Package ‘ICDS’

October 12, 2022

Type Package

Title Identification of Cancer Dysfunctional Subpathway with Omics Data

Version 0.1.2

Maintainer Junwei Han <hanjunwei1981@163.com>

Description Identify Cancer Dysfunctional Sub-pathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1) We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2) Secondly, we perform a greedy search algorithm to identify the key dysfunctional sub-pathways within the pathways for which the discriminative scores were locally maximal. 3) Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional sub-pathways.

Depends R (>= 2.10)

biocViews

Imports igraph, graphite, metap, methods, org.Hs.eg.db

Suggests knitr, rmarkdown, prettydoc

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Junwei Han [cre],
Baotong Zheng [aut],
Siyao Liu [ctb]

Repository CRAN

Date/Publication 2021-07-15 11:30:10 UTC
R topics documented:

ICDS-package

Description

Identification of Cancer Dysfunctional Subpathway by integrating DNA methylation, copy number variation, and gene expression data

combinep_three

Description

‘combinep_three’ combine three kinds of p-values, then calculate z-score for them.

Usage

combinep_three(p1, p2, p3)
combinep_two

Arguments

- **p1** the p-values or corrected p-values
- **p2** the p-values or corrected p-values
- **p3** the p-values or corrected p-values

Value

A numeric vector of z_scores

Examples

```r
exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
cnv.p<-GetExampleData("cnv.p")
combinep_three(exp.p,meth.p,cnv.p)
```

Description

`combinep_two` combine two kinds of p-values, then, calculate z-score for them.

Usage

`combinep_two(p1, p2)`

Arguments

- **p1** A numeric vector of p-values or corrected p-values
- **p2** A numeric vector of p-values or corrected p-values

Value

A numeric vector of z_scores

Examples

```r
exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
combinep_two(exp.p,meth.p)
```
coverp2zscore

Description

'coverp2zscore' calculate z-scores for p-values

Usage

coverp2zscore(pdata)

Arguments

pdata A numeric vector of p-values or corrected p-values

Value

A numeric vector of z_scores

Examples

exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
cnv.p<-GetExampleData("cnv.p")
coverp2zscore(exp.p)
coverp2zscore(meth.p)
coverp2zscore(cnv.p)

envData

The variables in the environment include an example expression profile, an methylation profile, an copy number variation data, amplified genes, deleted genes, A numeric vector of z_scores, p-values, A vector of 0/1s, indicating the class of samples, interested subpathways, Optimized subpathway, and the statistical significance p value and FDR for these optimal subpathways

Description

Identify Cancer Dysfunctional Subpathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1) We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2) Secondly, we perform a greedy search algorithm to identify the key dysfunctional subpathways within the pathways for which the discriminative scores were locally maximal. 3) Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional subpathways.
FindSubPath

Format

An environment variable

Details

The environment variable includes the variable `exp_data`, `meth_data`, `cnv_data`, `amp_gene`, `del_gene`, `zzz`, `exp.p`, `meth.p`, `cnv.p`, `label1`, `label2`, `subpathdata`, `opt_subpathways`

Author(s)

Junwei Han <hanjunwei1981@163.com>, Baotong Zheng <btzheng1116@163.com>, Siyao Liu <liusiyao29@163.com>

Description

‘FindSubPath’ uses a greedy search algorithm to search for key subpathways in each entire pathway.

Usage

```r
FindSubPath(
  zz,
  Pathway = "kegg",
  delta = 0.05,
  seed_p = 0.05,
  min.size = 5,
  out.F = FALSE,
  out.file = "Subpath.txt"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zz</td>
<td>A numeric vector of z.scores.</td>
</tr>
<tr>
<td>Pathway</td>
<td>The name of the pathway database.</td>
</tr>
<tr>
<td>delta</td>
<td>Diffusion coefficient in each step of searching subpath.</td>
</tr>
<tr>
<td>seed_p</td>
<td>Define gene whose p-value smaller than seed_p as seed gene.</td>
</tr>
<tr>
<td>min.size</td>
<td>The smallest size of subpathways.</td>
</tr>
<tr>
<td>out.F</td>
<td>Logical, tell if output subpathways.</td>
</tr>
<tr>
<td>out.file</td>
<td>file name of subpathways.</td>
</tr>
</tbody>
</table>

Value

Key dysfunctional subpathways in each pathway, in which the risk score of the genes were significantly higher.
Examples

```r
require(graphite)
zz<-GetExampleData("zzz")
k<-FindSubPath(zz)
```

Description

'getCnvp' perform t-test on copy number variation data

Usage

```r
getcnvp(
  exp_data,
  cnv_data,
  amp_gene,
  del_gene,
  p.adjust = TRUE,
  method = "fdr"
)
```

Arguments

- `exp_data`: A data frame
- `cnv_data`: Copy number variation data
- `amp_gene`: A vector of strings, the IDs of amplified genes.
- `del_gene`: A vector of strings, the IDs of deleted genes.
- `p.adjust`: Logical, tell if returns corrected p-values
- `method`: Correction method, which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY".

Details

`cnv_data` is TCGA level4 data. If `p.adjust=TRUE`, return corrected p-values, if `p.adjust=FALSE`, return p-values

Value

A numeric vector of p-values or corrected p-values
GetExampleData

Examples

exp_data<-GetExampleData("exp_data")
meth_data<-GetExampleData("meth_data")
cnv_data<-GetExampleData("cnv_data")
amp_gene<-GetExampleData("amp_gene")
del_gene<-GetExampleData("del_gene")
getCnvp(exp_data,cnv_data,amp_gene,del_gene,p.adjust=FALSE,method="fdr")

GetExampleData

Get the example data

Description

Get the example data of test package for little trials.

Usage

GetExampleData(exampleData)

Arguments

exampleData A character, should be one of "exp_data", "meth_data", "cnv_data", "amp_gene", "del_gene", "label1", "label2", "zz", "exp.p", "meth.p", "cnv.p" and "pathdata".

Details

The function getExampleData(ExampleData = "exp.p") obtains a vector of IncRNAs confirmed to be related with breast cancer. The function getExampleData(ExampleData = "Profile") obtains the expression pr

References

Description

'getExpp' perform t-test on Expression profile data

Usage

getExpp(exp_data, label, p.adjust = TRUE, method = "fdr")

Arguments

exp_data A data frame, the expression profile to calculate p-value for each gene, the row-names should be the symbol of genes.

label A vector of 0/1s, indicating the class of samples in the expression profile, 0 represents case, 1 represents control.

p.adjust Logical, tell if returns corrected p-values

method Correction method, which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY".

Details

For a given expression profile of two conditions, ICDS package provide t-test method to calculate p-values or corrected p-values (if p.adjust=TRUE, return corrected p-values, if p.adjust=FALSE, return p-values) for each genes. The row of the expression profile should be gene symbols and the column of the expression profile should be names of samples. Samples should be under two conditions and the label should be given as 0 and 1.

Value

A numeric vector of p-values or corrected p-values

Examples

profile<-GetExampleData("exp_data")
label<-GetExampleData("label1")
getExpp(profile,label,p.adjust=FALSE)
Description

'getMethp' perform t-test on Methylation profile data

Usage

getMethp(meth_data, label, p.adjust = TRUE, method = "fdr")

Arguments

meth_data A data frame, the Methylation profile to calculate p-value for each gene, the rownames should be the symbol of genes.
label A vector of 0/1s, indicating the class of samples in the Methylation profile, 0 represents case, 1 represents control.
p.adjust Logical, tell if returns corrected p-values
method Correction method, which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY".

Details

For a given Methylation profile of two conditions, ICDS package provide t-test method to calculate p-values or corrected p-values (if p.adjust=TRUE, return corrected p-values, if p.adjust=FALSE, return p-values.) for each genes. The row of the Methylation profile should be gene symbols and the column of the Methylation profile should be names of samples. Samples should be under two conditions and the label should be given as 0 and 1.

Value

A numeric vector of p-values or corrected p-values

Examples

profile<-GetExampleData("meth_data")
label<-GetExampleData("label2")
getMethp(profile,label,p.adjust=FALSE)
Description

`opt_subpath` Optimize interested subpathways. If the number of genes shared by the two pathways accounted for more than the Overlap ratio of each pathway genes, then combine two pathways.

Usage

```r
opt_subpath(subpathdata, zz, overlap = 0.6)
```

Arguments

- `subpathdata` interested subpathways
- `zz` a vector of z-scores
- `overlap` Overlap ratio of each two pathway genes

Value

Optimized subpathway: the number of genes shared by any two pathways accounted for less than the Overlap ratio of each pathway genes.

Examples

```r
zz<-GetExampleData("zzz")
subpathdata<-GetExampleData("subpathdata")
opxpath<-opt_subpath(subpathdata,zz,overlap=0.6)
```

Description

The permutation test method 1 and method 2 were used to calculate the statistical significance level for these optimal subpathways.

Usage

```r
Permutation(
  subpathwayz,
  zz,
  nperm1 = 1000,
  method1 = TRUE,
  nperm2 = 1000,
  method2 = FALSE
)
```
Arguments

- **subpathwayz**: Optimize interested subpathways
- **zz**: a vector of z-scores
- **nperm1**: times of permutation to perform use method1
- **method1**: permutation analysis method1
- **nperm2**: times of permutation to perform use method2
- **method2**: permutation analysis method2

Value

the statistical significance p value and FDR for these optimal subpathways

Examples

```r
require(graphite)
keysubpathways<-GetExampleData("keysubpathways")
zzz<-GetExampleData("zzz")
Permutation(keysubpathways,zzz,nperm1=10,method1=TRUE,nperm2=10,method2=FALSE)
```

Description

PlotsSubpathway: plot a network graph when user input a list of gene

Usage

```r
PlotSubpathway(
  subpID,
  pathway.name,
  zz,
  Pathway = "kegg",
  layout = layout.fruchterman.reingold
)
```

Arguments

- **subpID**: gene list of a interested subpathway
- **pathway.name**: name of the interested subpathway
- **zz**: z-score of each gene
- **Pathway**: the name of the pathway database
- **layout**: The layout specification(...). It must be a call to a layout specification function.
Value

Network graph

Examples

```r
require(graphite)
subpID<-unlist(strsplit("ACSS1/ALDH3B2/ADH1B/ADH1A/ALDH2/DLAT/ACSS2","/"))
pathway.name="Glycolysis / Gluconeogenesis"
zzz<- GetExampleData("zzz")
PlotSubpathway(subpID=subpID,pathway.name=pathway.name,zz=zzz)
```
Index

* data
 envData, 4
 amp_gene (envData), 4
 cnv.p (envData), 4
 cnv_data (envData), 4
 combinep_three, 2
 combinep_two, 3
 coverp2zscore, 4
 del_gene (envData), 4
 envData, 4
 exp.p (envData), 4
 exp_data (envData), 4
 FindSubPath, 5
 getCnvp, 6
 GetExampleData, 7
 getExpp, 8
 getMethp, 9
 ICDS (ICDS-package), 2
 ICDS-package, 2
 label1 (envData), 4
 label2 (envData), 4
 layout_. II
 meth.p (envData), 4
 meth_data (envData), 4
 opt_subpath, 10
 opt_subpathways (envData), 4
 Permutation, 10
 PlotSubpathway, 11
 subpathdata (envData), 4
 zzz (envData), 4