Package ‘HypergeoMat’

February 3, 2022

Type Package
Title Hypergeometric Function of a Matrix Argument
Version 4.0.1
Author Stéphane Laurent
Maintainer Stéphane Laurent <laurent_step@outlook.fr>
Description Evaluates the hypergeometric functions of a matrix argument, which appear in random matrix theory. This is an implementation of Koev & Edelman’s algorithm (2006) <doi:10.1090/S0025-5718-06-01824-2>.
License GPL-3
Encoding UTF-8
Imports Rcpp (>= 1.0.2), gsl, JuliaConnectoR, EigenR
LinkingTo Rcpp, RcppEigen
Suggests testthat, Bessel, jack, knitr, rmarkdown
SystemRequirements C++11
RoxygenNote 7.1.2
URL https://github.com/stla/HypergeoMat
BugReports https://github.com/stla/HypergeoMat/issues
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-02-03 12:40:10 UTC

R topics documented:

BesselA .. 2
hypergeomPFQ 3
hypergeomPFQ_julia 4
IncBeta ... 5
IncGamma ... 6
mvbeta ... 7
mvgamma ... 7
BesselA

Description

Evaluates the type one Bessel function of Herz.

Usage

BesselA(m, x, nu)

Arguments

m truncation weight of the summation, a positive integer
x either a real or complex square matrix, or a numeric or complex vector, the
eigenvalues of the matrix
nu the order parameter, real or complex number with Re(nu)>-1

Value

A real or complex number.

Note

This function is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

Examples

for a scalar x, the relation with the Bessel J-function:
t <- 2
nu <- 3
besselJ(t, nu)
BesselA(m=15, t^2/4, nu) * (t/2)^nu
it also holds for a complex variable:
t <- 1 + 2i
Bessel::BesselJ(t, nu)
BesselA(m=15, t^2/4, nu) * (t/2)^nu
hyergeomPFQ

Hypergeometric function of a matrix argument

Description

Evaluates a truncated hypergeometric function of a matrix argument.

Usage

hyergeomPFQ(m, a, b, x, alpha = 2)

Arguments

m truncation weight of the summation, a positive integer
a the "upper" parameters, a numeric or complex vector, possibly empty (or NULL)
b the "lower" parameters, a numeric or complex vector, possibly empty (or NULL)
x either a real or complex square matrix, or a numeric or complex vector, the
eigenvalues of the matrix
alpha the alpha parameter, a positive number

Details

This is an implementation of Koev & Edelman’s algorithm (see the reference). This algorithm is
split into two parts: the case of a scalar matrix (multiple of an identity matrix) and the general case.
The case of a scalar matrix is much faster (try e.g. x = c(1, 1, 1) vs x = c(1, 1, 0.999)).

Value

A real or a complex number.

Note

The hypergeometric function of a matrix argument is usually defined for a symmetric real matrix or
a Hermitian complex matrix.

References

Examples

a scalar x example, the Gauss hypergeometric function
hypergeomPFQ(m = 10, a = c(1,2), b = c(3), x = 0.2)
gsl::hyperg_2F1(1, 2, 3, 0.2)
0F0 is the exponential of the trace
X <- toeplitz(c(3,2,1))/10
hypergeomPFQ(m = 10, a = NULL, b = NULL, x = X)
exp(sum(diag(X)))
1F0 is det(I-X)^(-a)
X <- toeplitz(c(3,2,1))/100
hypergeomPFQ(m = 10, a = 3, b = NULL, x = X)
det(diag(3)-X)^(-3)
Herz's relation for 1F1
hypergeomPFQ(m = 10, a = 2, b = 3, x = X)
exp(sum(diag(X))) * hypergeomPFQ(m = 10, a = 3-2, b = 3, x = -X)
Herz's relation for 2F1
hypergeomPFQ(10, a = c(1,2), b = 3, x = X)
det(diag(3)-X)^(-2) *
hypergeomPFQ(10, a = c(3-1,2), b = 3, -X %*% solve(diag(3)-X))

Description

Evaluate the hypergeometric function of a matrix argument with Julia. This is highly faster.

Usage

hypergeomPFQ_julia()

Value

A function with the same arguments as hypergeomPFQ.

Note

See JuliaConnectoR-package for information about setting up Julia. If you want to directly use Julia, you can use my package.

Examples

library(HypergeoMat)
if(JuliaConnectoR::juliaSetupOk()){
 jhpq <- hypergeomPFQ_julia()
 jhpq(30, c(1+i, 2, 3), c(4, 5), c(0.1, 0.2, 0.3+0.3i))
 JuliaConnectoR::stopJulia()
}
IncBeta

Incomplete Beta function of a matrix argument

Description

Evaluates the incomplete Beta function of a matrix argument.

Usage

```r
IncBeta(m, a, b, x)
```

Arguments

- `m`: truncation weight of the summation, a positive integer
- `a, b`: real or complex parameters with \(\text{Re}(a) > (p-1)/2 \) and \(\text{Re}(b) > (p-1)/2 \), where \(p \) is the dimension (the order of the matrix)
- `x`: either a real positive symmetric matrix or a complex positive Hermitian matrix "smaller" than the identity matrix (i.e. \(I-x \) is positive), or a numeric or complex vector, the eigenvalues of the matrix

Value

A real or a complex number.

Note

The eigenvalues of a real symmetric matrix or a complex Hermitian matrix are always real numbers, and moreover they are positive under the constraints on \(x \). However we allow to input a numeric or complex vector \(x \) because the definition of the function makes sense for such a \(x \).

References

Examples

```r
# for a scalar x, this is the incomplete Beta function:
a <- 2; b <- 3
x <- 0.75
IncBeta(m = 15, a, b, x)
gsl::beta_inc(a, b, x)
pbeta(x, a, b)
```
Description

Evaluates the incomplete Gamma function of a matrix argument.

Usage

IncGamma(m, a, x)

Arguments

m truncation weight of the summation, a positive integer
a real or complex parameter with Re(a)>(p-1)/2, where p is the dimension (the order of the matrix)
x either a real or complex square matrix, or a numeric or complex vector, the eigenvalues of the matrix

Value

A real or complex number.

Note

This function is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

Examples

for a scalar x, this is the incomplete Gamma function:
a <- 2
x <- 1.5
IncGamma(m = 15, a, x)
gsl::gamma_inc_P(a, x)
pgamma(x, shape = a, rate = 1)
mvbeta

Multivariate Beta function (of complex variable)

Description

The multivariate Beta function (mvbeta) and its logarithm (lmvbeta).

Usage

\[
\begin{align*}
\text{lmvbeta}(a, b, p) \\
\text{mvbeta}(a, b, p)
\end{align*}
\]

Arguments

- **a, b**: real or complex numbers with Re(a) > 0 and Re(b) > 0
- **p**: a positive integer, the dimension

Value

A real or a complex number.

Examples

\[
\begin{align*}
a & \leftarrow 5; b \leftarrow 4; p \leftarrow 3 \\
\text{mvbeta}(a, b, p) \\
\text{mvgamma}(a, p) \times \text{mvgamma}(b, p) / \text{mvgamma}(a+b, p)
\end{align*}
\]

mvgamma

Multivariate Gamma function (of complex variable)

Description

The multivariate Gamma function (mvgamma) and its logarithm (lmvgamma).

Usage

\[
\begin{align*}
\text{lmvgamma}(x, p) \\
\text{mvgamma}(x, p)
\end{align*}
\]

Arguments

- **x**: a real or a complex number; Re(x) > 0 for lmvgamma and x must not be a negative integer for mvgamma
- **p**: a positive integer, the dimension
Value

A real or a complex number.

Examples

```r
x <- 5
mvgamma(x, p = 2)
sqrt(pi)*gamma(x)*gamma(x-1/2)
```
Index

BesselA, 2

hypergeomPFQ, 3, 4
hypergeomPFQ_julia, 4

IncBeta, 5
IncGamma, 6

lmvbeta (mvbeta), 7
lmvgamma (mvgamma), 7

mvbeta, 7
mvgamma, 7