A Handbook of Statistical Analyses Using R
— 3rd Edition

Torsten Hothorn and Brian S. Everitt
CHAPTER 16

Missing Values: Lowering Blood Pressure During Surgery

16.1 Introduction

It is sometimes necessary to lower a patient’s blood pressure during surgery, using a hypotensive drug. Such drugs are administered continuously during the relevant phase of the operation; because the duration of this phase varies so does the total amount of drug administered. Patients also vary in the extent to which the drugs succeed in lowering blood pressure. The sooner the blood pressure rises again to normal after the drug is discontinued, the better. The data in Table 16.1 (a missing-value version of the data presented by ?) relate to a particular hypotensive drug and give the time in minutes before the patient’s systolic blood pressure returned to 100mm of mercury (the recovery time), the logarithm (base 10) of the dose of drug in milligrams, and the average systolic blood pressure achieved while the drug was being administered. The question of interest is how is the recovery time related to the other two variables? For some patients the recovery time was not recorded and the missing values are indicated as NA in Table 16.1.

Table 16.1: bp data. Blood pressure data.

<table>
<thead>
<tr>
<th>logdose</th>
<th>bloodp</th>
<th>recovtime</th>
<th>logdose</th>
<th>bloodp</th>
<th>recovtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.26</td>
<td>66</td>
<td>7</td>
<td>2.70</td>
<td>73</td>
<td>39</td>
</tr>
<tr>
<td>1.81</td>
<td>52</td>
<td>10</td>
<td>1.90</td>
<td>56</td>
<td>28</td>
</tr>
<tr>
<td>1.78</td>
<td>72</td>
<td>18</td>
<td>2.78</td>
<td>83</td>
<td>12</td>
</tr>
<tr>
<td>1.54</td>
<td>67</td>
<td>NA</td>
<td>2.27</td>
<td>67</td>
<td>60</td>
</tr>
<tr>
<td>2.06</td>
<td>69</td>
<td>10</td>
<td>1.74</td>
<td>84</td>
<td>10</td>
</tr>
<tr>
<td>1.74</td>
<td>71</td>
<td>13</td>
<td>2.62</td>
<td>68</td>
<td>NA</td>
</tr>
<tr>
<td>2.56</td>
<td>88</td>
<td>21</td>
<td>1.80</td>
<td>64</td>
<td>22</td>
</tr>
<tr>
<td>2.29</td>
<td>68</td>
<td>12</td>
<td>1.81</td>
<td>60</td>
<td>21</td>
</tr>
<tr>
<td>1.80</td>
<td>59</td>
<td>9</td>
<td>1.58</td>
<td>62</td>
<td>14</td>
</tr>
<tr>
<td>2.32</td>
<td>73</td>
<td>NA</td>
<td>2.41</td>
<td>76</td>
<td>4</td>
</tr>
<tr>
<td>2.04</td>
<td>68</td>
<td>20</td>
<td>1.65</td>
<td>60</td>
<td>27</td>
</tr>
<tr>
<td>1.88</td>
<td>58</td>
<td>31</td>
<td>2.24</td>
<td>60</td>
<td>26</td>
</tr>
<tr>
<td>1.18</td>
<td>61</td>
<td>23</td>
<td>1.70</td>
<td>59</td>
<td>NA</td>
</tr>
<tr>
<td>2.08</td>
<td>68</td>
<td>22</td>
<td>2.45</td>
<td>84</td>
<td>15</td>
</tr>
<tr>
<td>1.70</td>
<td>69</td>
<td>13</td>
<td>1.72</td>
<td>66</td>
<td>8</td>
</tr>
<tr>
<td>1.74</td>
<td>55</td>
<td>9</td>
<td>2.37</td>
<td>68</td>
<td>46</td>
</tr>
</tbody>
</table>
Table 16.1: bp data (continued).

<table>
<thead>
<tr>
<th>logdose</th>
<th>bloodp</th>
<th>recovtime</th>
<th>logdose</th>
<th>bloodp</th>
<th>recovtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90 67</td>
<td>50</td>
<td>NA</td>
<td>2.23 65</td>
<td>NA</td>
<td>24</td>
</tr>
<tr>
<td>1.79 67</td>
<td>NA</td>
<td>24</td>
<td>1.92 69</td>
<td>NA</td>
<td>25</td>
</tr>
<tr>
<td>2.11 68</td>
<td>11</td>
<td>63</td>
<td>1.99 72</td>
<td>NA</td>
<td>45</td>
</tr>
<tr>
<td>1.72 59</td>
<td>NA</td>
<td>11</td>
<td>1.99 72</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>1.74 68</td>
<td>NA</td>
<td>16</td>
<td>1.80 70</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>1.60 63</td>
<td>23</td>
<td>69</td>
<td>2.36 69</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>2.15 65</td>
<td>7</td>
<td>60</td>
<td>1.59 60</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>2.26 72</td>
<td>NA</td>
<td>16</td>
<td>2.10 51</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>1.65 58</td>
<td>NA</td>
<td>18</td>
<td>1.80 61</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>1.63 69</td>
<td>NA</td>
<td>25</td>
<td>2.40 70</td>
<td>NA</td>
<td>25</td>
</tr>
</tbody>
</table>

16.2 Analyzing Multiply Imputed Data

From the analysis of each data set we need to look at the estimates of the quantity of interest, say Q, and the variance of the estimates. We let \bar{Q}_i be the estimate from the ith data set and S_i its corresponding variance. The combined estimate of the quantity of interest is

$$\bar{Q} = \frac{1}{m} \sum_{i=1}^{m} \bar{Q}_i.$$

To find the combined variance involves first calculating the within-imputation variance,

$$\bar{S} = \frac{1}{m} \sum_{i=1}^{m} S_i,$$

followed by the between-imputation variance,

$$B = \frac{1}{m-1} \sum_{i=1}^{m} (\bar{Q}_i - \bar{Q})^2,$$

then the required total variance can now be found from

$$T = \bar{S} + (1 + \frac{1}{m^{-1}})B.$$

This total variance is made up of two components; the first which preserves the natural variability, \bar{S}, is simply the average of the variance estimates for each imputed data set and is analogous to the variance that would be suitable if we did not need to account for missing data; the second component, B, estimates uncertainty caused by missing data by measuring how the point estimates vary from data set to data set. More explanation of how the formula for T arises is given in ?.
The overall standard error is simply the square root of \(T \). A significance test for \(Q \) and a confidence interval is found from the usual test statistic, \((Q - \text{hypothesized value of } Q)/\sqrt{T}\), the value of which is referred to a Student’s \(t \)-distribution. The question arises however as to what is the appropriate value for the degrees of freedom of the test, say \(v_0 \)? \(? \) suggests that the answer to this question is given by:

\[
v_0 = (m - 1)(1 + 1/r^2)
\]

where

\[
r = \frac{B + B/m}{S}
\]

But \(? \) noted that using this value of \(v_0 \) can produce values that are larger than the degrees of freedom in the complete data, a result which they considered ‘clearly inappropriate’. Consequently they developed an adapted version that does not lead to the same problem. Barnard and Rubin’s revised value for the degrees of freedom of the \(t \)-test in which we are interested is \(v_1 \) given by:

\[
v_1 = \frac{v_0v_2}{v_0 + v_2}
\]

where

\[
v_2 = \frac{n(n - 1)(1 - \lambda)}{n + 2}
\]

and

\[
\lambda = \frac{r}{\sqrt{r^2 + 1}}
\]

The quantity \(v_1 \) is always less than or equal to the degrees of freedom of the test applied to the hypothetically complete data. (For more details see ?).

16.3 Analysis Using R

To begin we shall analyze the blood pressure data in Table 16.1 using the complete-case approach, i.e., by simply removing the data for patients where the recovery time is missing. To begin we might simply count the number of missing values using the `sapply` function as follows:

```R
R> sapply(bp, function(x) sum(is.na(x)))
logdose bloodpressure recovtime
0 0 10
```

So there are ten missing values of recovery time but no missing values amongst the other two variables. Now we use the `summary` function to look at some basic statistics of the complete data for recovery time:

```R
R> summary(bp$recovtime, na.rm = TRUE)
     Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  NA's
   4.00  10.50  21.00   22.40  26.50   72.00     10
```
And next we can calculate the complete data estimate of the standard deviation of recover time

```r
R> sd(bp$recovtime, na.rm = TRUE)
[1] 15.1
```

The final numerical results we might be interested in are the correlations of recovery time with blood pressure and of recovery time with logdose. These can be found as follows:

```r
R> with(bp, cor(bloodp, recovtime, use = "complete.obs"))
[1] -0.189
R> with(bp, cor(logdose, recovtime, use = "complete.obs"))
[1] 0.21
```

And a useful graphic of the data is a scatterplot matrix which we can construct using `pairs`. The scatterplot matrix is given in Figure 16.1.

To investigate how recovery time is related to blood pressure and logdose we might begin by fitting a multiple linear regression model (see Chapter ??). The relevant command and the summary of the results is shown in Figure 16.2. Note that this summary output reports that ten observations with missing values were removed prior to the analysis; this is default for many models in R.

Now let us see what happens when we impute the missing values of the recovery time variable simply by the mean of the complete case; for this we will use the `mice` (?) package;
ANALYSIS USING R

R> summary(lm(recovtime ~ bloodp + logdose, data = bp))

Call:
 lm(formula = recovtime ~ bloodp + logdose, data = bp)

Residuals:
 Min 1Q Median 3Q Max
-20.0600 -10.4875 -1.7675 5.9175 36.4625

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.3104 18.4141 1.7544 0.087233
bloodp -0.687976 0.300881 -2.2810 0.027858
logdose 17.773006 7.496710 2.3658 0.022723

Residual standard error: 14.2 on 40 degrees of freedom
(10 observations deleted due to missingness)
Multiple R-squared: 0.1539, Adjusted R-squared: 0.1118
F-statistic: 3.652 on 2 and 40 DF, p-value: 0.0349

Figure 16.2 R output of the complete-case linear model for the bp data.

R> library("mice")

We begin by creating a new data set, imp, which will contain the three variables log-dose, blood pressure, and recovery time with the missing values in the latter replaced by the mean recovery time of the complete cases;

R> imp <- mice(bp, method = "mean", m = 1, maxit = 1)

iter imp variable
 1 1 recovtime

So now we can find the summary statistics of recovery time to compare with those given previously

R> with(imp, summary(recovtime))

call :
with.mids(data = imp, expr = summary(recovtime))

call1 :
mice(data = bp, m = 1, method = "mean", maxit = 1)

nmis :
logdose bloodp recovtime
 0 0 10

analyses :
[[1]]
 Min. 1st Qu. Median Mean 3rd Qu. Max.
recovtime 4.00 12.00 22.40 22.40 25.00 72.00

Making the comparison we see that only the values of the first and third quantile and the median have changed. The minimum and maximum values are the same and so, of course, is the mean. But of more interest is what
happens to the sample standard deviation; its value for the imputed data can be found using:

\[
\text{R} > \text{with(imp, sd(recovtime))}
\]

call :
\text{with.mids(data = imp, expr = sd(recovtime))}

call1 :
\text{mice(data = bp, m = 1, method = "mean", maxit = 1)}

\[
\begin{array}{ccc}
\text{nmis} : \\
\text{logdose} & \text{bloodp} & \text{recovtime} \\
0 & 0 & 10
\end{array}
\]

analyses :
[[1]]
[1] 13.6

The value for the imputed data, 13.56 is, as we would expect, lower than that for the complete data, 15.09. What about the correlations?

\[
\text{R} > \text{with(imp, cor(bloodp, recovtime))}
\]

call :
\text{with.mids(data = imp, expr = cor(bloodp, recovtime))}

call1 :
\text{mice(data = bp, m = 1, method = "mean", maxit = 1)}

\[
\begin{array}{ccc}
\text{nmis} : \\
\text{logdose} & \text{bloodp} & \text{recovtime} \\
0 & 0 & 10
\end{array}
\]

analyses :
[[1]]
[1] -0.183

\[
\text{R} > \text{with(imp, cor(logdose, recovtime))}
\]

call :
\text{with.mids(data = imp, expr = cor(logdose, recovtime))}

call1 :
\text{mice(data = bp, m = 1, method = "mean", maxit = 1)}

\[
\begin{array}{ccc}
\text{nmis} : \\
\text{logdose} & \text{bloodp} & \text{recovtime} \\
0 & 0 & 10
\end{array}
\]

analyses :
[[1]]
[1] 0.186
ANALYSIS USING R

R> layout(matrix(1:2, nrow = 1))
R> plot(recovtime ~ bloodp, data = complete(imp),
+ pch = is.na(bp$recovtime) + 1)
R> plot(recovtime ~ logdose, data = complete(imp),
+ pch = is.na(bp$recovtime) + 1)
R> legend("topleft", pch = 1:2, bty = "n",
+ legend = c("original", "imputed"))

Figure 16.3 Scatterplots of the imputed bp data. Imputed observations are depicted as triangles.

The correlations of blood pressure and recovery time are very similar before (−0.19) after (−0.18) imputation. For log-dose, imputation changes the correlation from 0.21 to 0.19.

The scatterplot of the imputed data is found as given by the code displayed with Figure [16.3] For mean imputation, the imputed value of the recovery time is constant for all observations and so they appear as a series of points along the value of the mean value of the observed recovery times namely, 22.4.

Comparison of the multiple linear regression results in Figure [16.4] with those in Figure [16.2] show some interesting differences, for example, the standard errors of the regression coefficients are somewhat lower for the mean imputed data but the conclusions drawn from the results in each table would be broadly similar.

The single imputation of a sample mean is not to be recommended and so we will move on to using a more sophisticated multiple imputation procedure know as predictive mean matching. The method is described in detail in ?
R> with(imp, summary(lm(recovtime ~ bloodp + logdose)))
call :
with.mids(data = imp, expr = summary(lm(recovtime ~ bloodp +
logdose)))
call1 :
mice(data = bp, m = 1, method = "mean", maxit = 1)
nmis :
 logdose bloodp recovtime
0 0 10
analyses : [[1]]
Call:
 lm(formula = recovtime ~ bloodp + logdose)
Residuals:
 Min 1Q Median 3Q Max
-19.31 -8.19 -0.60 5.11 38.38
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.004 15.915 2.20 0.032
 bloodp -0.606 0.262 -2.31 0.025
 logdose 13.864 5.960 2.33 0.024
Residual standard error: 12.9 on 50 degrees of freedom
Multiple R-squared: 0.128, Adjusted R-squared: 0.0928
F-statistic: 3.66 on 2 and 50 DF, p-value: 0.0328

Figure 16.4 R output of the mean imputation linear model for the bp data.

who considers it both easy-to-use and versatile. And imputations outside the observed data range will not occur so that problems with meaningless imputations, for example, a negative recovery time, will not occur. The method is labeled pmm in the mice package and here we will apply it to the blood pressure data with m = 10 (we need to fix the seed in order to make the result reproducible):

R> imp_ppm <- mice(bp, m = 10, method = "pmm",
+ print = FALSE, seed = 1)

The scatterplot of the imputed data is found as given by the code displayed with Figure 16.5. We only show the imputed recovery times from the first iteration (m = 1). The imputed recovery times now take different values.

From the resulting object we can compute the mean and standard deviations of recovery time for each of the m = 10 iterations. We first extract these numbers from the analyses element of the returned object, convert this list to a vector, and use the summary function to compute the usual summary statistics:

R> summary(unlist(with(imp_ppm, mean(recovtime))$analyses))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 20.8 21.5 21.9 21.9 22.3 23.4

10 MISSING VALUES
ANALYSIS USING R

R> layout(matrix(1:2, nrow = 1))
R> plot(recovtime ~ bloodp, data = complete(imp_ppm),
+ pch = is.na(bp$recovtime) + 1)
R> plot(recovtime ~ logdose, data = complete(imp_ppm),
+ pch = is.na(bp$recovtime) + 1)
R> legend("topleft", pch = 1:2, bty = "n",
+ legend = c("original", "imputed"))

Figure 16.5 Scatterplots of the multiple imputed bp data (first iteration). Imputed observations are depicted as triangles.

R> summary(unlist(with(imp_ppm, sd(recovtime))$analyses))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
13.9 14.1 14.3 14.5 14.7 15.7

We do the same with the correlations as follows
R> summary(unlist(with(imp_ppm,
+ cor(bloodp, recovtime))$analyses))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.233 -0.179 -0.176 -0.172 -0.161 -0.102

R> summary(unlist(with(imp_ppm,
+ cor(logdose, recovtime))$analyses))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.118 0.189 0.229 0.227 0.264 0.311

The estimate of the mean of the blood pressure data from the multiply imputed results is 21.95, very similar to the values found previously. Similarly
the estimate of the standard deviation of the data is 14.47 which lies between
the complete data estimate and the mean-imputed value. The two correla-
tion estimates are also very close to the previous values. The variation in the
estimates of mean, standard deviation, and correlations across the ten imputa-
tion is relatively small apart from that for the correlation between log-dose
and recovery time – here there is considerable variation in the values for the
ten imputations.

Finally, we will fit a linear model to each of the imputed samples and then
find the summary statistics for the ten sets of regression coefficients: the results
are given in Figure 16.6.

R> fit <- with(imp_ppm, lm(recovtime ~ bloodp + logdose))
R> summary(pool(fit))

<table>
<thead>
<tr>
<th>term</th>
<th>estimate</th>
<th>std.error</th>
<th>statistic</th>
<th>df</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>32.851</td>
<td>17.57</td>
<td>1.87</td>
<td>41.9</td>
<td>0.0685</td>
</tr>
<tr>
<td>bloodp</td>
<td>-0.668</td>
<td>0.28</td>
<td>-2.38</td>
<td>46.3</td>
<td>0.0213</td>
</tr>
<tr>
<td>logdose</td>
<td>16.773</td>
<td>6.91</td>
<td>2.43</td>
<td>34.7</td>
<td>0.0205</td>
</tr>
</tbody>
</table>

Figure 16.6 R output of the multiple imputed linear model for the bp data.

The result for blood pressure is similar to the previous complete data and
mean-imputed results with the regression coefficient for this variable being
highly significant. But the result for log dose differs from those found
previously; for the multiply imputed data the regression coefficient for log
dose is not significant at the 5% level whereas in both of the previous
two analyses it was significant. This finding reflects the greater variation of
the value of the correlation between log dose and recovery time in the ten
imputations noted above. (Remember that the standard errors in Figure 16.6
computed by pool arise from the formulae given in Section 16.2.)

Now suppose we wish to test the hypothesis that in the population from
which the sample data in Table 16.1 arises a mean recovery time of 27 minutes.
We will test this hypothesis in the usual way using Student’s t-test applied to
the complete-data, the singly imputed data, and the multiply imputed data:

R> with(bp, t.test(recovtime, mu = 27))

One Sample t-test
data: recovtime
t = -2, df = 42, p-value = 0.05
alternative hypothesis: true mean is not equal to 27
95 percent confidence interval:
 17.8 27.0
sample estimates:
mean of x
 22.4

R> with(imp, t.test(recovtime, mu = 27))$analyses[[1]]
SUMMARY OF FINDINGS

One Sample t-test

data: recovtime
t = -2, df = 52, p-value = 0.02
alternative hypothesis: true mean is not equal to 27
95 percent confidence interval:
 18.7 26.1
sample estimates:
mean of x
 22.4

For the multiply imputed data we need to use the lm function to get the equivalent of the t-test by modeling recovery time minus 27 with an intercept only and testing for zero intercept. So the code needed is:

R> fit <- with(imp_ppm, lm(I(recovtime - 27) ~ 1))
R> summary(pool(fit))

Looking at the results of the three analyses we see that the complete-case analysis fails to reject the hypothesis at the 5% level whereas the other two analyses lead to results that are statistically significant at the level. This simple (and perhaps rather artificial) example demonstrates that different conclusions can be reached by the different approaches.

16.4 Summary of Findings

The estimated standard deviation of the blood pressure is lower when computed from the mean-imputed data than from the complete data. The corresponding value from the multiply imputed data lies between these two values.

The estimate of the mean from the multiply imputed data is very similar to the value obtained in the complete data analysis. (The value from the singly imputed data is, of course, the same as from the complete data.)

The estimates of the correlations between blood pressure and recovery time and log dose and recovery time are very similar in all three analyses but the variation in the latter across the ten multiple imputations is considerable and this results in the regression coefficient for log dose being less significant than in the other two analyses.

Testing the hypothesis that the population mean of recovery time is 27 minutes using complete-case analysis leads to a different conclusion than is arrived at by the two multiple imputations approaches.

16.5 Final Comments

Missing values are an ever-present possibility in all types of studies although everything possible should be done to avoid them. But when data contain missing values multiple imputation can be used to provide valid inferences for
parameter estimates from the incomplete data. If carefully handled, multiple imputation can cope with missing data in all types of variables. In this chapter we have given only a brief account of dealing with missing values; a detailed account is available in the issue of *Statistical Methods in Medical Research* entitled *Multiple Imputation: Current Perspectives* (Volume 16, Number 3, 2007) and in ?.

Exercises

Ex. 16.1 The data in Table 16.2 give the lowest temperatures (in Fahrenheit) recorded in various months for cities in the US; missing values are indicated by NA. Calculate the correlation matrix of the data using

1. the complete-case approach,
2. the available-data approach, and
3. a multiple-imputation approach.

Find the principal components of the data using each of three correlation matrices and plot the cities in the space of the first two components of each solution.

Table 16.2: UStemp data. Lowest temperatures in Fahrenheit recorded in various months for cities in the US.

<table>
<thead>
<tr>
<th>City</th>
<th>January</th>
<th>April</th>
<th>July</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>-8</td>
<td>26</td>
<td>53</td>
<td>28</td>
</tr>
<tr>
<td>Baltimore</td>
<td>-7</td>
<td>20</td>
<td>NA</td>
<td>25</td>
</tr>
<tr>
<td>Bismark</td>
<td>-44</td>
<td>-12</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>Boston</td>
<td>-12</td>
<td>16</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>Chicago</td>
<td>-27</td>
<td>7</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>Dallas</td>
<td>4</td>
<td>NA</td>
<td>59</td>
<td>29</td>
</tr>
<tr>
<td>Denver</td>
<td>-25</td>
<td>-2</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>ElPaso</td>
<td>-8</td>
<td>23</td>
<td>57</td>
<td>NA</td>
</tr>
<tr>
<td>Honolulu</td>
<td>53</td>
<td>57</td>
<td>67</td>
<td>NA</td>
</tr>
<tr>
<td>Houston</td>
<td>12</td>
<td>31</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>Juneau</td>
<td>-22</td>
<td>6</td>
<td>36</td>
<td>11</td>
</tr>
<tr>
<td>LosAngeles</td>
<td>23</td>
<td>39</td>
<td>49</td>
<td>NA</td>
</tr>
<tr>
<td>Miami</td>
<td>30</td>
<td>46</td>
<td>69</td>
<td>51</td>
</tr>
<tr>
<td>Nashville</td>
<td>-17</td>
<td>23</td>
<td>51</td>
<td>26</td>
</tr>
<tr>
<td>NewYork</td>
<td>-6</td>
<td>12</td>
<td>52</td>
<td>28</td>
</tr>
<tr>
<td>Omaha</td>
<td>-23</td>
<td>5</td>
<td>44</td>
<td>13</td>
</tr>
<tr>
<td>Phoenix</td>
<td>NA</td>
<td>32</td>
<td>61</td>
<td>34</td>
</tr>
<tr>
<td>Portland</td>
<td>-26</td>
<td>8</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>Reno</td>
<td>-16</td>
<td>NA</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>SanFrancisco</td>
<td>24</td>
<td>31</td>
<td>43</td>
<td>NA</td>
</tr>
<tr>
<td>Seattle</td>
<td>NA</td>
<td>29</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>Washington</td>
<td>-5</td>
<td>24</td>
<td>55</td>
<td>29</td>
</tr>
</tbody>
</table>
Ex. 16.2 Find 95% confidence intervals for the population means of the lowest temperature in each month using
1. the complete-case approach,
2. the mean value imputation, and
3. a multiple-imputation approach.

Ex. 16.3 Find the correlation matrix for the four months in Table 16.2 using complete-case analysis, listwise deletion, and multiple imputation.