

Get a list of dirichlet-multinomial parameters for the data
fit.saliva <- DM.MoM(saliva)
fit.throat <- DM.MoM(throat)
fit.tonsils <- DM.MoM(tonsils)

Set up the number of Monte-Carlo experiments
We use 1 for speed, should be at least 1,000
numMC <- 1

Generate the number of reads per sample
The first number is the number of reads and the second is the number of subjects
nrsGrp1 <- rep(12000, 9)
nrsGrp2 <- rep(12000, 11)
group.Nrs <- list(nrsGrp1, nrsGrp2)

group.theta <- c(0.01, 0.05)
pi0 <- fit.saliva$pi

Computing size of the test statistics (Type I error)
pval1 <- MC.Xmc.statistics(group.Nrs, numMC, pi0, group.theta=group.theta, type="hnull")
pval1

Computing Power of the test statistics (Type II error)
group.pi <- rbind(fit.throat$pi, fit.tonsils$pi)
pval2 <- MC.Xmc.statistics(group.Nrs, numMC, pi0, group.pi, group.theta)
pval2

MC.Xmcupo.statistics
Size and Power of Several Sample RAD-Probability Mean Test Comparisons: Unknown Vector of Proportion

Description

This Monte-Carlo simulation procedure provides the power and size of the several sample RAD-probability mean test comparisons without reference vector of proportions, using the Generalized Wald-type statistics.

Usage

MC.Xmcupo.statistics(group.Nrs, numMC = 10, pi0, group.pi, group.theta, type = "ha", siglev = 0.05)
MC.Xmcupo.statistics

Arguments

- `group.Nrs`: A list specifying the number of reads/sequence depth for each sample in a group with one group per list entry.
- `numMC`: Number of Monte-Carlo experiments. In practice this should be at least 1,000.
- `pi0`: The RAD-probability mean vector.
- `group.pi`: If "hnull": This argument is ignored. If "ha": A matrix where each row is a vector pi values for each group.
- `group.theta`: A vector of overdispersion values for each group.
- `type`: If "hnull": Computes the size of the test. If "ha": Computes the power of the test. (default)
- `siglev`: Significance level for size of the test / power calculation. The default is 0.05.

Details

Note: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.

Value

Size of the test statistics (under "hnull") or power (under "ha") of the test.

Examples

data(saliva)
data(throat)
data(tonsils)

Get a list of dirichlet-multinomial parameters for the data
fit.saliva <- DM.MoM(saliva)
fit.throat <- DM.MoM(throat)
fit.tonsils <- DM.MoM(tonsils)

Set up the number of Monte-Carlo experiments
We use 1 for speed, should be at least 1,000
numMC <- 1

Generate the number of reads per sample
The first number is the number of reads and the second is the number of subjects
Nrs1 <- rep(12000, 10)
Nrs2 <- rep(12000, 19)
group.Nrs <- list(Nrs1, Nrs2)

group.theta <- c(fit.throat$theta, fit.tonsils$theta)
pi0 <- fit.saliva$pi

Computing size of the test statistics (Type I error)
pval1 <- MC.Xmcupo.statistics(group.Nrs, numMC, pi0, group.theta=group.theta, type="hnull")
pval1
Computing Power of the test statistics (Type II error)

```r
group.pi <- rbind(fit.throat$pi, fit.tonsils$pi)
pval2 <- MC.Xmcupo.statistics(group.Nrs, numMC, group.pi=group.pi, group.theta=group.theta)
pval2
```
fit.throat <- DM.MoM(throat)
fit.tonsils <- DM.MoM(tonsils)

Set up the number of Monte-Carlo experiments
We use 1 for speed, should be at least 1,000
numMC <- 1

Generate the number of reads per sample
The first number is the number of reads and the second is the number of subjects
nrsGrp1 <- rep(12000, 9)
nrsGrp2 <- rep(12000, 11)
nrsGrp3 <- rep(12000, 12)
group.Nrs <- list(nrsGrp1, nrsGrp2, nrsGrp3)

Computing size of the test statistics (Type I error)
alphap <- fit.tonsils$gamma
pval1 <- MC.Xoc.statistics(group.Nrs, numMC, alphap, "hnull")
pval1

Computing Power of the test statistics (Type II error)
alphap <- rbind(fit.saliva$gamma, fit.throat$gamma, fit.tonsils$gamma)
pval2 <- MC.Xoc.statistics(group.Nrs, numMC, alphap, "ha")
pval2

End(Not run)

End(Not run)

MC.Xsc.statistics

Size and Power for the One Sample RAD Probability-Mean Test Comparison

Description

This Monte-Carlo simulation procedure provides the power and size of the one sample RAD probability-mean test, using the Generalized Wald-type statistic.

Usage

MC.Xsc.statistics(Nrs, numMC = 10, fit, pi0 = NULL, type = "ha", siglev = 0.05)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nrs</td>
<td>A vector specifying the number of reads/sequence depth for each sample.</td>
</tr>
<tr>
<td>numMC</td>
<td>Number of Monte-Carlo experiments. In practice this should be at least 1,000.</td>
</tr>
<tr>
<td>fit</td>
<td>A list (in the format of the output of dirmult function) containing the data parameters for evaluating either the size or power of the test.</td>
</tr>
<tr>
<td>pi0</td>
<td>The RAD-probability mean vector. If the type is set to "hnull" then pi0 is set by the sample in fit.</td>
</tr>
</tbody>
</table>
type

If "hnull": Computes the size of the test.
If "ha": Computes the power of the test. (default)

siglev

Significance level for size of the test / power calculation. The default is 0.05.

Details

Note: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.

Value

Size of the test statistics (under "hnull") or power (under "ha") of the test.

Examples

data(saliva)
data(throat)
data(tonsils)

Get a list of dirichlet-multinomial parameters for the data
fit.saliva <- DM.MoM(saliva)
fit.throat <- DM.MoM(throat)
fit.tonsils <- DM.MoM(tonsils)

Set up the number of Monte-Carlo experiments
We use 1 for speed, should be at least 1,000
numMC <- 1

Generate the number of reads per sample
The first number is the number of reads and the second is the number of subjects
nrs <- rep(15000, 25)

Computing size of the test statistics (Type I error)
pval1 <- MC.Xsc.statistics(nrs, numMC, fit.tonsils, fit.saliva$pi, "hnull")
pval1

Computing Power of the test statistics (Type II error)
pval2 <- MC.Xsc.statistics(nrs, numMC, fit.throat, fit.tonsils$pi)
pval2

MC.ZT.statistics

Size and Power of Goodness of Fit Test: Multinomial vs. Dirichlet-Multinomial

Description

This Monte-Carlo simulation procedure provides the power and size of the Multinomial vs. Dirichlet-Multinomial goodness of fit test, using the C(α)-optimal test statistics of Kim and Margolin (1992) (t statistics) and the C(α)-optimal test statistics of (Paul et al., 1989).
Usage

```r
MC.ZT.statistics(Nrs, numMC = 10, fit, type = "ha", siglev = 0.05)
```

Arguments

- **Nrs**: A vector specifying the number of reads/sequence depth for each sample.
- **numMC**: Number of Monte-Carlo experiments. In practice this should be at least 1,000.
- **fit**: A list (in the format of the output of dirmult function) containing the data parameters for evaluating either the size or power of the test.
- **type**: If "hnull": Computes the size of the test. If "ha": Computes the power of the test. (default)
- **siglev**: Significance level for size of the test / power calculation. The default is 0.05.

Details

Note: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.

Value

A vector containing both the size of the test statistics (under "hnull") or power (under "ha") of the test for both the z and t statistics.

Examples

```r
data(saliva)

### Get a list of dirichlet-multinomial parameters for the data
fit.saliva <- DM.MoM(saliva)

### Set up the number of Monte-Carlo experiments
### We use 1 for speed, should be at least 1,000
numMC <- 1

### Generate the number of reads per sample
### The first number is the number of reads and the second is the number of subjects
nrs <- rep(15000, 25)

### Computing size of the test statistics (Type I error)
pval1 <- MC.ZT.statistics(nrs, numMC, fit.saliva, "hnull")
pval1

### Computing Power of the test statistics (Type II error)
pval2 <- MC.ZT.statistics(nrs, numMC, fit.saliva)
pval2
```
Description

It generates a data matrix with random samples from a multinomial distribution where the rows are the samples and the columns are the taxa.

Usage

Multinomial(Nrs, probs)

Arguments

Nrs : A vector specifying the number of reads or sequence depth for each sample.
probs : A vector specifying taxa probabilities.

Details

Note: Though the test statistic supports an unequal number of reads across samples, the performance has not yet been fully tested.

Value

A data matrix of taxa counts where the rows are the samples and the columns are the taxa.

Examples

```r
### Generate the number of reads per sample
### The first number is the number of reads and the second is the number of subjects
nrs <- rep(15000, 25)

### Create a probability vector
probs <- c(0.4, 0.3, 0.2, .05, 0.04, .01)

mData <- Multinomial(nrs, probs)
mData[1:5, 1:5]
```
Plot.MDS
Multidimensional Scaling Plot of Microbiome Data

Description

Plots any number of data sets on an MDS plot.

Usage

```r
Plot.MDS(group.data, main = "Group MDS", retCords = FALSE)
```

Arguments

- `group.data`: A list of matrices of taxonomic counts(columns) for each sample(rows).
- `main`: A string to be used as the plots title.
- `retCords`: A boolean to return the mds coordinates or not.

Value

A MDS plot and possibly the x-y coordinates for every point.

Examples

```r
data(saliva)
data(throat)
data(tonsils)

### Combine the data sets into a single list
group.data <- list(saliva, throat, tonsils)

Plot.MDS(group.data)
```

Plot.PI
Plot the Pi Vector

Description

Plots the taxa proportions for every group.

Usage

```r
Plot.PI(estPi, errorBars = TRUE, logScale = FALSE, main = "PI Vector", ylab = "Fractional Abundance")
```
Arguments

estPi The results for either MLE or MOM from the function 'Est.Pi'.
errorBars A boolean to display the error bars or not.
logScale A boolean to log the y scale or not.
main A string to be used as the plots title.
ylab A string to be used as the plots y-axis title.

Value

A plot of the pi vectors for every group.

Examples

```r
## Not run:
data(saliva)
data(throat)
data(tonsils)

### Combine the data sets into a single list
group.data <- list(saliva, throat, tonsils)

### Get PI using MLE with CI
mle <- Est.PI(group.data)$MLE

### Plot with Error Bars
Plot.PI(mle)

### Plot without Error Bars
Plot.PI(mle, FALSE)

### Plot with Error Bars and scaling
Plot.PI(mle, TRUE, TRUE)

## End(Not run)
```

Plot.RM.Barchart

Plot the Pi Vector for Repeated Measures

Description

Plots the taxa proportions for every group/time as a barchart.

Usage

```r
Plot.RM.Barchart(group.data, groups, times, plotByGrp = TRUE,
col = NULL, conf = .95)
```
Arguments

- **group.data**: A list of matrices of taxonomic counts (columns) for each sample (rows).
- **groups**: A vector indicating group membership.
- **times**: A vector indicating time.
- **plotByGrp**: When 'TRUE', the plot will be split by group rather than time.
- **col**: A vector of colors to use to denote taxa.
- **conf**: The desired confidence limits. The default is 95%.

Value

A barchart of the pi vectors for every group/time.

Examples

```r
## Not run:
data(saliva)
data(throat)

### Reduce the size of the data
saliva <- Data.filter(saliva, numTaxa=9)
throat <- Data.filter(throat, numTaxa=9)

### Get the gamma value for the data
saliva.gamma <- DM.MoM(saliva)$gamma
throat.gamma <- DM.MoM(throat)$gamma
mid.gamma <- (saliva.gamma + throat.gamma)/2

### Generate a the number of reads per sample
### The first number is the number of reads and the second is the number of subjects
nrs <- rep(10000, 20)

### Create data sets to be our time series in a list
group.data <- list(
  Dirichlet.multinomial(nrs, saliva.gamma),
  Dirichlet.multinomial(nrs, saliva.gamma),
  Dirichlet.multinomial(nrs, saliva.gamma),
  Dirichlet.multinomial(nrs, saliva.gamma),
  Dirichlet.multinomial(nrs, mid.gamma),
  Dirichlet.multinomial(nrs, throat.gamma)
)
names(group.data) <- c(
  "Group 1, Time 1", "Group 2, Time 1",
  "Group 1, Time 2", "Group 2, Time 2",
  "Group 1, Time 3", "Group 2, Time 3"
)

### Set the group and time information for each list element
groups <- c(1, 2, 1, 2, 1, 2)
times <- c(1, 2, 3, 1, 2, 3)
```
Plot the data by Group
Plot.RM.Barchart(group.data, groups, times)

Plot the data by Time
Plot.RM.Barchart(group.data, groups, times, FALSE)

End(Not run)

Plot.RM.Dotplot
Plot the Pi Vector for Repeated Measures

Description
Plots the taxa proportions for every group/time as a dot plot.

Usage

```r
Plot.RM.Dotplot(group.data, groups, times, errorBars = TRUE,  
col = NULL, conf = .95, alpha = 1)
```

Arguments
- `group.data`: A list of matrices of taxonomic counts(columns) for each sample(rows).
- `groups`: A vector indicating group membership.
- `times`: A vector indicating time.
- `errorBars`: When 'TRUE', error bars will also be displayed.
- `col`: A vector of colors to use to denote taxa.
- `conf`: The desired confidence limits. The default is 95%
- `alpha`: The desired alpha level for the colors.

Value
A plot of the pi vectors for every group/time.

Examples

```r
## Not run:  
data(saliva)  
data(throat)

### Reduce the size of the data  
saliva <- Data.filter(saliva, numTaxa=9)  
throat <- Data.filter(throat, numTaxa=9)

### Get the gamma value for the data  
saliva.gamma <- DM.MoM(saliva)$gamma  
throat.gamma <- DM.MoM(throat)$gamma
```
mid.gamma <- (saliva.gamma + throat.gamma)/2

Generate a the number of reads per sample
The first number is the number of reads and the second is the number of subjects
nrs <- rep(10000, 20)

Create data sets to be our time series in a list
group.data <- list(
 Dirichlet.multinomial(nrs, saliva.gamma),
 Dirichlet.multinomial(nrs, saliva.gamma),
 Dirichlet.multinomial(nrs, saliva.gamma),
 Dirichlet.multinomial(nrs, saliva.gamma),
 Dirichlet.multinomial(nrs, mid.gamma),
 Dirichlet.multinomial(nrs, throat.gamma)
)
names(group.data) <- c(
 "Group 1, Time 1", "Group 2, Time 1",
 "Group 1, Time 2", "Group 2, Time 2",
 "Group 1, Time 3", "Group 2, Time 3"
)

Set the group and time information for each list element
groups <- c(1, 2, 1, 2, 1, 2)
times <- c(1, 2, 3, 1, 2, 3)

Plot the data with error bars
Plot.RM.Dotplot(group.data, groups, times)

Plot the data without error bars
Plot.RM.Dotplot(group.data, groups, times, FALSE)

End(Not run)

saliva

Saliva Data Set

Description

The saliva data set formed by the Ranked-abundance distribution vectors of 24 subjects. The RAD vectors contains 21 elements formed by the 20 most abundant taxa at the genus level and additional taxa containing the sum of the remaining less abundant taxa per sample. Note that the incorporation of the additional taxon (taxon 21) in the analysis allows for estimating the RAD proportional-mean of taxa with respect to all the taxa within the sample.

Usage

data(saliva)
Format

The format is a matrix of 24 rows by 21 columns, with each row being a separate subject and each column being a different taxa.

Examples

data(saliva)

Test.Paired Test Paired Data Sets

Description

Tests two paired data sets for similarity.

Usage

Test.Paired(group.data, numPerms = 1000, parallel = FALSE, cores = 3)

Arguments

- `group.data`: A list of 2 matrices of taxonomic counts(columns) for each sample(rows).
- `numPerms`: Number of permutations. In practice this should be at least 1,000.
- `parallel`: When this is 'TRUE' it allows for parallel calculation of the permutations. Requires the package `doParallel`.
- `cores`: The number of parallel processes to run if parallel is 'TRUE'.

Value

A pvalue.

Examples

data(saliva)
data(throat)

```r
### Since saliva and throat come from same subjects, the data is paired
salival <- saliva[-24,] # Make saliva 23 subjects to match throat
group.data <- list(throat, salival)

### We use 1 for speed, should be at least 1,000
numPerms <- 1

pval <- Test.Paired(group.data, numPerms)
pval
```
throat

Throat Data Set

Description

The throat data set formed by the Ranked-abundance distribution vectors of 24 subjects. The RAD vectors contains 21 elements formed by the 20 most abundant taxa at the genus level and additional taxa containing the sum of the remaining less abundant taxa per sample. Note that the incorporation of the additional taxon (taxon 21) in the analysis allows for estimating the RAD proportional-mean of taxa with respect to all the taxa within the sample.

Usage

```
data(throat)
```

Format

The format is a matrix of 24 rows by 21 columns, with each row being a separate subject and each column being a different taxa.

Examples

```
data(throat)
```

tongue

Tongue Data Set

Description

The tongue data set formed by the Ranked-abundance distribution vectors of 24 subjects. The RAD vectors contains 21 elements formed by the 20 most abundant taxa at the genus level and additional taxa containing the sum of the remaining less abundant taxa per sample. Note that the incorporation of the additional taxon (taxon 21) in the analysis allows for estimating the RAD proportional-mean of taxa with respect to all the taxa within the sample.

Usage

```
data(tongue)
```

Format

The format is a matrix of 24 rows by 21 columns, with each row being a separate subject and each column being a different taxa.

Examples

```
data(tongue)
```
tonsils
Palatine Tonsil Data Set

Description

The palatine tonsil data set formed by the Ranked-abundance distribution vectors of 24 subjects. The RAD vectors contains 21 elements formed by the 20 most abundant taxa at the genus level and additional taxa containing the sum of the remaining less abundant taxa per sample. Note that the incorporation of the additional taxon (taxon 21) in the analysis allows for estimating the RAD proportional-mean of taxa with respect to all the taxa within the sample.

Usage

```r
data(tonsils)
```

Format

The format is a matrix of 24 rows by 21 columns, with the each row being a separate subject and each column being a different taxa.

Examples

```r
data(tonsils)
```

Xdc.sevsample
Likelihood-Ratio-Test Statistics: Several Sample Dirichlet-Multinomial Test Comparison

Description

This routine provides the value of the Likelihood-Ratio-Test Statistics and the corresponding p-value for evaluating the several sample Dirichlet-Multinomial parameter test comparison.

Usage

```r
Xdc.sevsample(group.data, epsilon = 10^(-4), est = "mom")
```

Arguments

- `group.data`: A list where each element is a matrix of taxonomic counts(columns) for each sample(rows). (See Notes 1 and 2 in details)
- `epsilon`: Convergence tolerance. To terminate, the difference between two succeeding log-likelihoods must be smaller than epsilon. Default value is 10^(-4).
- `est`: The type of parameter estimator to be used with the Likelihood-ratio-test statistics, 'mle' or 'mom'. Default value is 'mom'. (See Note 3 in details)
Details

To assess whether the Dirichlet parameter vector, \(\alpha_m = \pi_m^{1-\theta_m} \), a function of the RAD probability-mean vector and overdispersion, observed in \(J \) groups of microbiome samples are equal to each other, the following hypothesis \(H_0 : \alpha_1 = \cdots = \alpha_m = \cdots = \alpha_J = \alpha_0 \) versus \(H_a : \alpha_m \neq \alpha_0, m = 1, \ldots, J \) can be tested. The null hypothesis implies that the HMP samples across groups have the same mean and overdispersion, indicating that the RAD models are identical. In particular, the likelihood-ratio test statistic is used, which is given by,

\[
x_{dc} = -2 \log \left\{ \frac{L(\alpha_0; X_1, \ldots, X_J)}{L(\alpha_1, \ldots, \alpha_J; X_1, \ldots, X_J)} \right\}.
\]

The asymptotic null distribution of \(x_{dc} \) follows a Chi-square with degrees of freedom equal to \((J-1)*K\), where \(K \) is the number of taxa (Wilks, 1938).

1. Note 1: The matrices in group.data must contain the same taxa, in the same order.
2. Note 2: Each taxa should be present in at least 1 sample, a column with all 0’s may result in errors and/or invalid results.
3. Note 3: 'mle' will take significantly longer time and may not be optimal for small sample sizes; 'mom' will provide more conservative results in such a case.

Value

A list containing the Xdc statistics and p-value.

References

Examples

data(saliva)
data(throat)

Combine the data sets into a single list
group.data <- list(saliva, throat)

xdc <- Xdc.sevsample(group.data)

xdc

Xmc.sevsample

Generalized Wald-type Statistics: Several Sample RAD Probability-Mean Test Comparison with a Known Common Vector

Description

This function computes the Generalized Wald-type test statistic (Wilson and Koehler, 1984) and corresponding p-value to assess whether the sample RAD probability-means from multiple populations are the same or different. The statistics assumes that a common RAD probability-mean vector for comparison under the null hypothesis is known.
Usage

Xmc.sevsample(group.data, pi0)

Arguments

group.data A list where each element is a matrix of taxonomic counts (columns) for each sample (rows).
pi0 The RAD-probability mean vector.

Details

Note: The matrices in group.data must contain the same taxa, in the same order.

Value

A list containing the Generalized Wald-type statistics and p-value.

References

Examples

data(saliva)
data(throat)
data(tonsils)

Get pi from the dirichlet-multinomial parameters
pi0 <- dirmult(saliva)$pi

Combine the data sets into a single list
group.data <- list(throat, tonsils)

xmc <- Xmc.sevsample(group.data, pi0)
xmc

Xmcupo.effectszie Effect Size for Xmcupo Statistic

Description

This function computes the Cramer’s Phi and Modified Cramer’s Phi Criterion for the test statistic Xmcupo.sevsample.

Usage

Xmcupo.effectszie(group.data)
Arguments

group.data A list where each element is a matrix of taxonomic counts(columns) for each sample(rows).

Details

Note: The matrices in group.data must contain the same taxa, in the same order.

Value

A vector containing the Chi-Squared statistic value, the Cramer’s Phi Criterion, and the modified Cramer’s Phi Criterion.

Examples

data(saliva)
data(throat)

Combine the data sets into a single list
group.data <- list(saliva, throat)
effect <- Xmcupo.effectsize(group.data)
effect

Xmcupo.sevsample

Generalized Wald-type Statistics: Several Sample RAD Probability-
Mean Test Comparison with an Unknown Common Vector

Description

This function computes the Generalized Wald-type test statistic (Wilson and Koehler, 1984) and corresponding p-value to assess whether the sample RAD probability-means from multiple populations are same or different. The statistics assumes that a common RAD probability-mean vector for comparison under the null hypothesis is unknown.

Usage

Xmcupo.sevsample(group.data)

Arguments

group.data A list where each element is a matrix of taxonomic counts(columns) for each sample(rows).

Details

Note: The matrices in group.data must contain the same taxa, in the same order.
Value
A list containing the Generalized Wald-type statistics and p-value.

References

Examples
```r
data(saliva)
data(tonsils)
data(throat)

### Combine the data sets into a single list
group.data <- list(saliva, throat, tonsils)
xmcupo <- Xmcupo.sevsample(group.data)
xmcupo
```

Description
This routine provides the value of the likelihood-ratio-test statistic and the corresponding p-value to assess whether the overdispersion observed in multiple groups of microbiome samples are equal.

Usage
```r
Xoc.sevsample(group.data, epsilon = 10^(-4))
```

Arguments
- `group.data` A list where each element is a matrix of taxonomic counts(columns) for each sample(rows). (See Notes 1 and 2 in details)
- `epsilon` Convergence tolerance. To terminate, the difference between two succeeding log-likelihoods must be smaller than epsilon. Default value is $10^\text{-4}$.

Details
To assess whether the over dispersion parameter vectors θ_m observed in J groups of microbiome samples are equal to each other, the following hypothesis $H_0: \theta_1 = \cdots = \theta_m = \cdots = \theta_J = \theta_0$ versus $H_A: \theta_m \neq \theta_0, m = 1, \ldots, J$ can be tested. In particular, the likelihood-ratio test statistic is used (Tvedebrink, 2010), which is given by,

$$x_{oc} = -2 \log \left\{ \frac{L(\theta_0; X_1, \ldots, X_J)}{L(\theta_1, \ldots, \theta_J; X_1, \ldots, X_J)} \right\}.$$
The asymptotic null distribution of x_{oc} follows a Chi-square with degrees of freedom equal to (J-1) (Wilks, 1938).

1. Note 1: The matrices in group.data must contain the same taxa, in the same order.
2. Note 2: Each taxa should be present in at least 1 sample, a column with all 0’s may result in errors and/or invalid results.

Value

A list containing the Xoc statistics and p-value.

References

Examples

data(saliva)
data(tonsils)

Combine the data sets into a single list
group.data <- list(saliva, tonsils)

Not run:
xoc <- Xoc.sevsample(group.data)
xoc
End(Not run)

Xsc.onesample

Generalized Wald-Type Statistics: One Sample RAD Probability-Mean Test Comparison

Description

This routine provides the value of the Generalized Wald-type statistic to assess whether the RAD probability-mean observed in one group of samples is equal to a known RAD probability-mean.

Usage

Xsc.onesample(data, pi0)

Arguments

data A matrix of taxonomic counts(columns) for each sample(rows).
pi0 The RAD-probability mean vector.
Value

A list containing Generalized Wald-type statistics and p-value.

Examples

```r
data(saliva)
data(throat)

### Get pi from the dirichlet-multinomial parameters
pi0 <- dirmult(saliva)$pi

xsc <- Xsc.onesample(throat, pi0)
xsc
```
Index

*Topic datasets
 dmrp_covars, 10
 dmrp_data, 10
 saliva, 31
 throat, 33
 tongue, 33
 tonsils, 34
*Topic package
 HMP-package, 2

Barchart.data, 3
C.alpha.multinomial, 4
Data.filter, 5
Dirichlet.multinomial, 6
DM.MoM, 7
DM.Rpart, 8
dmrp_covars, 10
dmrp_data, 10
Est.PI, 11
formatDataSets, 12
Gen.Alg, 13, 15
Gen.Alg.Consensus, 15

HMP (HMP-package), 2
HMP-package, 2

Kullback.Leibler, 16
kullbackLeibler (Kullback.Leibler), 16

MC.Xdc.statistics, 17
MC.Xmc.statistics, 19
MC.Xmcupo.statistics, 20
MC.Xoc.statistics, 22
MC.Xsc.statistics, 23
MC.ZT.statistics, 24
Multinomial, 26

Plot.MDS, 27
Plot.PI, 27
Plot.RM.Barchart, 28
Plot.RM.Dotplot, 30
rbga, 14
rpart.control, 8
saliva, 31
Test.Paired, 32
throat, 33
tongue, 33
tonsils, 34

vegdist, 14
Xdc.sevsample, 34
Xmc.sevsample, 35
Xmcupo.effectsize, 36
Xmcupo.sevsample, 37
Xoc.sevsample, 38
Xsc.onesample, 39

41