Package ‘HistDAWass’

January 24, 2024

Type Package
Title Histogram-Valued Data Analysis
Version 1.0.8
Date 2024-01-24
Maintainer Antonio Irpino <antonio.irpino@unicampania.it>
Description In the framework of Symbolic Data Analysis, a relatively new approach to the statistical analysis of multi-valued data, we consider histogram-valued data, i.e., data described by univariate histograms. The methods and the basic statistics for histogram-valued data are mainly based on the L2 Wasserstein metric between distributions, i.e., the Euclidean metric between quantile functions. The package contains unsupervised classification techniques, least square regression and tools for histogram-valued data and for histogram time series. An introducing paper is Irpino A. Verde R. (2015) <doi:10.1007/s11634-014-0176-4>.
License GPL (>= 2)
Imports graphics, class, FactoMineR, ggplot2, ggridges, grid, histogram, grDevices, stats, utils, Rcpp
Depends R(>= 3.1), methods
LazyData true
Collate 'For_Rcpp_int.R' 'All_classes.R' 'RcppExports.R' 'Utility.R'
'Met_HTs.R' 'Met_MatH.R' 'Met_distributionH.R' 'Fuzzy_cmeans.R'
'H_time_series.R' 'HistDAWass-package.R' 'Kohonen_maps.R'
'principal_components.R' 'regression.R'
'unsuperv_classification.R' 'Plotting_with_ggplot.R'
Encoding UTF-8
RoxygenNote 7.3.1
NeedsCompilation yes
LinkingTo Rcpp,RcppArmadillo
Author Antonio Irpino [aut, cre] (<https://orcid.org/0000-0001-9293-7188>)
Repository CRAN
Date/Publication 2024-01-24 17:42:31 UTC
R topics documented:

- HistDAWass-package ... 4
- *.methods ... 5
- + ... 6
- Age_Pyramids_2014 ... 6
- Agronomique .. 7
- BLOOD ... 7
- BloodBRITO .. 8
- Center.cell.MatH .. 8
- checkEmptyBins .. 9
- China_Month .. 10
- China_Seas .. 10
- compP .. 11
- compQ .. 11
- crwtransform ... 12
- data2hist .. 13
- distributionH-class .. 14
- dotpW ... 16
- DouglasPeucker .. 17
- get.cell.MatH .. 18
- get.distr ... 18
- get.histo .. 19
- get.m ... 20
- get.MatH.main.info ... 20
- get.MatH.ncols .. 21
- get.MatH.nrows ... 21
- get.MatH.rownames .. 22
- get.MatH.stats ... 22
- get.MatH.varnames ... 24
- get.s .. 24
- HTS-class .. 25
- HTS.exponential.smoothing .. 25
- HTS.moving.averages .. 26
- HTS.predict.knn .. 27
- is.registeredMH ... 28
- kurtH .. 29
- MatH-class .. 30
- meanH ... 31
- minus .. 32
- OzoneFull ... 33
- OzoneH .. 33
- plot-distributionH ... 34
- plot-HTS ... 34
- plot-MatH ... 35
- plot-TdistributionH ... 36
- plotPredVsObs .. 37
- plot_errors .. 38
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>register</td>
<td>39</td>
</tr>
<tr>
<td>registerMH</td>
<td>40</td>
</tr>
<tr>
<td>RetHTS</td>
<td>41</td>
</tr>
<tr>
<td>rQQ</td>
<td>42</td>
</tr>
<tr>
<td>set.cell.MatH</td>
<td>43</td>
</tr>
<tr>
<td>ShortestDistance</td>
<td>43</td>
</tr>
<tr>
<td>show</td>
<td>44</td>
</tr>
<tr>
<td>show-MatH</td>
<td>44</td>
</tr>
<tr>
<td>skewH</td>
<td>45</td>
</tr>
<tr>
<td>stations_coordinates</td>
<td>46</td>
</tr>
<tr>
<td>stdH</td>
<td>46</td>
</tr>
<tr>
<td>subsetHTS</td>
<td>47</td>
</tr>
<tr>
<td>summaryHTS</td>
<td>48</td>
</tr>
<tr>
<td>TdistributionH-class</td>
<td>48</td>
</tr>
<tr>
<td>TMatH-class</td>
<td>49</td>
</tr>
<tr>
<td>WassSqDistH</td>
<td>50</td>
</tr>
<tr>
<td>WH.1d.PCA</td>
<td>51</td>
</tr>
<tr>
<td>WH.bind</td>
<td>52</td>
</tr>
<tr>
<td>WH.bind.col</td>
<td>53</td>
</tr>
<tr>
<td>WH.bind.row</td>
<td>54</td>
</tr>
<tr>
<td>WH.correlation</td>
<td>54</td>
</tr>
<tr>
<td>WH.correlation2</td>
<td>55</td>
</tr>
<tr>
<td>WH.mat.prod</td>
<td>56</td>
</tr>
<tr>
<td>WH.mat.sum</td>
<td>57</td>
</tr>
<tr>
<td>WH.MultiplePCA</td>
<td>57</td>
</tr>
<tr>
<td>WH.plot_multiple_indivs</td>
<td>58</td>
</tr>
<tr>
<td>WH.plot_multiple_Spanish.funs</td>
<td>60</td>
</tr>
<tr>
<td>WH.regression.GOF</td>
<td>61</td>
</tr>
<tr>
<td>WH.regression.two.components</td>
<td>62</td>
</tr>
<tr>
<td>WH.regression.two.components.predict</td>
<td>63</td>
</tr>
<tr>
<td>WH.SSQ</td>
<td>64</td>
</tr>
<tr>
<td>WH.SSQ2</td>
<td>64</td>
</tr>
<tr>
<td>WH.var.covar</td>
<td>65</td>
</tr>
<tr>
<td>WH.var.covar2</td>
<td>66</td>
</tr>
<tr>
<td>WH.vec.mean</td>
<td>67</td>
</tr>
<tr>
<td>WH.vec.sum</td>
<td>68</td>
</tr>
<tr>
<td>WH_2d_Adaptive_Kohonen_maps</td>
<td>68</td>
</tr>
<tr>
<td>WH_2d_Kohonen_maps</td>
<td>71</td>
</tr>
<tr>
<td>WH_adaptive.kmeans</td>
<td>73</td>
</tr>
<tr>
<td>WH_adaptive_fcmeans</td>
<td>75</td>
</tr>
<tr>
<td>WH_fcmeans</td>
<td>76</td>
</tr>
<tr>
<td>WH_hclust</td>
<td>77</td>
</tr>
<tr>
<td>WH_kmeans</td>
<td>78</td>
</tr>
<tr>
<td>WH_MAT_DIST</td>
<td>80</td>
</tr>
</tbody>
</table>

Index 82
HistDAWass-package

Histogram-Valued Data Analysis

Description

We consider histogram-valued data, i.e., data described by univariate histograms. The methods and the basic statistics for histogram-valued data are mainly based on the L2 Wasserstein metric between distributions, i.e., a Euclidean metric between quantile functions. The package contains unsupervised classification techniques, least square regression and tools for histogram-valued data and for histogram time series.

Details

Package: HistDAWass
Type: Package
Version: 0.1.1
Date: 2014-09-17
License: GPL (>=2)
Depends: methods

An overview of how to use the package, including the most important functions

Author(s)

Antonio Irpino <antonio.irpino@unicampania.it>

References

Examples

```r
# Generating a list of distributions
a <- vector("list", 4)
a[[1]] <- distributionH(
  x = c(80, 100, 120, 135, 150, 165, 180, 200, 240),
  p = c(0, 0.025, 0.1, 0.275, 0.525, 0.725, 0.887, 0.975, 1)
)
a[[2]] <- distributionH(
  x = c(80, 100, 120, 135, 150, 165, 180, 195, 210, 240),
  p = c(0, 0.013, 0.101, 0.255, 0.508, 0.718, 0.895, 0.961, 0.987, 1)
)
```
```r
a[[3]] <- distributionH(
  x = c(95, 110, 125, 140, 155, 170, 185, 200, 215, 230, 245),
  p = c(0, 0.012, 0.041, 0.154, 0.36, 0.595, 0.781, 0.929, 0.972, 0.992, 1)
)
a[[4]] <- distributionH(
  x = c(105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 260),
  p = c(0, 0.009, 0.035, 0.081, 0.186, 0.385, 0.633, 0.832, 0.932, 0.977, 1)
)

# Generating a list of names of observations
namerows <- list("u1", "u2")
# Generating a list of names of variables
namevars <- list("Var_1", "Var_2")
# creating the MatH
Mat_of_distributions <- MatH(
  x = a, nrows = 2, ncols = 2,
  rownames = namerows, varnames = namevars, by.row = FALSE
)
```

Description

the product of a number and a distribution according to the L2 Wasssertein

the product of a number and a distribution according to the L2 Wasssertein

the product of a number and a distribution according to the L2 Wasssertein

Usage

```r
## S4 method for signature 'distributionH,distributionH'
e1 * e2
```

```r
## S4 method for signature 'numeric,distributionH'
e1 * e2
```

```r
## S4 method for signature 'distributionH,numeric'
e1 * e2
```

Arguments

- `e1`: a `distributionH` object or a number
- `e2`: a `distributionH` object or a number
+

Method +

Description

- the sum of two distribution according to the L2 Wasserstein
- the sum of a number and a distribution according to the L2 Wasserstein
- the sum of a distribution and a number according to the L2 Wasserstein

Usage

```r
## S4 method for signature 'distributionH,distributionH'
e1 + e2
```

```r
## S4 method for signature 'numeric,distributionH'
e1 + e2
```

```r
## S4 method for signature 'distributionH,numeric'
e1 + e2
```

Arguments

- `e1`: a `distributionH` object or a number
- `e2`: a `distributionH` object or a number

Value

- a `distributionH` object

Age_Pyramids_2014

Age pyramids of all the countries of the World in 2014

Description

The dataset contains a `MatH` (matrix of histogram-valued data) object, with three histogram-valued variables, the 5-years age (relative frequencies) distribution of all the population, of the male and of the female population of 228 countries of the World. The first row is the World data. Thus it contains 229 rows (228 countries plus the World) and 3 variables: "Both.Sexes.Population", "Male.Population", "Female.Population"

Format

- a `MatH` object, a matrix of distributions.
Agronomique data

Description

A dataset with the distributions of marginal costs of farms in 22 France regions. It contains four histogram variables: "Y_TSC" (Total costs of a farm), "X_Wheat" (Costs for Wheat), "X_Pig" (Costs for Pigs) "X_Cmilk" (Costs for Cow Milk)

Format

a MatH object, a matrix of distributions.

Author(s)

Antonio Irpino, 2014-10-05

Source

United States Census Bureau https://www.census.gov/data.html

Blood dataset for Histogram data analysis

Description

The dataset contains a MatH (matrix of histogram-valued data) object This data set list 14 groups of patients described by 3 variables.

Format

a MatH instance, 1 row per group.

Author(s)

Antonio Irpino, 2014-10-05
Source

BloodBRITO

Blood dataset from Brito P. for Histogram data analysis

Description

The dataset contains a MatH (matrix of histogram-valued data) object This data set list 10 patients described by 2 variables.

Format

a MatH instance, 1 row per patient.

Author(s)

Antonio Irpino, 2014-10-05

Source

Center.cell.MatH

Method Center.cell.MatH Centers all the cells of a matrix of distributions

Description

The function transform a MatH object (i.e. a matrix of distributions), such that each distribution is shifted and has a mean equal to zero

Usage

Center.cell.MatH(object)

S4 method for signature 'MatH'
Center.cell.MatH(object)

Arguments

object a MatH object, a matrix of distributions.
checkEmptyBins

Value

A MatH object, having each distribution with a zero mean.

Examples

```r
CEN_BLOOD <- Center.cell.MatH(BLOOD)
get.MatH.stats(BLOOD, stat = "mean")
```

Description

The method checking for empty bins in a distribution, i.e. if two cdf consecutive values are equal. In that case a probability value of \(1e^{-7}\) is assigned to the empty bin and the cdf is recomputed. This methods is useful for numerical reasons.

Usage

```r
checkEmptyBins(object)
```

Arguments

- `object`: a `distributionH` object

Value

A `distributionH` object without empty bins

Author(s)

Antonio Irpino

Examples

```r
## ---- A mydist distribution with an empty bin i.e. two consecutive values of p are equal----
mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.5, 0.5, 1))
## ---- Checks for empty byns and returns the newdist object without empty bins ----
newdist <- checkEmptyBins(mydist)
```
China_Month

A monthly climatic dataset of China

Description
A dataset with the distributions of some climatic variables collected for each month in 60 stations of China. The collected variables are 168 i.e. 14 climatic variables observed for 12 months. The 14 variables are the following: mean station pressure (mb), mean temperature, mean maximum temperature, mean minimum temperature, total precipitation (mm), sunshine duration (h), mean cloud amount (percentage of sky cover), mean relative humidity (mean wind speed (m/s), dominant wind frequency (extreme minimum temperature. Use the command \texttt{get.MatH.main.info(China_Month)} for rapid info.

Format
a MatH object, a matrix of distributions.

Author(s)
Antonio Irpino, 2014-10-05

Source
raw data are available here: \url{https://data.ess-dive.lbl.gov/view/doi:10.3334/CDIAC/CLI.TR055}

China_Seas

A seasonal climatic dataset of China

Description
A dataset with the distributions of some climatic variables collected for each season in 60 stations of China. The collected variables are 56 i.e. 14 climatic variables observed for 4 seasons. The 14 variables are the following: mean station pressure (mb), mean temperature, mean maximum temperature, mean minimum temperature, total precipitation (mm), sunshine duration (h), mean cloud amount (percentage of sky cover), mean relative humidity (mean wind speed (m/s), dominant wind frequency (extreme minimum temperature. Use the command \texttt{get.MatH.main.info(China_Seas)} for rapid info.

Format
a MatH object, a matrix of distributions.

Author(s)
Antonio Irpino, 2014-10-05
Source

compP

Method compP

Description
Compute the cdf probability at a given value for a histogram

Usage
compP(object, q)

S4 method for signature 'distributionH,numeric'
compP(object, q)

Arguments
object is an object of distributionH class
q is a numeric value

Value
Returns a value between 0 and 1.

Examples

---- A mydist distribution ----
mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
---- Compute the cfd value for q=5 (not observed) ----
p <- compP(mydist, 5)

compQ

Method compQ

Description
Compute the quantile value of a histogram for a given probability.
Usage

 compQ(object, p)

 ## S4 method for signature 'distributionH,numeric'
 compQ(object, p)

Arguments

 object an object of distributionH class
 p a number between 0 and 1

Value

 \[y = F^{-1}(p) = Q(p) \]

A number that is the quantile of the passed histogram object at level \(p \).

Author(s)

Antonio Irpino

Examples

 ## ---- A mydist distribution ----
 mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
 ## ---- Compute the quantile of mydist for different values of p ----
 y <- compQ(mydist, 0.5) # the median
 y <- compQ(mydist, 0) # the minimum
 y <- compQ(mydist, 1) # the maximum
 y <- compQ(mydist, 0.25) # the first quartile
 y <- compQ(mydist, 0.9) # the ninth decile

Method crwtransform: returns the centers and the radii of bins of a distribution

Description

Centers and ranges calculation for bins of a histogram. It is useful for a very fast computation of statistics and methods based on the L2 Wasserstein distance between histograms.

Usage

 crwtransform(object)

 ## S4 method for signature 'distributionH'
 crwtransform(object)
Arguments

object: a distributionH object

Value

A list containing:

$Centers: The midpoints of the bins of the histogram
$Radii: The half-lengths of the bins of the histogram
$Weights: The relative frequencies or the probabilities associated with each bin (the sum is equal to 1)

Author(s)

Antonio Irpino

References

Examples

```r
## ---- A mydist distribution ----
mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
## ---- Compute the cfd value for q=5 (not observed) ----
crwtransform(mydist)
```

Description

From real data to distributionH.

Usage

data2hist(
data,
algo = "histogram",
type = "combined",
qua = 10,
breaks = numeric(0),
epsilon = 0.01
)
14
distributionH-class

Arguments

- **data**: a set of numeric values.
- **algo** (optional): a string. Default is "histogram", i.e. the function "histogram" defined in the `histogram` package. If "base" the `hist` function is used.
 - "FixedQuantiles" computes the histogram using as breaks a fixed number of quantiles.
 - "ManualBreaks" computes a histogram where breaks are provided as a vector of values.
- **type** (optional): a string. Default is "combined" and generates a histogram having regularly spaced breaks (i.e., equi-width bins) and irregularly spaced ones. The choice is done accordingly with the penalization method described in `histogram`.
 - "regular" returns equi-width binned histograms, "irregular" returns a histogram without equi-width histograms.
- **qua**: a positive integer to provide if algo="FixedQuantiles" is chosen. Default=10.
- **breaks**: a vector of values to provide if algo="ManualBreaks" is chosen.
- **epsilon**: a number between 0 and 1 to provide if algo="PolyLine" is chosen. Default=0.01.

Value

A `distributionH` object, i.e. a distribution.

See Also

`histogram` function

Examples

```r
data <- rnorm(n = 1000, mean = 2, sd = 3)
mydist <- data2hist(data)
plot(mydist)
```

distributionH-class Class `distributionH`.

Description

Class "distributionH" defines an histogram object The class describes a histogram by means of its cumulative distribution function. The methods are developed accordingly to the L2 Wasserstein distance between distributions.

A histogram object can be created also with the function `distributionH(...)`, the constructor function for creating an object containing the description of a histogram.
distributionH-class

Usage

S4 method for signature 'distributionH'
initialize(
 .Object,
 x = numeric(0),
 p = numeric(0),
 m = numeric(0),
 s = numeric(0)
)

distributionH(x = numeric(0), p = numeric(0))

Arguments

.Object the type ("distributionH")

x a numeric vector. It is the domain of the distribution (i.e. the extremes of bins).

p a numeric vector (of the same length of x). It is the cumulative distribution function CDF.

m (optional) a numeric value. It is the mean of the histogram.

s (optional) a numeric positive value. It is the standard deviation of a histogram.

Details

Class distributionH defines a histogram object

Value

A distributionH object

Objects from the Class

Objects can be created by calls of the form new("distributionH", x, p, m, s).

Author(s)

Antonio Irpino

References

See Also

meanH computes the mean. stdH computes the standard deviation.
Examples

```r
#---- initialize a distributionH object mydist
# from a simple histogram
# ----------------------------
# | Bins | Prob | cdf |
# ----------------------------
# | [1,2) | 0.4 | 0.4 |
# | [2,3) | 0.6 | 1.0 |
# ----------------------------
# | Tot. | 1.0 | - |
# ----------------------------
mydist <- new("distributionH", c(1, 2, 3), c(0, 0.4, 1))
str(mydist)
# OUTPUT
# Formal class 'distributionH' [package "HistDAWass"] with 4 slots
# ..@ x: num [1:3] 1 2 3 the quantiles
# ..@ p: num [1:3] 0 0.4 1 the cdf
# ..@ m: num 2.1 the mean
# ..@ s: num 0.569 the standard deviation
# or using
mydist <- distributionH(x = c(1, 2, 3), p = c(0, 0.4, 1))
```

Method dotpW

Description

The dot product of two distributions inducing the L2 Wasserstein metric.

The dot product of a number (considered as an impulse distribution function) and a distribution.

The dot product of a distribution and a number (considered as an impulse distribution function).

Usage

```r
dotpW(e1, e2)
```

```r
## S4 method for signature 'distributionH,distributionH'
dotpW(e1, e2)
```

```r
## S4 method for signature 'numeric,distributionH'
dotpW(e1, e2)
```

```r
## S4 method for signature 'distributionH,numeric'
dotpW(e1, e2)
```

Arguments

- `e1` a distributionH object or a number
- `e2` a distributionH object or a number
DouglasPeucker

Value

A numeric value

Author(s)

Antonio Irpino

References

Examples

```r
## let's define two distributionH objects
mydist1 <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
mydist2 <- distributionH(x = c(5, 7, 15), p = c(0, 0.7, 1))

## the dot product between the distributions
dotpW(mydist1, mydist2) #---> 39.51429

## the dot product between a distribution and a numeric
dotpW(mydist1, 3) #---> 13.2
dotpW(3, mydist1) #---> 13.2

# DOTPW method ------
```

Description

Ramer-Douglas-Peucker algorithm for curve fitting with a PolyLine

Usage

`DouglasPeucker(points, epsilon)`

Arguments

- `points`: a 2D matrix with the coordinates of 2D points
- `epsilon`: an number between 0 and 1. Recommended 0.01.

Value

A matrix with the points of segments of a Poly Line.
get.cell.MatH Method get.cell.MatH Returns the histogram in a cell of a matrix of distributions

Description

Returns the histogram data in the r-th row and the c-th column.

Usage

get.cell.MatH(object, r, c)

S4 method for signature 'MatH,numeric,numeric'
get.cell.MatH(object, r, c)

Arguments

- object: a MatH object, a matrix of distributions.
- r: an integer, the row index.
- c: an integer, the column index

Value

A distributionH object.

Examples

get.cell.MatH(BLOOD, r = 1, c = 1)

get.distr Method get.distr: show the distribution

Description

This function returns the cumulative distribution function of a distributionH object.

Usage

get.distr(object)

S4 method for signature 'distributionH'
get.distr(object)
get.histo

Arguments

object a `distributionH` object.

Value

A data frame: the first column contains the domain the second the CDF values.

Examples

```r
D <- distributionH(x = c(1, 2, 3, 4), p = c(0, 0.2, 0.6, 1))
get.distr(D) # a data.frame describing the CDF of D
```

get.histo

Method get.histo: show the distribution with bins

Description

This function returns a data.frame describing the histogram of a `distributionH` object.

Usage

```r
get.histo(object)
```

S4 method for signature 'distributionH'

```r
get.histo(object)
```

Arguments

object a `distributionH` object.

Value

A matrix: the two columns contain the bounds of the histogram the third contains the probability (or the relative frequency) of the bin.

Examples

```r
D <- distributionH(x = c(1, 2, 3, 4), p = c(0, 0.2, 0.6, 1))
get.histo(D) # returns the histogram representation of D by a data.frame
```
get.m

Method get.m: the mean of a distribution

Description

This function returns the mean of a distribution object.

Usage

get.m(object)

S4 method for signature 'distributionH'
get.m(object)

Arguments

object a distributionH object

Value

A numeric value

Examples

D <- distributionH(x = c(1, 2, 3, 4), p = c(0, 0.2, 0.6, 1))
get.m(D) # returns the mean of D

get.MatH.main.info

Method get.MatH.main.info

Description

It returns the number of rows, of columns the labels of rows and columns of a MatH object.

Usage

get.MatH.main.info(object)

S4 method for signature 'MatH'
get.MatH.main.info(object)

Arguments

object a MatH object
Value

A list of char, the labels of the columns, or the names of the variables.

Slots

- `nrows` - the number of rows
- `ncols` - the number of columns
- `rownames` - a vector of char, the names of rows
- `varnames` - a vector of char, the names of columns

Description

It returns the number of columns of a `MatH` object

Usage

```r
get.MatH.ncols(object)
```

Arguments

- `object` a `MatH` object

Value

An integer, the number of columns.

Description

It returns the number of rows of a `MatH` object

Usage

```r
## S4 method for signature 'MatH'
get.MatH.nrows(object)
```
Arguments

object a MatH object

Value

An integer, the number of rows.

get.MatH.rownames Method get.MatH.rownames

Description

It returns the labels of the rows of a MatH object

Usage

get.MatH.rownames(object)

S4 method for signature 'MatH'
get.MatH.rownames(object)

Arguments

object a MatH object

Value

A vector of char, the label of the rows.

get.MatH.stats Method get.MatH.stats

Description

It returns statistics for each distribution contained in a MatH object.

Usage

get.MatH.stats(object, ...)

S4 method for signature 'MatH'
get.MatH.stats(object, stat = "mean", prob = 0.5)
get.MatH.stats

Arguments

object a MatH object
... a set of other parameters
stat (optional) a string containing the required statistic. Default='mean'
- stat='mean' - for computing the mean of each histogram
- stat='median' - for computing the median of each histogram
- stat='min' - for computing the minimum of each histogram
- stat='max' - for computing the maximum of each histogram
- stat='std' - for computing the standard deviation of each histogram
- stat='skewness' - for computing the skewness of each histogram
- stat='kurtosis' - for computing the kurtosis of each histogram
- stat='quantile' - for computing the quantile of level prob of each histogram

prob (optional) a number between 0 and 1 for computing the value once chosen the 'quantile' option for stat.

Value

A list

Slots

 stat - the chosen statistic
 prob - level of probability if stat='quantile'
 MAT - a matrix of values

Examples

get.MatH.stats(BLOOD) # the means of the distributions in BLOOD dataset
get.MatH.stats(BLOOD, stat = "median") # the medians of the distributions in BLOOD dataset
get.MatH.stats(BLOOD, stat = "quantile", prob = 0.5) # the same as median
get.MatH.stats(BLOOD, stat = "min") # minima of the distributions in BLOOD dataset
get.MatH.stats(BLOOD, stat = "quantile", prob = 0) # the same as min
get.MatH.stats(BLOOD, stat = "max") # maxima of the distributions in BLOOD dataset
get.MatH.stats(BLOOD, stat = "quantile", prob = 1) # the same as max
get.MatH.stats(BLOOD, stat = "std") # standard deviations of the distributions in BLOOD dataset
get.MatH.stats(BLOOD, stat = "skewness") # skewness indices of the distributions in BLOOD dataset
get.MatH.stats(BLOOD, stat = "kurtosis") # kurtosis indices of the distributions in BLOOD dataset
get.MatH.stats(BLOOD, stat = "quantile", prob = 0.05)
the fifth percentiles of distributions in BLOOD dataset
Method `get.MatH.varnames`

Description

It returns the labels of the columns, or the names of the variables, of a MatH object.

Usage

```r
get.MatH.varnames(object)
```

```r
## S4 method for signature 'MatH'
get.MatH.varnames(object)
```

Arguments

- `object` a MatH object

Value

A vector of char, the labels of the columns, or the names of the variables.

Method `get.s`

Description

This function returns the standard deviation of a distributionH object.

Usage

```r
get.s(object)
```

```r
## S4 method for signature 'distributionH'
get.s(object)
```

Arguments

- `object` a distributionH object.

Value

A numeric positive value, the standard deviation.

Examples

```r
D <- distributionH(x = c(1, 2, 3, 4), p = c(0, 0.2, 0.6, 1))
get.s(D) # returns the standard deviation of D
```
Class HTS defines a histogram time series, i.e. a set of histograms observed along time.

S4 method for signature 'HTS'
initialize(.Object, epochs = 1, ListOfTimedElements = c(new("TdistributionH")))

Arguments

- **.Object**: the object type ("HTS") a histogram time series
- **epochs**: the number of histograms (one for each timepoint or period)
- **ListOfTimedElements**: a vector of TdistributionH objects

Smoothing with exponential smoothing of a histogram time series

(Beta version of) Extends the exponential smoothing of a time series to a histogram time series, using L2 Wasserstein distance.

Usage

HTS.exponential.smoothing(HTS, alpha = 0.9)

Arguments

- **HTS**: A HTS object (a histogram time series).
- **alpha**: a number between 0 and 1 for exponential smoothing

Value

a list with the results of the smoothing procedure.

Slots

- **smoothing.alpha**: the alpha parameter
- **AveragedHTS**: The smoothed HTS
HTS.moving.averages

Smoothing with moving averages of a histogram time series

Description

(Beta version of) Extends the moving average smoothing of a time series to a histogram time series, using L2 Wasserstein distance.

Usage

HTS.moving.averages(HTS, k = 3, weights = rep(1, k))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS</td>
<td>A HTS object (a histogram time series).</td>
</tr>
<tr>
<td>k</td>
<td>an integer value, the number of elements for moving averages</td>
</tr>
<tr>
<td>weights</td>
<td>a vector of positive weights for a weighted moving average</td>
</tr>
</tbody>
</table>

Value

a list with the results of the smoothing procedure.

Slots

<table>
<thead>
<tr>
<th>Slot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>the number of elements for the average</td>
</tr>
<tr>
<td>weights</td>
<td>the vector of weights for smoothing</td>
</tr>
<tr>
<td>AveragedHTS</td>
<td>The smoothed HTS</td>
</tr>
</tbody>
</table>

Examples

mov.av.smoothed <- HTS.moving.averages(HTS = RetHTS, k = 5)
a show method for HTS must be implemented you can see it using
str(mov.av.smoothed$AveragedHTS)
HTS.predict.knn

K-NN predictions of a histogram time series

Description

(Beta version of) Extends the K-NN algorithm for predicting a time series to a histogram time series, using L2 Wasserstein distance.

Usage

HTS.predict.knn(HTS, position = length(HTS@data), k = 3)

Arguments

- **HTS**: A HTS object (a histogram time series).
- **position**: an integer, the data histogram to predict
- **k**: the number of neighbours (default=3)

Details

Histogram time series (HTS) describe situations where a distribution of values is available for each instant of time. These situations usually arise when contemporaneous or temporal aggregation is required. In these cases, histograms provide a summary of the data that is more informative than those provided by other aggregates such as the mean. Some fields where HTS are useful include economy, official statistics and environmental science. The function adapts the k-Nearest Neighbours (k-NN) algorithm to forecast HTS and, more generally, to deal with histogram data. The proposed k-NN relies on the L2 Wasserstein distance that is used to measure dissimilarities between sequences of histograms and to compute the forecasts.

Value

a distribution object predicted from data.

References

Examples

prediction <- HTS.predict.knn(HTS = RetHTS, position = 108, k = 3)
Method `is.registeredMH`

Description

Checks if a `MatH` contains histograms described by the same number of bins and the same cdf.

Usage

```r
is.registeredMH(object)
```

S4 method for signature 'MatH'

```r
is.registeredMH(object)
```

Arguments

- `object` A `MatH` object

Value

A logical value `TRUE` if the distributions share the same cdf, `FALSE` otherwise.

Author(s)

Antonio Irpino

References

Examples

```r
## ---- initialize three distributionH objects mydist1 and mydist2
mydist1 <- new("distributionH", c(1, 2, 3), c(0, 0.4, 1))
mydist2 <- new("distributionH", c(7, 8, 10, 15), c(0, 0.2, 0.7, 1))
mydist3 <- new("distributionH", c(9, 11, 20), c(0, 0.8, 1))
## create a MatH object
MyMAT <- new("MatH", nrows = 1, ncols = 3, ListOfDist = c(mydist1, mydist2, mydist3), 1, 3
is.registeredMH(MyMAT)
## [1] FALSE #the distributions do not share the same cdf
## Hint: check with str(MyMAT)

## register the two distributions
MATregistered <- registerMH(MyMAT)
```
is.registered(MATregistered)
TRUE # the distributions share the same cdf
Hint: check with str(MATregistered)

kurtH

Method kurtH: computes the kurtosis of a distribution

Description

Kurtosis of a histogram (using the fourth standardized moment)

Usage

```r
kurtH(object)
```

S4 method for signature 'distributionH'

```r
kurtH(object)
```

Arguments

- **object**
 - a `distributionH` object

Value

A value for the kurtosis index, 3 is the kurtosis of a Gaussian distribution

Author(s)

Antonio Irpino

Examples

```r
## ---- A mydist distribution ----
mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
## ---- Compute the kurtosis of mydist ----
kurtH(mydist) #----> 1.473242
```
Class MatH.

Description

Class MatH defines a matrix of distributionH objects. This function creates a matrix of histogram data, i.e., a MatH object.

Usage

```r
## S4 method for signature 'MatH'
initialize(
  .Object,
  nrows = 1,
  ncols = 1,
  ListOfDist = NULL,
  names.rows = NULL,
  names.cols = NULL,
  by.row = FALSE
)
```

```r
MatH(
  x = NULL,
  nrows = 1,
  ncols = 1,
  rownames = NULL,
  varnames = NULL,
  by.row = FALSE
)
```

Arguments

- `.Object` (the object type "MatH")
- `nrows` (optional, default=1) an integer, the number of rows.
- `ncols` (optional, default=1) an integer, the number of columns (aka variables).
- `ListOfDist` (a vector or a list of distributionH objects)
- `names.rows` (a vector or list of strings with the names of the rows)
- `names.cols` (a vector or list of strings with the names of the columns (variables))
- `by.row` (optional, default=FALSE) a logical value, TRUE the matrix is row wise filled, FALSE the matrix is filled column wise.
- `x` (optional, default=an empty distributionH object) a list of distributionH objects
- `rownames` (optional, default=NULL) a list of strings containing the names of the rows.
- `varnames` (optional, default=NULL) a list of strings containing the names of the columns (aka variables).
Value

A `MatH` object

Author(s)

Antonio Irpino

References

Examples

```r
## ---- create a list of six distributionH objects
ListOfDist <- vector("list", 6)
ListOfDist[[1]] <- distributionH(c(1, 2, 3), c(0, 0.4, 1))
ListOfDist[[2]] <- distributionH(c(7, 8, 10, 15), c(0, 0.2, 0.7, 1))
ListOfDist[[3]] <- distributionH(c(9, 11, 20), c(0, 0.5, 1))
ListOfDist[[4]] <- distributionH(c(2, 5, 8), c(0, 0.3, 1))
ListOfDist[[5]] <- distributionH(c(8, 10, 15), c(0, 0.75, 1))
ListOfDist[[6]] <- distributionH(c(20, 22, 24), c(0, 0.12, 1))

## create a MatH object filling it by columns
MyMAT <- new("MatH",
  nrows = 3, ncols = 2, ListOfDist = ListOfDist,
  names.rows = c("I1", "I2", "I3"), names.cols = c("Var1", "Var2"), by.row = FALSE)

showClass("MatH")

# building an empty 10 by 4 matrix of histograms
MAT <- MatH(nrows = 10, ncols = 4)
```

meanH

Method meanH: computes the mean of a distribution

Description

Mean of a histogram (First moment of the distribution)

Usage

```r
meanH(object)
```

```
## S4 method for signature 'distributionH'
meanH(object)
```
Arguments

- object: a distributionH object

Value

- the mean of the distribution

Author(s)

- Antonio Irpino

Examples

```r
## ---- A mydist distribution ----
mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
## ---- Compute the mean of mydist ----
meanH(mydist) #---> 4.4
```

Description

The difference of two distributions according to the L2 Wasserstein distance.

The difference of a number and a distribution according to the L2 Wasserstein distance.

The difference of a distribution and a number according to the L2 Wasserstein distance.

Usage

```r
## S4 method for signature 'distributionH,distributionH'
e1 - e2
## S4 method for signature 'numeric,distributionH'
e1 - e2
## S4 method for signature 'distributionH,numeric'
e1 - e2
```

Arguments

- e1: a distributionH object or a number
- e2: a distributionH object or a number

Note

- It may not work properly if the difference is not a distribution.
OzoneFull

Full Ozone dataset for Histogram data analysis

Description
The dataset contains MatH (matrix of histogram-valued data) object. This data set lists 78 stations located in the USA recording four variables, without missing data.

Format
a MatH instance, 1 row per station.

Author(s)
Antonio Irpino, 2014-10-05

Source

OzoneH
Complete Ozone dataset for Histogram data analysis

Description
The dataset contains MatH (matrix of histogram-valued data) object. This data set lists 84 stations located in the USA recording four variables. Some stations contain missing data.

Format
a MatH instance, 1 row per station.

Author(s)
Antonio Irpino, 2014-10-05

Source
plot-distributionH

plot for a distributionH object

Description
A plot function for a distributionH object. The function returns a representation of the histogram.

Usage
```r
## S4 method for signature 'distributionH'
plot(x, type = "HISTO", col = "green", border = "black")
```

Arguments
- **x**: a distributionH object
- **type** (optional) a string describing the type of plot, default="HISTO". Other allowed types are
 - "CDF"=Cumulative distribution function,
 - "QF"=quantile function,
 - "DENS"=a density approximation,
 - "HBOXPLOT"=horizontal boxplot,
 - "VBOXPLOT"=vertical boxplot,
- **col** (optional) a string the color of the plot, default="green".
- **border** (optional) a string the color of the border of the plot, default="black".

Examples
```r
## ---- initialize a distributionH
mydist <- distributionH(x = c(7, 8, 10, 15), p = c(0, 0.2, 0.7, 1))
# show the histogram
plot(mydist) # plots mydist
plot(mydist, type = "HISTO", col = "red", border = "blue") # plots mydist
plot(mydist, type = "DENS", col = "red", border = "blue") # plots a density approximation for mydist
plot(mydist, type = "HBOXPLOT") # plots a horizontal boxplot for mydist
plot(mydist, type = "VBOXPLOT") # plots a vertical boxplot for mydist
plot(mydist, type = "CDF") # plots the cumulative distribution function of mydist
plot(mydist, type = "QF") # plots the quantile function of mydist
```

plot-HTS

Method plot for a histogram time series

Description
An overloading plot function for a HTS object. The method returns a graphical representation of a histogram time series.
plot-Math

Method plot for a matrix of histograms

Description

An overloading plot function for a MatH object. The method returns a graphical representation of the matrix of histograms.

Usage

```r
## S4 method for signature 'MatH'
plot(x, y = "missing", type = "HISTO", border = "black", angL = 330)
```

Arguments

- `x`: a distributionH object
- `y`: not used in this implementation
- `type`: (optional) a string describing the type of plot, default="HISTO". Other allowed types are "DENS"=a density approximation, "BOXPLOT"=a boxplot
border (optional) a string the color of the border of the plot, default="black".
angL (optional) angle of labels of rows (DEFAULT=330).

Examples

plot(BLOOD) # plots BLOOD dataset
Not run:
plot(BLOOD, type = "HISTO", border = "blue") # plots a matrix of histograms
plot(BLOOD, type = "DENS", border = "blue") # plots a matrix of densities
plot(BLOOD, type = "BOXPLOT") # plots a boxplots
End(Not run)

Description

A plot function for a TdistributionH object. The function returns a representation of the histogram.

Usage

S4 method for signature 'TdistributionH'
plot(x, type = "HISTO", col = "green", border = "black")

Arguments

x a TdistributionH object
type (optional) a string describing the type of plot, default="HISTO".
Other allowed types are
"CDF"=Cumulative distribution function,
"QF"= quantile function,
"DENS"=a density approximation,
"HBOXPLOT"=horizontal boxplot,
"VBOXPLOT"= vertical boxplot,
col (optional) a string the color of the plot, default="green".
border (optional) a string the color of the border of the plot, default="black".
Description

This function allows the representation of observed vs predicted histograms. It can be used as a tool for interpreting predictive methods (for example, the regression of histogram data).

Usage

```r
plotPredVsObs(PRED, OBS, type = "HISTO", ncolu = 2)
```

Arguments

- **PRED**: a `MatH` object with one column, the predicted data
- **OBS**: a `MatH` object with one column, the observed data
- **type**: a string. "HISTO" (default), if one wants to compare histograms "CDF", if one wants to compare cumulative distribution functions; "DENS" if one wants to compare approximated densities (using KDE);
- **ncolu**: number of columns in which is arranged the plot, default is 2. If you have a lot of data consider to choose higher values.

Value

A plot with compared histogram-valued data.

Examples

```r
## do a regression
pars <- WH.regression.two.components(BLOOD, Yvar = 1, Xvars = c(2:3))
## predict data
PRED <- WH.regression.two.components.predict(data = BLOOD[, 2:3], parameters = pars)
## define observed data
## Not run:
OBS <- BLOOD[, 1]
plotPredVsObs(PRED, OBS, "HISTO")
plotPredVsObs(PRED, OBS, "CDF")
plotPredVsObs(PRED, OBS, "DENS")
## End(Not run)
```
plot_errors

A function for plotting functions of errors

Description
This function allows the representation of the difference between observed histograms and the respective predicted ones. It can be used as a tool for interpreting predictive methods (for example, the regression of histogram data).

Usage
plot Errors(PRED, OBS, type = "HISTO_QUA", np = 200)

Arguments
- PRED: a Math object with one column, the predicted data
- OBS: a Math object with one column, the observed data
- type: a string. "HISTO_QUA" (default), if one wants to compare histograms quantile differences
 "HISTO_DEN", if one wants to show the histogram densities differences;
 "DENS_KDE" if one wants to show the differences between approximated densities (using KDE);
- np: number of points considered for density or quantile computation (default = 200).

Value
A plot with functions of differences between observed and predicted histograms, and a Root Mean Squared value computing by using the L2 Wasserstein distance.

Examples
```r
## do a regression
pars <- WH.regression.two.components(BLOOD, Yvar = 1, Xvars = c(2:3))
## predict data
PRED <- WH.regression.two.components.predict(data = BLOOD[, 2:3], parameters = pars)
## define observed data
OBS <- BLOOD[, 1]
plot_errors(PRED, OBS, "HISTO_QUA")
plot_errors(PRED, OBS, "HISTO_DEN")
plot_errors(PRED, OBS, "DENS_KDE")
```
Description

Given two distributionH objects, it returns two equivalent distributions such that they share the same cdf values. This function is useful for computing basic statistics.

Usage

register(object1, object2)

S4 method for signature 'distributionH,distributionH'
register(object1, object2)

Arguments

object1 A distributionH object
object2 A distributionH object

Value

The two distributionH objects in input sharing the same cdf (the p slot)

Author(s)

Antonio Irpino

References

Examples

---- initialize two distributionH objects mydist1 and mydist2
mydist1 <- distributionH(c(1, 2, 3), c(0, 0.4, 1))
mydist2 <- distributionH(c(7, 8, 10, 15), c(0, 0.2, 0.7, 1))
register the two distributions
regDist <- register(mydist1, mydist2)

OUTPUT:
regDist[[1]]
An object of class "distributionH"
registerMH

Description

registerMH method registers a set of distributions of a MatH object. All the distributions are recomputed to obtain distributions sharing the same p slot. This method is useful for using fast computation of all methods based on L2 Wasserstein metric. The distributions will have the same number of elements in the x slot without modifying their density function.

Usage

```
registerMH(object)
```

Arguments

- `object`: A MatH object (a matrix of distributions)

Value

A MatH object, a matrix of distributions sharing the same p slot (i.e. the same cdf).

Author(s)

Antonio Irpino

References

Examples

```r
# initialize three distributionH objects mydist1 and mydist2
mydist1 <- new("distributionH", c(1, 2, 3), c(0, 0.4, 1))
mydist2 <- new("distributionH", c(7, 8, 10, 15), c(0, 0.2, 0.7, 1))
mydist3 <- new("distributionH", c(9, 11, 20), c(0, 0.8, 1))
# create a MatH object
MyMAT <- new("MatH", nrows = 1, ncols = 3,ListOfDist = c(mydist1, mydist2, mydist3), 1, 3)
# register the two distributions
MATregistered <- registerMH(MyMAT)
# OUTPUT the structure of MATregistered
str(MATregistered)
```

```r
# Formal class 'MatH' [package "HistDAWass"] with 1 slots
# .. @ M:List of 3
# .. ..$ :Formal class 'distributionH' [package "HistDAWass"] with 4 slots
# .. .. .. ..@ x: num [1:6] 1 1.5 2 2.5 2.67 ... 
# .. .. .. ..@ p: num [1:6] 0 0.2 0.4 0.7 0.8 1 
# ...
# .. ..$ :Formal class 'distributionH' [package "HistDAWass"] with 4 slots
# .. .. .. ..@ x: num [1:6] 7 8 8.8 10 11.7 ... 
# .. .. .. ..@ p: num [1:6] 0 0.2 0.4 0.7 0.8 1 
# ...
# .. ..$ :Formal class 'distributionH' [package "HistDAWass"] with 4 slots
# .. .. .. ..@ x: num [1:6] 9 9.5 10 10.8 11 ... 
# .. .. .. ..@ p: num [1:6] 0 0.2 0.4 0.7 0.8 1 
# ...
# ..- attr(*, "dim")= int [1:2] 1 3
# ..- attr(*, "dimnames")=List of 2
# ...$. : chr "I1"
# ...$. : chr [1:3] "X1" "X2" "X3"
```

RetHTS

A histogram-valued dataset of returns

Description

A histogram-valued dataset of returns of dollar vs yen change rates

Format

-a MatH object, a matrix of distributions.

Author(s)

Antonio Irpino, 2014-10-05
rQQ

Method rQQ

Description

Quantile-Quantile correlation between two distributions

Usage

```r
rQQ(e1, e2)
```

S4 method for signature 'distributionH,distributionH'

```r
rQQ(e1, e2)
```

Arguments

- `e1` A `distributionH` object
- `e2` A `distributionH` object

Value

Pearson correlation index between quantiles

Author(s)

Antonio Irpino

References

Examples

```r
## ---- initialize two distributionH object mydist1 and mydist2
mydist1 <- distributionH(x = c(1, 2, 3), p = c(0, 0.4, 1))
mydist2 <- distributionH(x = c(7, 8, 10, 15), p = c(0, 0.2, 0.7, 1))
## computes the rQQ
rQQ(mydist1, mydist2)
## OUTPUT 0.916894
```
Method set.cell.MatH assign a histogram to a cell of a matrix of histograms

Description

Assign a histogram data to the r-th row and the c-th column of a matrix of histograms.

Usage

set.cell.MatH(object, mat, r, c)

Arguments

object
a distributionH object, a matrix of distributions.
mat
a MatH object, a matrix of distributions.
r
an integer, the row index.
c
an integer, the column index

Value

A MatH object.

Examples

mydist <- distributionH(x = c(0, 1, 2, 3, 4), p = c(0, 0.1, 0.6, 0.9, 1))
MAT <- set.cell.MatH(mydist, BLOOD, r = 1, c = 1)

ShortestDistance

Shortest distance from a point o a 2d segment

Description

Shortest distance from a point o a 2d segment

Usage

ShortestDistance(p, line)

Arguments

p
coordinates of a point
line
a 2x2 matrix with the coordinates of two points defining a line
Value

A numeric value, the Euclidean distance of point p to the line.

See Also

data2hist function and DouglasPeucker function

Description

An overriding show function for a distributionH object. The function returns a representation of the histogram, if the number of bins is high the central part of the histogram is truncated.

Usage

S4 method for signature 'distributionH'
show(object)

Arguments

object a distributionH object

Examples

---- initialize a distributionH
mydist <- distributionH(x = c(7, 8, 10, 15), p = c(0, 0.2, 0.7, 1))
show the histogram
mydist

Description

An overriding show method for a MatH object. The method returns a representation of the matrix using the mean and the standard deviation for each histogram.

Usage

S4 method for signature 'MatH'
show(object)

Arguments

object a MatH object
Examples

show(BLOOD)
print(BLOOD)
BLOOD

skewH

Method skewH: computes the skewness of a distribution

Description

Skewness of a histogram (using the third standardized moment)

Usage

skewH(object)

S4 method for signature 'distributionH'
skewH(object)

Arguments

object a distributionH object

Value

A value for the skewness index

Author(s)

Antonio Irpino

Examples

---- A mydist distribution ----
mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
---- Compute the skewness of mydist ----
skewH(mydist) #--> -1.186017
stations_coordinates
Stations coordinates of China_Month and China_Seas datasets

Description

A dataset containing the geographical coordinates of stations described in China_Month and China_Seas datasets

Format

a data.frame

Author(s)

Antonio Irpino, 2014-10-05

Source

stdH

Method stdH: computes the standard deviation of a distribution

Description

Standard deviation of a histogram (i.e., the square root of the centered second moment)

Usage

```r
stdH(object)
```

```r
## S4 method for signature 'distributionH'
stdH(object)
```

Arguments

- `object` a `distributionH` object

Value

A value for the standard deviation

Author(s)

Antonio Irpino
Examples

```r
## ---- A mydist distribution ----
mydist <- distributionH(x = c(1, 2, 3, 10), p = c(0, 0.1, 0.5, 1))
## ---- Compute the standard deviation of mydist ----
stdH(mydist) #---> 2.563851
```

Method subsetHTS: extract a subset of a histogram time series

Description

This function returns the mean of a `distributionH` object.

Usage

```r
subsetHTS(object, from, to)
```

Arguments

- `object`: a `HTS` object. A histogram 1d time series
- `from`: an integer, the initial timepoint
- `to`: an integer, a final timepoint

Value

a `HTS` object. A histogram 1d time series

Examples

```r
SUB_RetHTS <- subsetHTS(RetHTS, from = 1, to = 20) # the first 20 elements
```
summaryHTS function for summarize HTS

Description
A summarizer for HTS

Usage
summaryHTS(x)

Arguments
x a HTS

Value
A matrix with basic statistics.

Examples
summaryHTS(subsetHTS(RetHTS, from = 1, to = 10))

TdistributionH-class

Description
Class TdistributionH defines a histogram with a time (point or period)

Usage
S4 method for signature 'TdistributionH'
initialize(
 .Object,
 tstamp = numeric(0),
 period = list(start = -Inf, end = -Inf),
 x = numeric(0),
 p = numeric(0),
 m = numeric(0),
 s = numeric(0)
)

Arguments

- **.Object**: the type of object ("TdistributionH") a "distributionH" object with a time reference
- **tstamp**: a numeric value related to a timestamp
- **period**: a list of two values, the starting time and the ending time (alternative to tstamp if the distribution is observed along a period and not on a timestamp)
- **x**: a vector of increasing values, the domain of the distribution (the same of `distributionH` object)
- **p**: a vector of increasing values from 0 to 1, the CDF of the distribution (the same of `distributionH` object)
- **m**: a number, the mean of the distribution (the same of `distributionH` object)
- **s**: a positive number, the standard deviation of the distribution (the same of `distributionH` object)

TMatH-class

Class **TMatH**

Description

Class **TMatH** defines a matrix of histograms, a **TMatH** object, with a time (a timepoint or a time window).

Usage

```r
## S4 method for signature 'TMatH'
initialize(
  .Object,
  tstamp = numeric(0),
  period = list(start = -Inf, end = -Inf),
  mat = new("MatH")
)
```

Arguments

- **.Object**: the type of object ("TMatH")
- **tstamp**: a vector of time stamps, numeric.
- **period**: a list of pairs with a vector of starting time and a vector of ending time. This parameter is used alternatively to `tstamp` if the distributions are related to time periods instead of timestamps
- **mat**: a **MatH** object
Description

Computes the squared L2 Wasserstein distance between two distributionH objects.

Usage

WassSqDistH(object1, object2, ...)

S4 method for signature 'distributionH,distributionH'
WassSqDistH(object1 = object1, object2 = object2, details = FALSE)

Arguments

object1 is an object of distributionH class
object2 is an object of distributionH class
... optional parameters
details (optional, default=FALSE) is a logical value, if TRUE returns the decomposition of the distance

Value

If details=FALSE, the function returns the squared L2 Wasserstein distance.
If details=TRUE, the function returns list containing the squared distance, its decomposition in three parts (position, size and shape) and the correlation coefficient between the quantile functions.

References

Examples

---- create two distributionH objects ----
mydist1 <- distributionH(x = c(1, 2, 3), p = c(0, 0.4, 1))
mydist2 <- distributionH(x = c(7, 8, 10, 15), p = c(0, 0.2, 0.7, 1))
-- compute the squared L2 Wasserstein distance
WassSqDistH(mydist1, mydist2)
-- compute the squared L2 Wasserstein distance with details
WassSqDistH(mydist1, mydist2, details = TRUE)
Description

The function implements a Principal components analysis of histogram variable based on Wasserstein distance. It performs a centered (not standardized) PCA on a set of quantiles of a variable. Being a distribution a multi-valued description, the analysis performs a dimensional reduction and a visualization of distributions. It is a 1d (one dimension) because it is considered just one histogram variable.

Usage

```r
WH.1d.PCA(
  data,
  var,
  quantiles = 10,
  plots = TRUE,
  listaxes = c(1:4),
  axisequal = FALSE,
  qcut = 1,
  outl = 0
)
```

Arguments

data A MatH object (a matrix of distributionH).
var An integer, the variable number.
quantiles An integer, it is the number of quantiles used in the analysis.
plots a logical value. Default=TRUE plots are drawn.
listaxes A vector of integers listing the axis for the 2d factorial representations.
axisequal A logical value. Default TRUE, the plot have the same scale for the x and the y axes.
qcut a number between 0.5 and 1, it is used for the plot of densities, and avoids very peaked densities. Default=1, all the densities are considered.
outl a number between 0 (default) and 0.5. For each distribution, is the amount of mass removed from the tails of the distribution. For example, if 0.1, from each distribution is cut away a left tail and a right one each containing the 0.1 of mass.

Details

In the framework of symbolic data analysis (SDA), distribution-valued data are defined as multi-valued data, where each unit is described by a distribution (e.g., a histogram, a density, or a quantile function) of a quantitative variable. SDA provides different methods for analyzing multi-valued
data. Among them, the most relevant techniques proposed for a dimensional reduction of multivalued quantitative variables is principal component analysis (PCA). This paper gives a contribution in this context of analysis. Starting from new association measures for distributional variables based on a peculiar metric for distributions, the squared Wasserstein distance, a PCA approach is proposed for distribution-valued data, represented by quantile-variables.

Value

a list with the results of the PCA in the MFA format of package `FactoMineR` for function MFA

References

Examples

```r
results <- WH.1d.PCA(data = BLOOD, var = 1, listaxes = c(1:2))
```

`WH.bind`

Method `WH.bind`

Description

It attaches two `MatH` objects with the same columns by row, or the same rows by column.

Usage

`WH.bind(object1, object2, byrow)`

```r
# S4 method for signature 'MatH,MatH'
WH.bind(object1, object2, byrow = TRUE)
```

Arguments

- `object1` a `MatH` object
- `object2` a `MatH` object
- `byrow` a logical value (default=TRUE) attaches the objects by row

Value

a `MatH` object,
See Also

WH.bind.row for binding by row, WH.bind.col for binding by column

Examples

binding by row
M1 <- BLOOD[1:10, 1]
M2 <- BLOOD[1:10, 3]
MAT <- WH.bind(M1, M2, byrow = TRUE)

binding by col
M1 <- BLOOD[1:10, 1]
M2 <- BLOOD[1:10, 3]
MAT <- WH.bind(M1, M2, byrow = FALSE)

WH.bind.col

Method WH.bind.col

Description

It attaches two MatH objects with the same rows by columns.

Usage

WH.bind.col(object1, object2)

S4 method for signature 'MatH,MatH'
WH.bind.col(object1, object2)

Arguments

object1 a MatH object
object2 a MatH object

Value

a MatH object.

Examples

M1 <- BLOOD[1:10, 1]
M2 <- BLOOD[1:10, 3]
MAT <- WH.bind.col(M1, M2)
WH.bind.row
Method WH.bind.row

Description
It attaches two MatH objects with the same columns by row.

Usage

```
WH.bind.row(object1, object2)
```

```r
## S4 method for signature 'MatH,MatH'
WH.bind.row(object1, object2)
```

Arguments
- `object1`: a MatH object
- `object2`: a MatH object

Value
a MatH object,

Examples
```
M1 <- BLOOD[1:3, ]
M2 <- BLOOD[5:8, ]
MAT <- WH.bind.row(M1, M2)
```

WH.correlation
Method WH.correlation

Description
Compute the correlation matrix of a MatH object, i.e. a matrix of values consistent with a set of distributions equipped with a L2 wasserstein metric.

Usage

```
WH.correlation(object, ...)
```

```r
## S4 method for signature 'MatH'
WH.correlation(object, w = numeric(0))
```
Arguments

- **object**
 - a `MatH` object

- **...**
 - some optional parameters

- **w**
 - it is possible to add a vector of weights (positive numbers) having the same size of the rows of the `MatH` object, default = equal weight for each row

Value

- a squared matrix with the (weighted) correlations indices

References

Examples

```r
WH.correlation(BLOOD)
# generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD))
WH.correlation(BLOOD, w = RN)
```

WH.correlation2 Method

Description

Compute the correlation matrix using two `MatH` objects having the same number of rows. It returns a rectangular a matrix of numbers, consistent with a set of distributions equipped with a L2 Wasserstein metric.

Usage

```r
WH.correlation2(object1, object2, ...)
```

```r
## S4 method for signature 'MatH,MatH'
WH.correlation2(object1, object2, w = numeric(0))
```

Arguments

- **object1**
 - a `MatH` object

- **object2**
 - a `MatH` object

- **...**
 - some optional parameters

- **w**
 - it is possible to add a vector of weights (positive numbers) having the same size of the rows of the `MatH` object, default = equal weight for each row
Value

a rectangular matrix with the weighted sum of squares

Examples

```r
M1 <- BLOOD[, 1]
M2 <- BLOOD[, 2:3]
WH.correlation2(M1, M2)
# generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD))
WH.correlation2(M1, M2, w = RN)
```

WH.mat.prod

Method WH.mat.prod

Description

It is the matrix product of two MatH objects, i.e. two matrices of distributions, by using the dot product of two histograms that is consistent with a set of distributions equipped with a L2 Wasserstein metric.

Usage

```r
WH.mat.prod(object1, object2, ...)
```

S4 method for signature 'MatH,MatH'

```r
WH.mat.prod(object1, object2, transpose1 = FALSE, transpose2 = FALSE)
```

Arguments

- `object1`: a MatH object
- `object2`: a MatH object
- `...`: other optional parameters
- `transpose1`: a logical value, default=FALSE. If TRUE transposes `object1`
- `transpose2`: a logical value, default=FALSE. If TRUE transposes `object2`

Value

a matrix of numbers

Examples

```r
M1 <- BLOOD[1:5, ]
M2 <- BLOOD[6:10, ]
MAT <- WH.mat.prod(M1, M2, transpose1 = TRUE, transpose2 = FALSE)
```
Method WH.mat.sum

Description

It sums two MatH objects, i.e. two matrices of distributions, by summing the quantile functions of histograms. This sum is consistent with a set of distributions equipped with a L2 wasserstein metric.

Usage

WH.mat.sum(object1, object2)

S4 method for signature 'MatH,MatH'
WH.mat.sum(object1, object2)

Arguments

object1 a MatH object
object2 a MatH object

Value

a MatH object.

Examples

binding by row
M1 <- BLOOD[1:5,]
M2 <- BLOOD[6:10,]
MAT <- WH.mat.sum(M1, M2)

WH.MultiplePCA Principal components analysis of a set of histogram variable based on Wasserstein distance

Description

(Beta version) The function implements a Principal components analysis of a set of histogram variables based on Wasserstein distance. It performs a centered (not standardized) PCA on a set of quantiles of a variable. Being a distribution a multivalued description, the analysis performs a dimensional reduction and a visualization of distributions. It is a 1d (one dimension) because it is considered just one histogram variable.

Usage

WH.MultiplePCA(data, list.of.vars, quantiles = 10, outl = 0)
WH.plot_multiple_indivs

Arguments

data A MatH object (a matrix of distributionH).
list.of.vars A list of integers, the active variables.
quantiles An integer, it is the number of quantiles used in the analysis. Default=10.
outl a number between 0 (default) and 0.5. For each distribution, is the amount of mass removed from the tails of the distribution. For example, if 0.1, from each distribution is cut away a left tail and a right one each containing the 0.1 of mass.

Details

It is an extension of WH.1d.PCA to the multiple case.

Value

a list with the results of the PCA in the MFA format of package FactoMineR for function MFA

Description

(Beta version) The function plots histogram data of the individuals for a particular variable on a factorial plane after a Multiple factor analysis.

Usage

WH.plot_multiple_indivs(
data,
res,
axes = c(1, 2),
indiv = 0,
var = 1,
strx = 0.1,
stry = 0.1,
HISTO = TRUE,
coor = 0,
stat = "mean"
)
WH.plot_multiple_indivs

Arguments

data a MatH object
res Results from WH.MultiplePCA.
axes A list of integers, the new factorial axes c(1,2) are the default.
indiv A list of objects (rows) of data to plot. Default=0 all the objects of data.
var An integer indicating an original histogram variable to plot.
strx a resizing factor for the domain of histograms (default=0.1 means that each dis-
 trition has a support that is one tenth of the spread of the x axis)
stry a resizing factor for the density of histograms (default=0.1 means that each dis-
 trition has a density that is one tenth of the spread of the y axis)
HISTO a logical value. Default=TRUE plots histograms, FALSE plot smooth densities.
coor (optional) if 0 (Default) takes the coordinates in res, if a a matrix is passed the
 coordinates are those passed
stat (optional) if 'mean' (Default) a plot of individuals labeled by the means is pro-
 duced. Otherwise if 'std', 'skewness' or 'kurtosis', data are labeled with this
 statistic.

Value

a plot of class ggplot

Examples

Do a MultiplePCA on the BLOOD dataset
Not run:
results=WH.MultiplePCA(BLOOD,list.of.vars = c(1:3))
Plot histograms of variable 1 of BLOOD dataset on the first
factorial plane showing histograms
WH.plot_multiple_indivs(BLOOD, results,
 axes = c(1, 2), var = 1, strx = 0.1,
 stry = 0.1, HISTO = TRUE
)
Plot histograms of variable 1 of BLOOD dataset on the first
factorial plane showing densities
WH.plot_multiple_indivs(BLOOD, results,
 axes = c(1, 2), var = 1, strx = 0.1,
 stry = 0.1, HISTO = FALSE
)
End(Not run)
WH.plot_multiple_Spanish.funs

Plotting Spanish fun plots for Multiple factor analysis of Histogram Variables

Description

The function plots the circle of correlation of the quantiles of the histogram variables after a Multiple factor analysis.

Usage

WH.plot_multiple_Spanish.funs(
 res,
 axes = c(1, 2),
 var = 1,
 LABS = TRUE,
 multi = TRUE,
 corplot = TRUE
)

Arguments

res
 Results from WH.MultiplePCA, or WH.1D.PCA.
axes
 A list of integers, the new factorial axes c(1,2) are the default.
var
 A list of integers are the variables to plot.
LABS
 Logical, if TRUE graph is labeled, otherwise it does not.
multi
 Logical, if TRUE (default) results come from a WH.MultiplePCA, if FALSE results come from WH.1D.PCA.
corplot
 Logical, if TRUE (default) the plot reports correlations, if FALSE the coordinates of quantiles on the factorial plane

Value

a plot of class ggplot

Examples

Do a MultiplePCA on the BLOOD dataset
Not run:
res <- WH.MultiplePCA(BLOOD, list.of.vars = c(1:3))

End(Not run)
Plot results
Not run:
WH.plot_multiple_Spanish.funs(res, axes = c(1, 2), var = c(1:3))

End(Not run)
Goodness of Fit indices for Multiple regression of histogram variables based on a two component model and L2 Wasserstein distance

Description

It computes three goodness of fit indices using the results and the predictions of a regression done with \texttt{WH.regression.two.components} function.

Usage

\begin{verbatim}
WH.regression.GOF(observed, predicted)
\end{verbatim}

Arguments

\begin{verbatim}
observed \\
\hspace{1em} A one column MatH object, the observed histogram variable \\
predicted \\
\hspace{1em} A one column MatH object, the predicted histogram variable.
\end{verbatim}

Value

a list with the GOF indices

References

Examples

\begin{verbatim}
do regression
model.parameters <- WH.regression.two.components(data = BLOOD, Yvar = 1, Xvars = c(2:3))
do prediction
Predicted.BLOOD <- WH.regression.two.components.predict(data = BLOOD[, 2:3],
\hspace{3em} parameters = model.parameters)
compute GOF indices
GOF.indices <- WH.regression.GOF(observed = BLOOD[, 1], predicted = Predicted.BLOOD)
\end{verbatim}
WH.regression.two.components

Multiple regression analysis for histogram variables based on a two component model and L2 Wasserstein distance

Description

The function implements Multiple regression analysis for histogram variables based on a two component model and L2 Wasserstein distance. Taking as input dependent histogram variable and a set of explanatory histogram variables the methods return a least squares estimation of a two component regression model based on the decomposition of L2 Wasserstein metric for distributional data.

Usage

```r
WH.regression.two.components(data, Yvar, Xvars, simplify = FALSE, qua = 20)
```

Arguments

- `data`: A MatH object (a matrix of distributionH).
- `Yvar`: An integer, the dependent variable number in data.
- `Xvars`: A set of integers the explanatory variables in data.
- `simplify`: a logical argument (default=FALSE). If TRUE only few equally spaced quantiles are considered (for speeding up the algorithm)
- `qua`: If simplify=TRUE is the number of quantiles to consider.

Details

A two component regression model is implemented. The observed variables are histogram variables according to the definition given in the framework of Symbolic Data Analysis and the parameters of the model are estimated using the classic Least Squares method. An appropriate metric is introduced in order to measure the error between the observed and the predicted distributions. In particular, the Wasserstein distance is proposed. Such a metric permits to predict the response variable as direct linear combination of other independent histogram variables.

Value

a named vector with the model estimated parameters

References

Examples

```r
model.parameters <- WH.regression.two.components(data = BLOOD, Yvar = 1, Xvars = c(2:3))
```

WH.regression.two.components.predict

Multiple regression analysis for histogram variables based on a two component model and L2 Wasserstein distance

Description

Predict distributions using the results of a regression done with `WH.regression.two.components` function.

Usage

```r
WH.regression.two.components.predict(data, parameters)
```

Arguments

- **data**: A MatH object (a matrix of distributionH) explanatory part.
- **parameters**: A named vector with the parameter from a `WH.regression.two.components` model

Value

A MatH object, the predicted histograms

References

Examples

```r
# do regression
model.parameters <- WH.regression.two.components(data = BLOOD, Yvar = 1, Xvars = c(2:3))
# do prediction
Predicted.BLOOD <- WH.regression.two.components.predict(data = BLOOD[, 2:3],
                                                      parameters = model.parameters)
```
Method WH.SSQ

Description

Compute the sum-of-squares-deviations (from the mean) matrix of a MatH object, i.e. a matrix of numbers, consistent with a set of distributions equipped with a L2 wasserstein metric.

Usage

WH.SSQ(object, ...)

S4 method for signature 'MatH'
WH.SSQ(object, w = numeric(0))

Arguments

object

a MatH object

...

some optional parameters

w

it is possible to add a vector of weights (positive numbers) having the same size of the rows of the MatH object, default = equal weight for each row

Value

a squared matrix with the weighted sum of squares

Examples

WH.SSQ(BLOOD)
generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD))
WH.SSQ(BLOOD, w = RN)

Method WH.SSQ2

Description

Compute the sum-of-squares-deviations (from the mean) matrix using two MatH objects having the same number of rows, It returns a rectangular a matrix of numbers, consistent with a set of distributions equipped with a L2 wasserstein metric.
Usage

\texttt{WH.SSQ2(object1, object2, \ldots)}

\begin{verbatim}
S4 method for signature 'MatH,MatH'
WH.SSQ2(object1, object2, w = numeric(0))
\end{verbatim}

Arguments

- \texttt{object1} a MatH object
- \texttt{object2} a MatH object
- \texttt{\ldots} some optional parameters
- \texttt{w} it is possible to add a vector of weights (positive numbers) having the same size of the rows of the MatH object, default = equal weight for each row

Value

a rectangular matrix with the weighted sum of squares

Examples

\begin{verbatim}
M1 <- BLOOD[, 1]
M2 <- BLOOD[, 2:3]
WH.SSQ2(M1, M2)
generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD))
WH.SSQ2(M1, M2, w = RN)
\end{verbatim}

\textbf{WH.var.covar} \hspace{1cm} Method \textbf{WH.var.covar}

Description

Compute the variance-covariance matrix of a MatH object, i.e. a matrix of values consistent with a set of distributions equipped with a L2 wasserstein metric.

Usage

\texttt{WH.var.covar(object, \ldots)}

\begin{verbatim}
S4 method for signature 'MatH'
WH.var.covar(object, w = numeric(0))
\end{verbatim}

Arguments

- \texttt{object} a MatH object
- \texttt{\ldots} some optional parameters
- \texttt{w} it is possible to add a vector of weights (positive numbers) having the same size of the rows of the MatH object, default = equal weight for each row
WH.var.covar2

Value

a squared matrix with the (weighted) variance-covariance values

References

Examples

WH.var.covar(BLOOD)
generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD))
WH.var.covar(BLOOD, w = RN)

WH.var.covar2

Method WH.var.covar2

Description

Compute the covariance matrix using two MatH objects having the same number of rows. It returns a rectangular matrix of numbers, consistent with a set of distributions equipped with a L2 Wasserstein metric.

Usage

WH.var.covar2(object1, object2, ...)

S4 method for signature 'MatH,MatH'
WH.var.covar2(object1, object2, w = numeric(0))

Arguments

object1 a MatH object
object2 a MatH object
... some optional parameters
w it is possible to add a vector of weights (positive numbers) having the same size of the rows of the MatH object, default = equal weight for each row

Value

a rectangular matrix with the weighted sum of squares
Examples

```r
M1 <- BLOOD[, 1]
M2 <- BLOOD[, 2:3]
WH.var.covar2(M1, M2)
# generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD))
WH.var.covar2(M1, M2, w = RN)
```

WH.vec.mean

Method WH.vec.mean

Compute a histogram that is the weighted mean of the set of histograms contained in a MatH object, i.e. a matrix of histograms, consistent with a set of distributions equipped with a L2 wasserstein metric.

Usage

```r
WH.vec.mean(object, ...)
```

S4 method for signature 'MatH'

```r
WH.vec.mean(object, w = numeric(0))
```

Arguments

- `object`: a MatH object
- `...`: optional arguments
- `w`: it is possible to add a vector of weights (positive numbers) having the same size of the MatH object, default = equal weights for all

Value

a distribution object, i.e. a histogram

Examples

```r
hmean <- WH.vec.mean(BLOOD)
# generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD) * get.MatH.ncols(BLOOD))
hmean <- WH.vec.mean(BLOOD, w = RN)
```
Method WH.vec.sum

Description

Compute a histogram that is the weighted sum of the set of histograms contained in a MatH object, i.e. a matrix of histograms, consistent with a set of distributions equipped with a L2 Wasserstein metric.

Usage

```r
WH.vec.sum(object, ...)  
## S4 method for signature 'MatH'
WH.vec.sum(object, w = numeric(0))
```

Arguments

- `object`: a MatH object
- `...`: optional arguments
- `w`: it is possible to add a vector of weights (positive numbers) having the same size of the MatH object, default = equal weights for all cells

Value

a `distributionH` object, i.e. a histogram

Examples

```r
hsum <- WH.vec.sum(BLOOD)
# generate a set of random weights
RN <- runif(get.MatH.nrows(BLOOD) * get.MatH.ncols(BLOOD))
hsum <- WH.vec.sum(BLOOD, w = RN)
### SUM of distributions ----
```

WH_2d_Adaptive_Kohonen_maps

Batch Kohonen self-organizing 2d maps using adaptive distances for histogram-valued data

Description

The function implements a Batch Kohonen self-organizing 2d maps algorithm for histogram-valued data.
WH_2d_Adaptive_Kohonen_maps

Usage

```r
WH_2d_Adaptive_Kohonen_maps(
  x,
  net = list(xdim = 4, ydim = 3, topo = c("rectangular")),
  kern.param = 2,
  TMAX = -9999,
  Tmin = -9999,
  niter = 30,
  repetitions,
  simplify = FALSE,
  qua = 10,
  standardize = FALSE,
  schema = 6,
  init.weights = "EQUAL",
  weight.sys = "PROD",
  theta = 2,
  Wfix = FALSE,
  verbose = FALSE,
  atleast = 2
)
```

Arguments

- **x**: A MatH object (a matrix of distribution).
- **net**: A list describing the topology of the net (xdim=number of rows, ydim=number of columns, topo=c('rectangular' or 'hexagonal')), see somgrid syntax in package class.
- **kern.param**: (default=2) the kernel parameter for the RBF kernel used in the algorithm.
- **TMAX**: A parameter useful for the iterations (default=2).
- **Tmin**: A parameter useful for the iterations (default=0.2).
- **niter**: Maximum number of iterations (default=30).
- **repetitions**: Number of repetitions of the algorithm (default=5), because each launch may generate a local optimum.
- **simplify**: A logical parameter for speeding up computations (default=FALSE). If true data are recoded in order to have fast computations.
- **qua**: If simplify=TRUE number of equally spaced quantiles for recodify the histograms (default=10).
- **standardize**: A logical value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wasserstein based standard deviation. Use if one wants to have variables with std equal to one.
- **schema**: A number from 1 to 4.
 1=A weight for each variable (default)
 2=A weight for the average and the dispersion component of each variable
 3=Same as 1 but a different set of weights for each cluster
 4=Same as 2 but a different set of weights for each cluster.
WH_2d_Adaptive_Kohonen_maps

init.weights a string how to initialize weights: ’EQUAL’ (default), all weights are the same,
weight.sys a string. Weights may add to one (’SUM’) or their product is equal to 1 (’PROD’,
theta a number. A parameter if weight.sys=’SUM’, default is 2.
Wfix a logical parameter (default=FALSE). If TRUE the algorithm does not use adaptive
verbose a logical parameter (default=FALSE). If TRUE details of computation are shown
during the execution. #'
atleast integer. Check for degeneration of the map into a very low number of voronoi
sets. (default 2) 2 means that the map will have at least 2 neurons attracting data
instances in their voronoi sets.

Details

An extension of Batch Self Organised Map (BSOM) is here proposed for histogram data. These
kind of data have been defined in the context of symbolic data analysis. The BSOM cost function
is then based on a distance function: the L2 Wasserstein distance. This distance has been widely
proposed in several techniques of analysis (clustering, regression) when input data are expressed by
distributions (empirical by histograms or theoretical by probability distributions). The peculiarity
of such distance is to be an Euclidean distance between quantile functions so that all the properties
proved for L2 distances are verified again. An adaptative versions of BSOM is also introduced
considering an automatic system of weights in the cost function in order to take into account the
different effect of the several variables in the Self-Organised Map grid.

Value

a list with the results of the Batch Kohonen map

Slots

solution A list. Returns the best solution among the repetitions, i.e. the one having the
minimum sum of squares criterion.

solution$MAP The map topology.
solution$IDX A vector. The clusters at which the objects are assigned.
solution$cardinality A vector. The cardinality of each final cluster.
solution$proto A MatH object with the description of centers.
solution$Crit A number. The criterion (Sum od square deviation from the centers) value at the
end of the run.
solution$Weights.comp the final weights assigned to each component of the histogram variables
solution$Weight.sys a string the type of weighting system (’SUM’ or ’PRODUCT’)

quality A number. The percentage of Sum of square deviation explained by the model. (The
higher the better)

References

Irpino A, Verde R, De Carvalho FAT (2012). Batch self organizing maps for interval and histogram
Examples

```r
## Not run:
results <- WH_2d_Adaptive_Kohonen_maps(
  x = BLOOD,
  net = list(xdim = 2, ydim = 3, topo = c("rectangular"),
             repetitions = 2, simplify = TRUE,
             qua = 10, standardize = TRUE)
)
## End(Not run)
```

Description

The function implements a Batch Kohonen self-organizing 2d maps algorithm for histogram-valued data.

Usage

```r
WH_2d_Kohonen_maps(
  x,
  net = list(xdim = 4, ydim = 3, topo = c("rectangular")),
  kern.param = 2,
  TMAX = 2,
  Tmin = 0.2,
  niter = 30,
  repetitions = 5,
  simplify = FALSE,
  qua = 10,
  standardize = FALSE,
  verbose = FALSE
)
```

Arguments

- **x**: A MatH object (a matrix of distributionH).
- **net**: a list describing the topology of the net list(xdim=number of rows,ydim=numbers of columns,topo=c('rectangular' or 'hexagonal')), see somgrid syntax in packageclass default net=list(xdim=4,ydim=3,topo=c('rectangular'))
- **kern.param**: (default=2) the kernel parameter for the RBF kernel used in the algorithm
- **TMAX**: a parameter useful for the iterations (default=2)
- **Tmin**: a parameter useful for the iterations (default=0.2)
- **niter**: maximum number of iterations (default=30)
WH_2d_Kohonen_maps

repetitions number of repetition of the algorithm (default=5), because each launch may generate a local optimum
simplify a logical parameter for speeding up computations (default=FALSE). If true data are recoded in order to have fast computations
qua if simplify=TRUE number of equally spaced quantiles for recodify the histograms (default=10)
standardize A logic value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wassertein based standard deviation. Use if one wants to have variables with std equal to one.
verbose a logical parameter (default=FALSE). If TRUE details of computation are shown during the execution.

Details
An extension of Batch Self Organised Map (BSOM) is here proposed for histogram data. These kind of data have been defined in the context of symbolic data analysis. The BSOM cost function is then based on a distance function: the L2 Wasserstein distance. This distance has been widely proposed in several techniques of analysis (clustering, regression) when input data are expressed by distributions (empirical by histograms or theoretical by probability distributions). The peculiarity of such distance is to be an Euclidean distance between quantile functions so that all the properties proved for L2 distances are verified again. An adaptative versions of BSOM is also introduced considering an automatic system of weights in the cost function in order to take into account the different effect of the several variables in the Self-Organised Map grid.

Value
a list with the results of the Batch Kohonen map

Slots
solution A list. Returns the best solution among the repetitions, i.e. the one having the minimum sum of squares criterion.
solution$MAP The map topology.
solution$IDX A vector. The clusters at which the objects are assigned.
solution$cardinality A vector. The cardinality of each final cluster.
solution$proto A MatH object with the description of centers.
solution$Crit A number. The criterion (Sum od square deviation from the centers) value at the end of the run.
quality A number. The percentage of Sum of square deviation explained by the model. (The higher the better)

References
WH_adaptive.kmeans

Examples

```r
## Not run:
results <- WH_2d_Kohonen_maps(
  x = BLOOD,
  net = list(xdim = 2, ydim = 3, topo = c("rectangular")),
  repetitions = 2, simplify = TRUE,
  qua = 10, standardize = TRUE
)

## End(Not run)
```

WH_adaptive.kmeans

K-means of a dataset of histogram-valued data using adaptive Wasserstein distances

Description

The function implements the k-means using adaptive distance for a set of histogram-valued data.

Usage

```
WH_adaptive.kmeans(
  x,  
k,  
schema = 1,  
init,  
rep,  
simplify = FALSE,  
qua = 10,  
standardize = FALSE,  
weight.sys = "PROD",  
theta = 2,  
init.weights = "EQUAL",  
verbose = FALSE
)
```

Arguments

- `x`
 A MatH object (a matrix of distributionH).
- `k`
 An integer, the number of groups.
- `schema`
 a number from 1 to 4
 1=A weight for each variable (default)
 2=A weight for the average and the dispersion component of each variable
 3=Same as 1 but a different set of weights for each cluster
 4=Same as 2 but a different set of weights for each cluster
- `init`
 (optional, do not use) initialization for partitioning the data default is 'RPART', other strategies should be implemented.
WH_adaptive.kmeans

rep An integer, maximum number of repetitions of the algorithm (default rep=5).
simplify A logic value (default is FALSE), if TRUE histograms are recomputed in order to speed-up the algorithm.
qua An integer, if simplify=TRUE is the number of quantiles used for recodify the histograms.
standardize A logic value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wasserstein based standard deviation. Use if one wants to have variables with std equal to one.
weight.sys a string. Weights may add to one ('SUM') or their product is equal to 1 ('PROD', default).
theta a number. A parameter if weight.sys='SUM', default is 2.
init.weights a string how to initialize weights: 'EQUAL' (default), all weights are the same, 'RANDOM’, weights are initialised at random.
verbose A logic value (default is FALSE). If TRUE, details on computations are shown.

Value

a list with the results of the k-means of the set of Histogram-valued data x into k cluster.

Slots

solution A list. Returns the best solution among the repetitions, i.e. the one having the minimum sum of squares criterion.
solution$IDX A vector. The clusters at which the objects are assigned.
solution$cardinality A vector. The cardinality of each final cluster.
solution$centers A MatH object with the description of centers.
solution$Crit A number. The criterion (Sum od square deviation from the centers) value at the end of the run.

quality A number. The percentage of Sum of square deviation explained by the model. (The higher the better)

References

Examples

results <- WH_adaptive.kmeans(x = BLOOD, k = 2, rep = 10,
 simplify = TRUE, qua = 10, standardize = TRUE)
Fuzzy c-means with adaptive distances for histogram-valued data

Description

Fuzzy c-means of a dataset of histogram-valued data using different adaptive distances based on the L2 Wasserstein metric.

Usage

```r
WH_adaptive_fcmeans(
  x,
  k = 5,
  schema,
  m = 1.6,
  rep,
  simplify = FALSE,
  qua = 10,
  standardize = FALSE,
  init.weights = "EQUAL",
  weight.sys = "PROD",
  theta = 2,
  verbose = FALSE
)
```

Arguments

- **x**: A MatH object (a matrix of distributionH).
- **k**: An integer, the number of groups.
- **schema**: An integer. 1=one weight per variable, 2=two weights per variables (one for each component: the mean and the variability component), 3=one weight per variable and per cluster, 4= two weights per variable and per cluster.
- **m**: A number grater than 0, a fuzziness coefficient (default \(m=1.6\)).
- **rep**: An integer, maximum number of repetitions of the algorithm (default \(rep=5\)).
- **simplify**: A logic value (default is FALSE), if TRUE histograms are recomputed in order to speed-up the algorithm.
- **qua**: An integer, if simplify=TRUE is the number of quantiles used for recodify the histograms.
- **standardize**: A logic value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wasserstein based standard deviation. Use if one wants to have variables with std equal to one.
- **init.weights**: A string, (default=’EQUAL’). EQUAL, all variables or components have the same weight; ‘RANDOM’, a random assignment is done.
- **weight.sys**: A string, (default=’PROD’) PROD, Weights product is equal to one. SUM, the weights sum up to one.
theta A number. (default=2) A parameter for the system of weights summing up to one.
verbose A logic value (default is FALSE). If TRUE some details are provided.

Value
The results of the fuzzy c-means of the set of Histogram-valued data \(x \) into \(k \) cluster.
solution A list. Returns the best solution among the repetitions, i.e. the one having the minimum sum of squares deviation.
solution$membership A matrix. The membership degree of each unit to each cluster.
solution$IDX A vector. The crisp assignment to a cluster.
solution$cardinality A vector. The cardinality of each final cluster (after the crisp assignment).
solution$Crit A number. The criterion (Sum of square deviation from the prototypes) value at the end of the run.
quality A number. The percentage of Sum of square deviation explained by the model. (The higher the better)

Examples
results <- WH_adaptive_fcmeans(
 x = BLOOD, k = 2, schema = 4, m = 1.5, rep = 3, simplify = TRUE,
 qua = 10, standardize = TRUE, init.weights = "EQUAL", weight.sys = "PROD"
)

WH_fcmeans \textit{Fuzzy c-means of a dataset of histogram-valued data}

Description
The function implements the fuzzy c-means for a set of histogram-valued data.

Usage
\texttt{WH_fcmeans(x, k, m = 1.6, rep, simplify = FALSE, qua = 10, standardize = FALSE)}

Arguments
\begin{itemize}
 \item \texttt{x} A \texttt{MatH} object (a matrix of distributionH).
 \item \texttt{k} An integer, the number of groups.
 \item \texttt{m} A number greater than 0, a fuzziness coefficient (default \texttt{m=1.6}).
 \item \texttt{rep} An integer, maximum number of repetitions of the algorithm (default \texttt{rep=5}).
 \item \texttt{simplify} A logic value (default is \texttt{FALSE}), if TRUE histograms are recomputed in order to speed-up the algorithm.
\end{itemize}
WH_hclust

qua An integer, if simplify=TRUE is the number of quantiles used for recodify the histograms.

standardize A logic value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wassertein based standard deviation. Use if one wants to have variables with std equal to one.

Value

a list with the results of the fuzzy c-means of the set of Histogram-valued data x into k cluster.

Slots

solution A list. Returns the best solution among the repetitions, i.e. the one having the minimum sum of squares deviation.

description membership A matrix. The membership degree of each unit to each cluster.

description idx A vector. The crisp assignement to a cluster.

description cardinality A vector. The cardinality of each final cluster (after the crisp assignement).

description crit A number. The criterion (Sum of square deviation from the prototypes) value at the end of the run.

description quality A number. The percentage of Sum of square deviation explained by the model. (The higher the better)

Examples

```r
results <- WH_fcmeans(x = BLOOD, k = 2, m = 1.5, rep = 10,
                        simplify = TRUE, qua = 10, standardize = TRUE)
```

Description

The function implements a Hierarchical clustering for a set of histogram-valued data, based on the L2 Wassertein distance. Extends the hclust function of the stat package.

Usage

```r
WH_hclust(  
  x,  
  simplify = FALSE,  
  qua = 10,  
  standardize = FALSE,  
  distance = "WDIST",  
  method = "complete"
)```
**Arguments**

- **x**
  A MatH object (a matrix of distributionH).

- **simplify**
  A logic value (default is FALSE), if TRUE histograms are recomputed in order to speed-up the algorithm.

- **qua**
  An integer, if simplify=TRUE is the number of quantiles used for recodify the histograms.

- **standardize**
  A logic value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wasserstein based standard deviation. Use if one wants to have variables with std equal to one.

- **distance**
  A string default "WDIST" the L2 Wasserstein distance (other distances will be implemented)

- **method**
  A string, default="complete", is the the agglomeration method to be used. This should be (an unambiguous abbreviation of) one of "ward.0", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).

**Value**

An object of class hclust which describes the tree produced by the clustering process.

**References**


**See Also**

- **hclust of stat package** for further details.

**Examples**

```r
results <- WH_hclust(x = BLOOD, simplify = TRUE, method = "complete")
plot(results) # it plots the dendrogram
cutree(results, k = 5) # it returns the labels for 5 clusters
```

---

**WH_kmeans**

*K-means of a dataset of histogram-valued data*

**Description**

The function implements the k-means for a set of histogram-valued data.
Usage

WH_kmeans(
  x,
  k,
  rep = 5,
  simplify = FALSE,
  qua = 10,
  standardize = FALSE,
  verbose = FALSE
)

Arguments

x  A MatH object (a matrix of distribution).

k  An integer, the number of groups.

rep  An integer, maximum number of repetitions of the algorithm (default rep=5).

simplify  A logic value (default is FALSE), if TRUE histograms are recomputed in order to speed-up the algorithm.

qua  An integer, if simplify=TRUE is the number of quantiles used for recodify the histograms.

standardize  A logic value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wasserstein based standard deviation. Use if one wants to have variables with std equal to one.

verbose  A logic value (default is FALSE). If TRUE, details on computations are shown.

Value

a list with the results of the k-means of the set of Histogram-valued data x into k cluster.

Slots

solution  A list. Returns the best solution among the repetitions, i.e. the one having the minimum sum of squares criterion.

solution$IDX  A vector. The clusters at which the objects are assigned.

solution$cardinality  A vector. The cardinality of each final cluster.

solution$centers  A MatH object with the description of centers.

solution$Crit  A number. The criterion (Sum of square deviation from the centers) value at the end of the run.

quality  A number. The percentage of Sum of square deviation explained by the model. (The higher the better)

References

Examples

```r
results <- WH_kmeans(
 x = BLOOD, k = 2, rep = 10, simplify = TRUE,
 qua = 10, standardize = TRUE, verbose = TRUE
)
```

---

**WH_MAT_DIST**

*L2 Wasserstein distance matrix*

---

Description

The function extracts the L2 Wasserstein distance matrix from a MatH object.

Usage

```r
WH_MAT_DIST(x, simplify = FALSE, qua = 10, standardize = FALSE)
```

Arguments

- **x**: A MatH object (a matrix of distributionH).
- **simplify**: A logic value (default is FALSE), if TRUE histograms are recomputed in order to speed-up the algorithm.
- **qua**: An integer, if `simplify=TRUE` is the number of quantiles used for recodify the histograms.
- **standardize**: A logic value (default is FALSE). If TRUE, histogram-valued data are standardized, variable by variable, using the Wasserstein based standard deviation. Use if one wants to have variables with std equal to one.

Value

A matrix of squared L2 distances.

References


Examples

```r
DMAT <- WH_MAT_DIST(x = BLOOD, simplify = TRUE)
```
### extract from a MatH Method [

**Description**

This method overrides the "[" operator for a matH object.

**Usage**

```r
S4 method for signature 'MatH'
x[i, j, ..., drop = TRUE]
```

**Arguments**

- **x**: a matH object
- **i**: a set of integer values identifying the rows
- **j**: a set of integer values identifying the columns
- **...**: not useful
- **drop**: a logical value inherited from the basic method "]" but not used (default=TRUE)

**Value**

A matH object

**Examples**

```r
D <- BLOOD # the BLOOD dataset
SUB_D <- BLOOD[c(1, 2, 5), c(1, 2)]
```
Index

* classes
  distributionH-class, 14
  MatH-class, 30

* distribution
  checkEmptyBins, 9
  compP, 11
  crwtransform, 12
  dotpW, 16
  is.registeredMH, 28
  kurtH, 29
  meanH, 31
  register, 39
  registerMH, 40
  skewH, 45
  stdH, 46
  WassSqDistH, 50

* package
  HistDAWass-package, 4
  *,distributionH,distributionH-method
    (*-methods), 5
  *,distributionH,numeric-method
    (*-methods), 5
  *,numeric,distributionH-method
    (*-methods), 5
  -*methods, 5
  +,distributionH,distributionH-method
    (+), 6
  +,distributionH,numeric-method(+), 6
  +,numeric,distributionH-method(+), 6
  -,distributionH,distributionH-method
    (minus), 32
  -,distributionH,numeric-method(minus), 32
  -,numeric,distributionH-method(minus), 32
  [, 81
  [,MatH,ANY,ANY,ANY-method([]), 81
  [,MatH-method([]), 81

_PACKAGE (HistDAWass-package), 4

Age_Pyramids_2014, 6
Agronomique, 7

BLOOD, 7
BloodBRITO, 8

Center.cell.MatH, 8
Center.cell.MatH,MatH-method
  (Center.cell.MatH), 8
checkEmptyBins, 9
checkEmptyBins,distributionH-method
  (checkEmptyBins), 9
China_Month, 10
China_Seas, 10
compP, 11
compP,distributionH,numeric-method
  (compP), 11
compP,distributionH-method (compP), 11
compQ, 11
compQ,distributionH,numeric-method
  (compQ), 11
compQ,distributionH-method (compQ), 11
crwtransform, 12
crwtransform,distributionH-method
  (crwtransform), 12
data2hist, 13, 18, 44
distributionH(distributionH-class), 14
distributionH-class, 14
dotpW, 16
dotpW,distributionH,distributionH-method
  (dotpW), 16
dotpW,distributionH,numeric-method
  (dotpW), 16
dotpW,distributionH-method (dotpW), 16
dotpW,numeric,distributionH-method
  (dotpW), 16
DouglasPeucker, 17, 44
get.cell.MatH, 18
get.cell.MatH,MatH,numeric,numeric-method (get.cell.MatH), 18
get.cell.MatH,MatH-method (get.cell.MatH), 18
get.distr, 18
get.distr,distributionH-method (get.distr), 18
get.histo, 19
get.histo,distributionH-method (get.histo), 19
get.m, 20
get.m,distributionH-method (get.m), 20
get.MatH.main.info,MatH-method (get.MatH.main.info), 20
get.MatH.ncols, 21
get.MatH.ncols,MatH-method (get.MatH.ncols), 21
get.MatH.nrows, 21
get.MatH.nrows,MatH-method (get.MatH.nrows), 21
glmH, 22
get.MatH.rownames,MatH-method (get.MatH.rownames), 22
get.MatH.stats, 22
get.MatH.stats,MatH-method (get.MatH.stats), 22
get.MatH.varnames, 24
get.MatH.varnames,MatH-method (get.MatH.varnames), 24
gltns, 24
gltns,distributionH-method (gltns), 24
hclust, 78
hist, 14
HistDAWass (HistDAWass-package), 4
HistDAWass-package, 4
histogram, 14
HTS (HTS-class), 25
HTS-class, 25
HTS.exponential.smoothing, 25
HTS.moving.averages, 26
HTS.predict.knn, 27
initialize, 14
initialize,distributionH-method (initialize), 14
initialize,HTS-method (initialize), 14
initialize,MatH-method (initialize), 30
initialize,TdistributionH-method (initialize), 48
initialize,TMatH-method (initialize), 49
is.registeredMH, 28
is.registeredMH,MatH-method (is.registeredMH), 28
kurtH, 29
kurtH,distributionH-method (kurtH), 29
MatH (MatH-class), 30
MatH-class, 30
meanH, 15, 31
meanH,distributionH-method (meanH), 31
minus, 32
OzoneFull, 33
OzoneH, 33
plot,distributionH-method (plot), 34
plot,HTS-method (plot), 34
plot,MatH-method (plot), 35
plot,TdistributionH-method (plot), 36
plot-distributionH, 34
plot-HTS, 34
plot-MatH, 35
plot-TdistributionH, 36
plot_errors, 38
plotPredVsObs, 37
register, 39
register,distributionH,distributionH-method (register), 39
register,distributionH-method (register), 39
registerMH, 40
registerMH,MatH-method (registerMH), 40
RetHTS, 41
rQQ, 42
rQQ,distributionH,distributionH-method (rQQ), 42
rQQ,distributionH-method (rQQ), 42
set.cell.MatH, 43
set.cell.MatH,distributionH,MatH,numeric,numeric-method (set.cell.MatH), 43
set.cell.MatH, MatH-method
  (set.cell.MatH), 43
ShortestDistance, 43
show, 44
show, distributionH-method (show), 44
show, Math-method (show-Math), 44
show-Math, 44
skewH, 45
skewH, distributionH-method (skewH), 45
stations_coordinates, 46
stdH, 15, 46
stdH, distributionH-method (stdH), 46
subsetHTS, 47
subsetHTS, HTS, numeric, numeric-method (subsetHTS), 47
summaryHTS, 48
TdistributionH (TdistributionH-class), 48
TdistributionH-class, 48
TMath (TMath-class), 49
TMath-class, 49
WassSqDistH, 50
WassSqDistH, distributionH, distributionH-method
  (WassSqDistH), 50
WassSqDistH, distributionH-method
  (WassSqDistH), 50
WH.1d.PCA, 51
WH.bind, 52
WH.bind, Math, Math-method (WH.bind), 52
WH.bind, Math-method (WH.bind), 52
WH.bind.col, 53, 53
WH.bind.col, Math, Math-method
  (WH.bind.col), 53
WH.bind.col, Math-method (WH.bind.col), 53
WH.bind.row, 53, 54
WH.bind.row, Math, Math-method
  (WH.bind.row), 54
WH.bind.row, Math-method (WH.bind.row), 54
WH.correlation, 54
WH.correlation, Math-method
  (WH.correlation), 54
WH.correlation2, 55
WH.correlation2, Math, Math-method
  (WH.correlation2), 55
WH.correlation2, MathH-method
  (WH.correlation2), 55
WH.mat.prod, 56
WH.mat.prod, Math, Math-method
  (WH.mat.prod), 56
WH.mat.prod, Math-method (WH.mat.prod), 56
WH.mat.sum, 57
WH.mat.sum, Math, Math-method
  (WH.mat.sum), 57
WH.mat.sum, Math-method (WH.mat.sum), 57
WH MultiplePCA, 57
WH.plot_multiple_indivs, 58
WH.plot_multiple_Spanish.funs, 60
WH.regression.GOF, 61
WH.regression.two.components, 62
WH.regression.two.components.predict, 63
WH.SSQ, 64
WH.SSQ, Math-method (WH.SSQ), 64
WH.SSQ2, 64
WH.SSQ2, Math, Math-method (WH.SSQ2), 64
WH.SSQ2, Math-method (WH.SSQ2), 64
WH.var.covar, 65
WH.var.covar, Math-method
  (WH.var.covar), 65
WH.var.covar2, 66
WH.var.covar2, Math, Math-method
  (WH.var.covar2), 66
WH.var.covar2, Math-method
  (WH.var.covar2), 66
WH.vec.mean, 67
WH.vec.mean, Math-method (WH.vec.mean), 67
WH.vec.sum, 68
WH.vec.sum, Math-method (WH.vec.sum), 68
WH_2d_Adaptive_Kohonen_maps, 68
WH_2d_Kohonen_maps, 71
WH_adaptive.kmeans, 73
WH_adaptive_fcmmeans, 75
WH_fcmmeans, 76
WH_hclust, 77
WH_kmeans, 78
WH_MAT_DIST, 80