Package ‘ICCbin’

November 14, 2017

Version 1.1.1
Date 2017-11-13
Type Package
Title Facilitates Clustered Binary Data Generation, and Estimation of Intracluster Correlation Coefficient (ICC) for Binary Data
Author Akhtar Hossain [aut, cre], Hrishikesh Chakraborty [aut]
Maintainer Akhtar Hossain <mhossain@email.sc.edu>
Imports stats
Suggests lme4
Description Assists in generating binary clustered data, estimates of Intracluster Correlation coefficient (ICC) for binary response in 16 different methods, and 5 different types of confidence intervals.
License GPL (>= 2)
URL https://cran.r-project.org/package=ICCbin
BugReports https://github.com/akhtarth/ICCbin/issues
LazyData TRUE
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-11-14 04:20:56 UTC

R topics documented:

iccbin .. 2
rcbin .. 5

Index 7
iccbin

Estimates Intracluster Correlation coefficients (ICC) and it’s confidence intervals (CI)

Description

Estimates Intracluster Correlation coefficients (ICC) in 16 different methods and it’s confidence intervals (CI) in 5 different methods given the data on cluster labels and outcomes

Usage

iccbin(cid, y, data = NULL, method = c("aov", "aovs", "keq", "kpr", "keqs", "kprs", "stab", "ub", "fc", "mak", "peq", "pgp", "ppr", "rm", "lin", "sim"), ci.type = c("aov", "wal", "fc", "peq", "rm"), alpha = 0.05, kappa = 0.45, nAGQ = 1, M = 1000)

Arguments

cid
Column name indicating cluster id in the dataframe data

y
Column name indicating binary response in the dataframe data

data
A dataframe containing cid and y

method
The method to be used to compute ICC. A single or multiple methods can be used at a time. By default, all 16 methods will be used. See Details for more.

ci.type
Type of confidence interval to be computed. By default all 5 types will be reported. See Details for more

alpha
The significance level to be used while computing confidence interval. Default value is 0.05

kappa
Value of Kappa to be used in computing Stabilized ICC when the method stab is chosen. Default value is 0.45

nAGQ
An integer scaler, as in glmer function of package lme4, denoting the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood. Used when the method lin is chosen. Default value is 1

M
Number of Monte Carlo replicates used in ICC computation method sim. Default is 1000

Details

If in the dataframe, the cluster id (cid) is not a factor, it will be changed to a factor and a warning message will be given

If estimate of ICC in any method is outside the interval [0, 1], the estimate and corresponding confidence interval (if appropriate) will not be provided and warning messages will be produced

If the lower limit of any confidence interval is below 0 and upper limit is above 1, they will be replaced by 0 and 1 respectively and a warning message will be produced
Method `aov` computes the analysis of variance estimate of ICC. This estimator was originally proposed for continuous variables, but various authors (e.g. Elston, 1977) have suggested its use for binary variables.

Method `aovs` gives estimate of ICC using a modification of analysis of variance technique (see Fleiss, 1981).

Method `keq` computes moment estimate of ICC suggested by Kleinman (1973), uses equal weight $w_i = 1/k$, for each of k clusters.

Method `kpr` computes moment estimate of ICC suggested by Kleinman (1973), uses weights proportional to cluster size $w_i = n_i/N$.

Method `keqs` gives a modified moment estimate of ICC with equal weights (`keq`) (see Kleinman, 1973).

Method `kprs` gives a modified moment estimate of ICC with weights proportional to cluster size (`kpr`) (see Kleinman, 1973).

Method `stab` provides a stabilized estimate of ICC proposed by Tamura and Young (1987).

Method `ub` computes moment estimate of ICC from an unbiased estimating equation (see Yamamoto and Yanagimoto, 1992).

Method `fc` gives Fleiss-Cuzick estimate of ICC (see Fleiss and Cuzick, 1979).

Method `mak` computes Mak’s estimate of ICC (see Mak, 1988).

Method `peq` computes weighted correlation estimate of ICC proposed by Karlin, Cameron, and Williams (1981) using equal weight to every pair of observations.

Method `pgp` computes weighted correlation estimate of ICC proposed by Karlin, Cameron, and Williams (1981) using equal weight to each cluster irrespective of size.

Method `ppr` computes weighted correlation estimate of ICC proposed by Karlin, Cameron, and Williams (1981) by weighting each pair according to the total number of pairs in which the individuals appear.

Method `rm` estimates ICC using resampling method proposed by Chakraborty and Sen (2016).

Method `lin` estimates ICC using model linearization proposed by Goldstein et al. (2002).

Method `sim` estimates ICC using Monte Carlo simulation proposed by Goldstein et al. (2002).

CI type `aov` computes confidence interval for ICC using Smith’s large sample approximation (see Smith, 1957).

CI type `wal` computes confidence interval for ICC using modified Wald test (see Zou and Donner, 2004).

CI type `fc` gives Fleiss-Cuzick confidence interval for ICC (see Fleiss and Cuzick, 1979; and Zou and Donner, 2004).

CI type `peq` estimates confidence interval for ICC based on direct calculation of correlation between observations within clusters (see Zou and Donner, 2004; and Wu, Crespi, and Wong, 2012).

CI type `rm` gives confidence interval for ICC using resampling method by Chakraborty and Sen (2016).
Value

estimates A dataframe containing the name of methods used and corresponding estimates of Intracluster Correlation coefficients

ci A dataframe containing names of confidence interval types and corresponding estimated confidence intervals

Author(s)

Akhtar Hossain <mhossain@email.sc.edu>
Hirshikesh Chakraborty <rishi.c@duke.edu>

References

See Also

rcbin

Examples

```r
bccdata <- rcbin(prop = .4, prvar = .2, noc = 30, csize = 20, csvar = .2, rho = .2)
iccbin(cid = cid, y = y, data = bccdata)
iccbin(cid = cid, y = y, data = bccdata, method = c("aov", "fc"), ci.type = "fc")
```

rcbin

Generates correlated binary cluster data

Description

Generates correlated binary cluster data given value of Intracluster Correlation, proportion of event and it’s variation, number of clusters, cluster size and variation in cluster size

Usage

```r
rcbin(prop = 0.5, prvar = 0, noc, csize, csvar = 0, rho)
```

Arguments

- `prop`: A numeric value between 0 and 1 denoting assumed proportion of event in interest, default value is 0.5. See Detail
- `prvar`: A numeric value between 0 and 1 denoting percent of variation in assumed proportion of event (prvar), default value is 0. See Detail
- `noc`: A numeric value telling the number of clusters to be generated
- `csize`: A numeric value denoting desired cluster size. See Detail
- `csvar`: A numeric value between 0 and 1 denoting percent of variation in cluster sizes (csize), default value is 0. See Detail
- `rho`: A numeric value between 0 and 1 denoting desired level of Intracluster Correlation

Details

The minimum and maximum values of event proportion (prop) will be taken as 0 and 1 respectively in cases where it exceeds the valid limits (0, 1) due to larger value of percent variation (prvar) supplied.

The minimum value of cluster size (csize) will be taken as 2 in cases where it goes below 2 due to larger value of percent variation (csvar) supplied.

Value

A dataframe with two columns presenting cluster id (cid) and a binary response (y) variables
Author(s)

Akhtar Hossain <mhossain@email.sc.edu>
Hrishikesh Chakraborty <rishi.c@duke.edu>

See Also

iccbin

Examples

rcbin(prop = .4, prvar = .2, noc = 30, csize = 20, csvar = .2, rho = .2)
Index

iccbin, 2, 6
rcbin, 5, 5