Package ‘HyRiM’

November 18, 2019

Type Package

Title Multicriteria Risk Management using Zero-Sum Games with Vector-Valued Payoffs that are Probability Distributions

Version 1.0.3

Date 2019-11-11

Imports compare, orthopolynom

Author Stefan Rass, Sandra Koenig, Ali Alshawish

Maintainer Austrian Institute of Technology <hyrim@ait.ac.at>

Description

License GPL-3

NeedsCompilation no

Encoding UTF-8

Suggests knitr,rmarkdown,qpdf

Repository CRAN

Date/Publication 2019-11-18 10:20:10 UTC
Description

Author(s)

Stefan Rass, Sandra Koenig, Ali Alshawish

Maintainer: Austrian Institute of Technology <hyrim@ait.ac.at>

References

CDF

CDF

(cumulative) loss distribution function

Description

returns the numeric values of the cumulative loss distribution ld evaluated at x, i.e., Pr(X ≤ x), where X ~ ld.

Usage

cdf(ld, x)

Arguments

ld the loss distribution as obtained from lossDistribution or mgss.

x the point at which the distribution function shall be evaluated (must be a numeric; vectors are not supported yet)

Details

the function internally distinguishes discrete and continuous distributions only in terms of rounding its argument to the largest integer less than x. Its value is obtained by numeric integration of the internal representation of the loss distribution (in the continuous case).

For discrete distributions, the function works on the internal probability mass function (which may be different from the empirical distribution in case that the loss distribution has been smoothed during its construction; see lossDistribution).

Value

an approximation for the probability Pr(ld<=x).

Note

in its current version, cdf does not vectorize, i.e., cannot be applied to vector arguments x.

Author(s)

Stefan Rass

See Also

suitable inputs for this function are provided by lossDistribution and mgss.
disappointmentRate

Examples

cvss1base <- c(10, 6.4, 9, 7.9, 7.1, 9)
ld <- lossDistribution(cvss1base)
cdf(ld, 4)

disappointmentRate computation of the disappointment rate

Description

For a minimizing player, the disappointment rate is the likelihood for the loss to exceed its expectation (thus disappoint the defender). For any random loss \(X \), it is given by \(Pr(X > E(X)) \).

Usage

disappointmentRate(d)

Arguments

\(d \)

- a lossDistribution object; typically the assurance from a previously computed equilibrium (see mgss)

Details

The disappointment rate can be taken as an auxiliary goal to optimize, though it is not supported for optimization in the current version of the package. Note that it does not make sense to consider this rate as an isolated (single) goal, since the optimal strategy would then be playing towards maximal losses (with explicit aid of the opponent) in order to minimize the mass to the left of the expected loss. However, it is a quantity of interest when the equilibrium has been computed, as it indicates how “satisfying” the equilibrium will be upon playing.

See the literature for further

Value

the likelihood to overshoot the expectation of the random loss \(X \) with distribution \(d \), i.e., \(Pr(X > E(X)) \).

Author(s)

Stefan Rass

References

disappointmentRate

See Also

mgss

Examples

library(compare)
library(orthopolynom)
raw data (PURELY ARTIFICIAL, for demo purposes only)
N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
obs122<-c(rep(1,40),rep(2.5,20),rep(5,20),rep(7.5,10),rep(9,10));
obs211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
obs212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
obs221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
obs222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
obs311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
obs312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
obs321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
obs322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));

compute payoff densities
f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)
payoffs<-list(f111,f112,f121, f122,f211,f212,f221,f222, f311,f312,f321,f322)
G <- mosg(n=2,
m=2,
payoffs,
goals=3,
goalDescriptions=c("g1", "g2", "g3"),
defensesDescr = c("d1", "d2"),
attacksDescr = c("a1", "a2"))
eq <- mgss(G,T=1000,weights=c(0.25,0.5,0.25))

get the disappointment rate for the first security goal g1
disappointmentRate(eq$assurances$g1)
Description

Loss distributions can be constructed from both, continuous and categorical data. In any case, the input data must be a list (vector) of at least two numeric values all being \(\geq 1 \). For discrete data, the function additionally takes the full range of categories, all being represented as integers (with the lowest category having the number 1).

Usage

```r
# construct a loss distribution from data
lossDistribution(
  dat,
  discrete = FALSE,
  dataType = c("raw", "pdf", "cdf"),
  supp = NULL,
  smoothing = c("none", "ongaps", "always"),
  bw = NULL)
# get information about the loss distribution
## S3 method for class 'mosg.lossdistribution'
print(x, ...)
## S3 method for class 'mosg.lossdistribution'
summary(object, ...)
## S3 method for class 'summary.mosg.lossdistribution'
print(x, ...)
## S3 method for class 'mosg.lossdistribution'
plot(x, points = 100, xlab = "", ylab = "",
     main = ",", p = 0.999, newPlot = TRUE, cutoff = NULL, ...)
# get quantitative information about the distribution
## S3 method for class 'mosg.lossdistribution'
quantile(x, p, eps = 0.001, ...)
## S3 method for class 'mosg.lossdistribution'
mean(x, ...)
# evaluate the loss density function
## S3 method for class 'mosg.lossdistribution'
density(x, t, ...)
# for the cumulative distribution function, see the function 'cdf'
```

Arguments

- `dat`: a vector of at least two input observations (all \(\geq 1 \) required)
- `discrete`: defaults to `FALSE`. If set to `TRUE`, the loss distribution is constructed as discrete. In that case, a value for `supp` is required.
lossDistribution

dataType

applies only if `discrete=TRUE`, and specifies how the values in `dat` are to be interpreted. Defaults to `raw`, by which the data is taken as observations. Given as `pdf`, the values in `dat` are directly interpreted as a probability density (checked for non-negativity and re-normalized if necessary). If the data type is specified as `cdf`, then the values in `dat` are taken as cumulative distribution function, i.e., checked to be non-decreasing, non-negative and re-normalized to 1 if necessary.

supp

if the parameter `discrete` is set to `TRUE`, then this parameter must be set as a vector of two elements, specifying the minimal and maximal category, e.g. `supp=c(1,5)`.

bw

the bandwidth parameter (numeric value) for kernel smoothing. Defaults internally to the result of `bw.nrd0` if omitted.

x

a loss distribution object returned by `lossDistribution` or `mgss`, or a value within the support of a loss distribution.

t

a value within the support of `ld` or a summary object for a loss distribution.

object

a loss distribution object

eps

the accuracy at which the quantile is approximated (see the details below).

smoothing

string; partially matched with "none" (default), "ongaps", and "always". If set to "always", then the function computes a discrete kernel density estimate (using a discretized version of a Gaussian density with a bandwidth as computed by `bw.nrd0` (Silverman’s rule)), to assign categories with zero probability a positive likelihood. If set to "ongaps", then the smoothing is applied only if necessary (i.e., if the probability mass is zero on at least one category).

the function `plot.mosg.lossdistribution` takes the parameters:

points

the number of points at which loss densities are is evaluated (numerically) for plotting.

xlab

a label for the x-axis in the plot.

ylab

a label for the y-axis in the plot.

main

a title for the plot

p

a quantile that determines the plot range for the loss distribution

newPlot

if set to `TRUE`, then a new plot is opened. Otherwise, the plot is added to the current plot window (typically used by `plot.mosg` to visualize game matrices).

cutoff

the cutoff point at which all densities shall be truncated before plotting (note that the mass functions are rescaled towards unit mass).

... further arguments passed to or from other methods

Details

The function internally computes a Gaussian kernel density estimator (KDE; using Silverman’s rule of thumb for the bandwidth selection) on the continuous data. The distribution is truncated at the maximal observation supplied + 5*the bandwidth of the Gaussian KDE, or equivalently, at the right end of the support in case of discrete distributions.

For discrete distributions, missing observations are handled by smoothing the density (by convolution with a discretized Gaussian kernel). As an alternative, a re-definition of categories may be considered.
Degenerate distributions are not supported! The construction of classical games with real-valued payoffs works directly through `mosg` by supplying a list of values rather than loss distributions. See the example given with `mosg`.

The generic functions `quantile`, `mean` and `density` both distinguish discrete from continuous distributions in the way of how values are being computed.

Quantiles are computed using the direct definition as an approximation \(y \) so that \(x = \Pr(1d <= y) \). For continuous distributions, a bisective search is performed to approximate the inverse cumulative distribution function. For discrete distributions, `quantile` works with cumulative sums. The accuracy parameter \(\varepsilon \) passed to `quantile` causes the bisective search to stop if the search interval has a length less than \(\varepsilon \). In that case, the middle of the interval is returned. For discrete distributions, the computation is done by cumulative sums on the discrete probability mass function.

`mean` either invokes `moment(1d,1)` to compute the first moment.

`density` is either a wrapper for the internal representation by the function object `lossdistr`, or directly accesses the probability mass function as internally stored in the field `dpdf` (see the 'values' section below).

For visualization, `plot` produces a bar plot for categorical distributions (over categories as specified by the `supp` field; see the 'values' section below), and for continuous distributions, a continuous line plot is returned on the range \(1...\max(range + 5*bw) \), where the values are described below. To ease comparison and a visual inspection of the game matrix, the default plot ranges can be overridden by supplying `xlim` and `ylim` for the plot function.

Value

The return values of `lossDistribution` is an object of class `mosg.lossdistribution`. The same goes for `lossDistribution.mosg`.

- `observations` carries over the data vector supplied to construct the distribution.
- `range` the minimal and maximal loss observed, as a 2-element vector. For loss distributions induced by games, the range is the smallest interval covering the ranges of all distributions in the game.
- `bw` the bandwidth used for the kernel density approximate.
- `lossdistr` a function embodying the kernel density (probability mass function) as a spline function (for continuous densities only)
- `normalizationFactor` the factor by which `lossdistr` must be multiplied (to normalize under the truncation at \(\max(\text{observations}) + 5*bw \).
- `is.mixedDistribution` a flag indicating whether or not the distribution was constructed by a call to `lossDistribution` or the generic function `lossDistribution.mosg`
- `is.discrete` a flag set to `TRUE` if the distribution is over categories
- `dpdf` if `is.discrete` is `TRUE`, then this is a vector of probability masses over the support (field `supp`)
- `supp` if `is.discrete` is `TRUE`, then this is a 2-element vector specifying the minimal and maximal loss category (represented by integers).
A summary returns an object of class `mosg.equilibrium.summary`, for which the generic print function can be applied, and which carries the following fields:

- **range**: the minimal and maximal observation of the underlying data (if available), or the minimal and maximal losses anticipated for this distribution (e.g., in case of discrete distributions the common support).
- **mean**: the first moment as computed by `mean`.
- **variance**: the variance as computed by `variance`.
- **quantiles**: a 2x5-matrix of quantiles at levels 10%, 25%, 50%, 75% and 90%.

Note

If the plotting throws an error concerning too large figure margins, then adjusting the plot parameters using `par` may help, since the plot function does not override any of the current plot settings (e.g., issue `par(c(0,0,1,1) + 0.1)` before plotting to reduce the spacing close towards zero)

In some cases, plots may require careful customization to look well, so playing around with the other settings as offered by `par` can be useful.

If the distribution has been smoothed, then `mean`, `variance`, `quantile`, `density` and `cdf` will refer to the smoothed version of the distribution. In that case, the returned quantities are mere approximations of the analogous values obtained directly from the underlying data.

Author(s)

Stefan Rass

See Also

`mosg, mgss, cdf, variance`

Examples

```r
cvss1base <- c(10, 6.4, 9, 7.9, 7.1, 9)
ld <- lossDistribution(cvss1base)
summary(ld)
plot(ld)
# for further examples, see the documentation to 'mosg' and 'mosg.equilibrium'
```

Description

The function applies fictitious play in a one-against all competition as described by (Sela, 1999) to approximate an equilibrium in the auxiliary game belonging to the input `mosg`, using the method proposed by (Rass and Rainer, 2014).
Usage

`mgss(G, weights, cutOff, ord = 5, eps, T = 1000, points = 512)`

Arguments

- **G**

 a multi-objective game constructed using mosg

- **weights**

 each goal in G can be assigned a weight to reflect its priority. If missing, the weights default to be all equal. The weights do not need to sum up to 1 (and are normalized towards a unit sum otherwise), but need to be all non-negative.

- **cutOff**

 (only used for continuous loss distributions) the maximal loss for which no events are expected or otherwise the risk of exceeding cutOff are accepted. If missing, this value defaults to the maximal observation on which the loss distributions were constructed (equivalently, the right end of their common support).

- **ord**

 the order up to which the loss distribution shall be approximated. This value may be set to high orders when it is necessary to distinguish distributions that are similar at the tails.

- **eps**

 the accuracy at which the fictitious play iteration is being stopped. The error is herein determined as the maximum-norm of the difference between approximations of the equilibrium distributions obtained in the current and the previous iteration of FP.

- **T**

 the maximal number of iterations after which FP is stopped (returning whatever approximation has been obtained).

- **points**

 the number of points at which the resulting equilibrium loss distributions are approximated.

Details

The function assumes the payoffs to be Gaussian kernel density estimators (constructed using the function `lossDistribution`), and computes a Taylor-polynomial approximation at the x equal to `cutOff` for each distribution up to order `ord`. Preferences are decided using the method put forth in (Rass, 2015), using sign-alternating derivatives.

Value

An object of class `mosg.equilibrium`, containing the following fields:

- **optimalDefense**

 a discrete probability distribution over the action space of player 1 (defender)

- **optimalAttacks**

 a discrete probability distribution over the action space of player 2 (attacker)

- **assurances**

 a list of loss distributions valid under the assumption that player 1 adheres to the `optimalDefense` distribution in its randomized action choices. The list can be accessed by the names for each goal as specified through the input mosg object `G`. Each distribution within `assurances` is a mixed loss distribution constructed using `lossDistribution`
Note

If both, the accuracy parameter eps and the maximal number of iterations T are specified, then FP stops upon whichever condition becomes satisfied first.

Note that the output loss distributions (accessible by the list assurances) cannot be used to construct a subsequent game (see mosg).

Author(s)

Sandra Koenig, Stefan Rass

References

See Also

A brief info on the results can be obtained by print.mosg.equilibrium, and a more detailed summary (showing all loss distributions in detail) is obtained by summary.mosg.equilibrium.

Examples

```r
library(compare)
library(orthopolynom)
## raw data (PURELY ARTIFICIAL, for demo purposes only)
# N=100 observations in each category
# N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
ob112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
ob121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
ob122<-c(rep(1,40),rep(2,5,20),rep(5,20),rep(7,5,10),rep(9,10));
ob211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
ob212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
ob221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
ob222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
ob311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
ob312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
ob321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
ob322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));
## compute payoff densities
f111<-lossDistribution(obs111)
```
compute moments of loss distributions

Description

the moment of given order k is computed by numeric integration or summation (in case of discrete distributions)

Usage

moment(ld, k)

Arguments

ld

the loss distribution as obtained from lossDistribution or mgss.

k

the order of the moment (must be an integer ≥ 1)

Value

the k-th order moment of the given loss distribution
Note
In case of continuous distributions, the value returned is an approximation and based on the internal kernel density approximation.

For categorical distributions, the function works on the internal probability mass function (which may be different from the empirical distribution in case that the loss distribution has been smoothed during its construction; see lossDistribution).

In its current version, cdf does not vectorize, i.e., cannot be applied to vector arguments x.

Author(s)
Stefan Rass

See Also
the methods mean and variance are based on this function.

Examples

cvss1base <- c(10,6.4,9,7.9,7.1,9)
ld <- lossDistribution(cvss1base)
cdf(ld, 4)

mosg
Construction and handling of multi-objective security games

Description
this function takes a list of loss distributions constructed using lossDistribution, along with a specification of the game’s shape (number of strategies for both players and number of goals for the first player), and returns an object suitable for analysis by mgss to compute a multi-goal security strategy.

Usage

mosg(n,
m,
goals,
losses,
byrow = TRUE,
goalDescriptions = NULL,
defensesDescr = NULL,
attacksDescr = NULL)

S3 method for class 'mosg'
print(x, ...)

mosg
S3 method for class 'mosg'
plot(x, goal = 1, points = 100, cutoff = NULL, ...)

construct a loss distribution by playing a given strategy in the game G
S3 method for class 'mosg'
lossDistribution(G, player1Strat, player2Strat, points = 512, goal = 1)

Arguments

- **n**
 number of defense strategies (cardinality of the action space for player 1)

- **m**
 number of attack strategies (cardinality of the action space for player 2)

- **goals**
 number of goals for player 1 (must be \(\geq 1 \))

- **losses**
 a list with \(n \times m \times \text{goals} \) entries, which specifies a total of \(\text{goals} \) game matrices, each with shape \(n \times m \). The way in which the game matrices are filled from this list is controlled by the parameter `byrow`. Note that in every case, it is assumed that one matrix is specified after the other in the list.

 Furthermore, the function assumes all loss distributions having a common support. This is only explicitly verified for discrete distributions (with errors reported), but implicitly assumed to hold for continuous distributions without further checks.

 Typically, a game will be constructed from a list of loss distributions obtained by invocations of `lossDistribution`.

 Games can be defined with real-valued (scalar) payoffs if a list of numbers is provided instead. Internally, the function converts these numbers into Bernoulli distributions; a scalar payoff \(a \) is converted into a Bernoulli random variable \(X \) having \(\Pr(X = a) = p \propto a \). This conversion is equivalent to an invocation of `lossDistribution` with the parameters `dat=c(1-p,p)`, `discrete=TRUE`, `dataType="pdf"`, `smoothing="none"`, `bw = 1` and `supp=c(1,2)`.

- **byrow**
 by default (TRUE), the game matrices are filled row-by-row from list `losses`. If set to FALSE, then the game matrices are filled column-by-column.

- **goalDescriptions**
 if specified, this can be any vector (e.g., textual descriptions) for the goals. Defaults to 1, 2, 3, ... if missing. The length must be equal to `goals`.

- **defensesDescr**
 if specified, this can be any vector (e.g., textual descriptions) for the defense strategies. Defaults to 1, 2, 3, ... if missing. The length must be equal to `n`.

- **attacksDescr**
 if specified, this can be any vector (e.g., textual descriptions) for the attack strategies. Defaults to 1, 2, 3, ... if missing. The length must be equal to `m`.

- **x**
 a game, object of class "mosg", as constructed by the function `mosg`

 The function `plot` additionally takes the following parameters:

- **goal**
 an integer referring to the goal of interest (for plotting or to construct a loss distribution for). Defaults to the first goal if omitted.

- **points**
 The number of points at which the density is evaluated (for continuous losses); this parameter is ignored for categorical losses.
cutoff the cutoff point at which all densities shall be truncated before plotting (note that the mass functions are rescaled towards unit mass). The plot function overrides the following settings internally (so supplying these as parameters will raise an error): xlab,ylab,main,type,main.arg and font.main (applying differently for bar and line plots)

The function lossDistribution.mosg can be used to play any (given) strategies for player 1 and player 2, and compute the resulting loss from the game.

G a game constructed by mosg to deliver the loss distribution through its game matrices.

player1Strat a discrete distribution over the action space for the defending player 1 in the game G

player2Strat a discrete distribution over the action space for the attacking player 2 in the game G

... further arguments passed to or from other methods

Details

Upon input, the function does some consistency checks, such as testing the length of the parameter losses to be equal to n*m*goals. The loss distributions are checked for mutual consistency in terms of all being continuous or all being discrete (a mix is not allowed), and all being not mixed distributions (that is, the output distribution of a previous call to mgss cannot be used as input to this function).

The functions print.mosg gives a brief overview of the game, listing only the shape and strategies for both players. For detailed information, use summary on a specific loss distribution in the list for the game (field losses).

For plotting games, plot.mosg constructs an (n x m)-matrix of loss distributions with rows and columns in the grid being labeled by the values in defensesDescr and attacksDescr. The plot heading is the name for the specified goal. The function makes no changes to the plot parameters, so fine tuning can be done by changing the settings using the par function.

The function lossDistribution.mosg can be used to compute the distribution $x^T \cdot A \cdot y$, for the payoff distribution matrix A, and mixed strategies x (player1strat) and y (player2strat) in the game. The computation is by a pointwise addition of loss distributions, with the number of points being specifiable by the parameter points, which defaults to 512.

Value

The function returns an object of class mosg, usable with the function mgss to determine a security strategy (i.e., an equilibrium assuming a zero-sum one-against-all competition). The fields returned in the mosg object are filled with the input values supplied. In detail, the fields are:

nDefenses the value of the parameter n
nAttacks the value of the parameter m
dim the value of the parameter goals
attacksDescriptions, defensesDescriptions, goalDescriptions

if supplied, then these are filled with the values of goalDescr, defensesDescr and attacksDescr; otherwise, they contain the default values described above.
maximumLoss the maximal loss taken over all specified loss distributions
loc a locus-function for accessing the list losses using a triple notation (goal,i,j),
 where goal addresses the game matrix and i,j are the row and column indices
 (starting from 1 as the smallest index). This function is used internally (only).

Note

It is important to remark that player 1 is always minimizing. To treat a maximizing player, one must
reconstruct the game using regrets instead of losses, i.e., if the data for a specific loss distribution is
\(D\), then the game for a maximizing player 1 must be constructed from \((\max(D) - D)\) instead of \(D\).

Author(s)

Stefan Rass

See Also

Security strategies for a \texttt{mosg} object can be obtained by calling \texttt{mgss}. The game itself can be
constructed from the output of \texttt{lossDistribution}.

Examples

library(compare)

raw data (PURELY ARTIFICIAL, for demo purposes only)
N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
ob112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
ob121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
ob122<-c(rep(1,40),rep(2,5,20),rep(5,20),rep(7,5,10),rep(9,10));
ob211<-c(rep(1,30),rep(2,30),rep(5,10),rep(8,10),rep(10,20));
ob212<-c(rep(1,10),rep(2,10),rep(4,20),rep(7,20),rep(10,40));
ob221<-c(rep(1,30),rep(3,30),rep(4,10),rep(7,20),rep(9,10));
ob222<-c(rep(1,10),rep(3,10),rep(5,50),rep(8,20),rep(10,10));
ob311<-c(rep(1,40),rep(2,30),rep(4,10),rep(7,10),rep(9,10));
ob312<-c(rep(1,20),rep(3,20),rep(4,20),rep(7,20),rep(10,20));
ob321<-c(rep(1,10),rep(3,40),rep(4,30),rep(7,10),rep(9,10));
ob322<-c(rep(1,10),rep(4,30),rep(5,30),rep(7,10),rep(10,20));

compute payoff densities
f111<-lossDistribution(obs111)
f112<-lossDistribution(obs112)
f121<-lossDistribution(obs121)
f122<-lossDistribution(obs122)
f211<-lossDistribution(obs211)
f212<-lossDistribution(obs212)
f221<-lossDistribution(obs221)
f222<-lossDistribution(obs222)
f311<-lossDistribution(obs311)
f312<-lossDistribution(obs312)
f321<-lossDistribution(obs321)
f322<-lossDistribution(obs322)
```r
payoffs <- list(f111, f112, f121, f122, f211, f212, f221, f222, f311, f312, f321, f322)
G <- mosg(n=2,
  m=2,
  payoffs,
  goals=3,
  goalDescriptions=c("g1", "g2", "g3"),
  defensesDescr = c("d1", "d2"),
  attacksDescr = c("a1", "a2"))
print(G)
summary(G)
plot(G)

# construct and solve scalar valued (classical) game;
# losses are all numbers (degenerate distributions)
G <- mosg(n = 2, m = 2, goals = 1, losses = as.list(c(3,6,4,1)))
mgss(G) # compute a multi-criteria security strategy
```

mosg.equilibrium embodies all information related to an equilibrium computed by the function mgss.

Description

The generic functions `print` and `summary` provide brief, and detailed information about the equilibrium. The generic function `plot` can be used to visualize the equilibrium.

Usage

```r
## S3 method for class 'mosg.equilibrium'
summary(object, ...)
## S3 method for class 'mosg.equilibrium.summary'
print(x, ...)
## S3 method for class 'mosg.equilibrium'
print(x, extended=FALSE, ...)
## S3 method for class 'mosg.equilibrium'
plot(x, points=100, ...)
```

Arguments

- `x` an mgss object as returned by the function mgss.
- `object` an mgss object as returned by the function mgss.
- `extended` if set to TRUE, the individual assurances are printed as well.
- `points` the number of points to evaluate the density function over its support for plotting
- `...` further arguments passed to or from other methods.
Value

the result returned by the function summary carries the following fields:

- **optimalDefense**: a discrete probability distribution over the action space for player 1 (the defender).
- **optimalAttacks**: a discrete probability distribution over the action space for player 2 (the attacker).
- **assurances**: an optimal loss distribution valid under the assumption that the defender plays optimalDefense as its mixed strategy. This is a list of loss distribution objects, accessible through their assignend names (coming from the underlying game) or by indices.

The action spaces for both players are defined in first place by the game for which the equilibrium was computed (via mgss on a game constructed by mosg).

print gives a shortened output restricted only to displaying the optimal defense for the defender and attack strategies per goal (as defined by the underlying game).

summary returns an object of class summary.mosg.lossdistribution, which has the fields: "range" "mean" "variance" "quantiles" "is.discrete"

- **range**: the minimal and maximal values of the loss (as anticipated by the observations)
- **mean**: the first moment as computed by mean
- **variance**: the variance as computed by variance
- **quantiles**: a 2x5-matrix of quantiles at the 10%, 25%, 50%, 75%, and 90% level
- **is.discrete**: a Boolean flag being TRUE if the loss distribution is over categories

plot displays a grid of plots, starting with the optimal defense behavior plotted as a discrete distribution on top of a (m x 2)-matrix of plots. Each line in this grid shows the discrete optimal attack strategy on the right side (as a bar plot), paired with the loss distribution (extracted from x) caused when the defender plays optimalDefense and the attacker plays the respective optimal attack strategy.

Author(s)

Stefan Rass

See Also

- `print.mosg.equilibrium`, `mgss`, `mosg`, `lossDistribution`

Examples

```r
library(compare)
library(orthopolynom)
## raw data (PURELY ARTIFICIAL, for demo purposes only)
# N=100 observations in each category
obs111<-c(rep(1,40),rep(3,20),rep(5,10),rep(7,20),rep(9,10));
obs112<-c(rep(1,50),rep(2,10),rep(4,10),rep(6,20),rep(8,10));
obs121<-c(rep(1,20),rep(4,30),rep(6,20),rep(8,10),rep(10,20));
```
Decision on preferences between loss distributions

Description

This function implements the total ordering on losses, based on treating the moment sequences as hyperreal numbers, and returns the lesser of the loss distribution representatives in the hyperreal space.
preference

Usage

preference(x, y, verbose = FALSE, weights, points = 512)

Arguments

x a loss, being either a number, a distribution or list of distributions (objects of class mosg.lossdistribution)
y a loss, being either a number, a distribution or list of distributions (objects of class mosg.lossdistribution)
weights a vector of \(n = \text{length}(x) = \text{length}(y) \) nonzero numbers (not necessarily summing up to 1), used only if \(x \) and \(y \) are lists of mosg.lossdistribution objects corresponding to \(n > 1 \) goals. In that case, the \(i \)-th goal gets assigned the weight (priority) \(\text{weights}[i] \). Defaults to all goals having equal priority if the parameter is missing (weights = rep(1/length(x), length(x))).
verbose if set to TRUE, the function returns the preferred of its arguments directly (thus, giving back \(x \) or \(y \). If set to FALSE (default), then it returns the argument index (1 = \(x \), 2 = \(y \)) or 0 in case that \(x = y \).
points the number of points at which the distributions are evaluated numerically to determine the preference.

Details

Deciding the preference ordering defined in terms of moment sequence as proposed in (Rass, 2015). To avoid having to compute all moments up to an unknown order, this function decides by looking at the tails of the distribution, returning the one with faster decaying tail as the preferred distribution. This method delivers exact decisions for discrete distributions, but is only an approximate approach for continuous densities.

Value

the result is either a copy of the input parameter \(x \) or \(y \), depending on which distribution is preferred.

Author(s)

Stefan Rass

References

See Also

lossDistribution, lossDistribution.mosg, print.mosg.lossdistribution
Examples

```r
# use data from CVSS risk assessments
cvss1base <- c(10, 6.4, 9, 7.9, 7.1, 9)
cvss2base <- c(10, 7.9, 8.2, 7.4, 10, 8.5, 9, 9, 8.7)
ld1 <- lossDistribution(cvss1base)
ld2 <- lossDistribution(cvss2base)
lowerRisk <- preference(ld1, ld2) # get the result for later use
preference(ld1, ld2, verbose=TRUE) # view the detailed answer
```

variance

Computes the approximate variance of a loss distribution.

Description

The computation is based on Steiner’s theorem \(\text{var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 \), where the respective first and second moments are computed using the `moment` function (from this package). Internally, these functions operate on the approximate kernel density estimation for both, continuous and categorical distributions (see the `lossDistribution` function for details).

Usage

```r
variance(x)
```

Arguments

- `x`: an object of class `mosg.lossDistribution`

Value

the approximate variance value

Note

the function works on the internal probability mass function (which may be different from the empirical distribution in case that the loss distribution has been smoothed during its construction; see `lossDistribution`). The function delivers only an approximate variance, whose error is due to numeric roundoff errors (known to occur in Steiner’s formula), and the fact that the computation is done on an approximate density (rather than the empirical distribution).

Author(s)

Stefan Rass

See Also

`moment`, `lossDistribution`
Examples

```r
x <- c(10,6.4,9,7.9,7.1,9)
ld <- lossDistribution(x)
variance(ld)
var(x)
```
Index

bw.nrd0, 7
cdf, 3, 9
density.mosg.lossdistribution
(lossDistribution), 6
disappointmentRate, 4
HyRiM (HyRiM-package), 2
HyRiM-package, 2
lossDistribution, 3, 4, 6, 13, 16, 18, 20, 21
lossDistribution.mosg (mosg), 13
mean, 13
mean.mosg.lossdistribution
(lossDistribution), 6
mgss, 3–5, 9, 9, 16, 18
moment, 12, 21
mosg, 8, 9, 13, 16, 18
mosg.equilibrium, 17
par, 9, 15
plot.mosg (mosg), 13
plot.mosg.equilibrium
(mosg.equilibrium), 17
plot.mosg.lossdistribution
(lossDistribution), 6
preference, 19
print.mosg (mosg), 13
print.mosg.equilibrium, 11, 18
print.mosg.equilibrium
(mosg.equilibrium), 17
print.mosg.lossdistribution
(lossDistribution), 20
print.mosg.lossdistribution
(lossDistribution), 6
print.summary.mosg.lossdistribution
(lossDistribution), 6
quantile.mosg.lossdistribution
(lossDistribution), 6
summary.mosg.equilibrium, 11
summary.mosg.equilibrium
(mosg.equilibrium), 17
summary.mosg.lossdistribution
(lossDistribution), 6
variance, 9, 13, 21