Package ‘ICODS’

June 5, 2019

Type Package

Title Data Analysis for ODS and Case-Cohort Designs with Interval-Censoring

Version 1.0

Date 2019-6-05

Author Shannon T. Holloway, Qingning Zhou, Jianwen Cai, Haibo Zhou

Maintainer Shannon T. Holloway <sthollow@ncsu.edu>

Description Sieve semiparametric likelihood methods for analyzing interval-censored failure time data from an outcome-dependent sampling (ODS) design and from a case-cohort design.

License GPL-2

Depends methods, stats, MASS

NeedsCompilation no

Repository CRAN

Encoding UTF-8

RoxygenNote 6.1.1

Collate 'myOptim.R' 'minObj.R' 'baseInfo.R' 'CaseCohort_Obj.R'
'CaseCohort_gr.R' 'CaseCohort_fn.R' 'class.ICODS.R'
'CaseCohort_class.R' 'bernstein.R' 'CaseCohortIC.R'
'CaseCohort_data.R' 'ODSDesign_Obj.R' 'ODSDesign_class.R'
'ODSDesignIC.R' 'ODSDesign_data.R' 'ODSDesign_fn.R'
'ODSDesign_gr.R' 'testInputData.R'

Date/Publication 2019-06-05 13:00:06 UTC

R topics documented:

CaseCohortIC .. 2
ccData ... 4
estimate ... 5
Description

Provides a sieve semiparametric likelihood approach under the proportional hazards model for analyzing data from a case-cohort design with failure times subject to interval-censoring. The likelihood function is constructed using inverse probability weighting, and the sieves are built with Bernstein polynomials. A weighted bootstrap procedure is implemented for variance estimation.

Usage

```r
CaseCohortIC(uL, vL, del1L, delRL, xiL, zL, spL, mvalL, bL, beta = NULLL, 
maxit = 10L, verbose = TRUE, ...)
```

Arguments

- **U**: numeric vector (n); examination time. See Details for further information.
- **V**: numeric vector (n); examination time. See Details for further information.
- **del1**: integer vector (n); indicator of a left-censored observation \(I(T\leq U)\). See Details for further information.
- **delR**: integer vector (n); indicator of an interval-censored observation \(I(U<T\leq V)\). See Details for further information.
- **xi**: integer vector (n); indicating membership of the case-cohort sample.
- **z**: matrix (nxp); covariates.
- **sp**: numeric (1); sampling probability \(0 < sp < 1\).
- **mVal**: integer vector (m); one or more options for the degree of the Bernstein polynomials. If more than one option provided, the value resulting in the lowest AIC is selected. The results returned are for only that m-value.
- **B**: integer (1); number of bootstrap samples used to calculate the variance estimate.
- **beta**: numeric vector (p); initial values for beta. If NULL, initial guess set to 0.5 for each of the p parameters.
- **maxit**: integer(1); maximum number of calls to optimization method.
- **verbose**: logical; TRUE generates progress screen prints.
- **...**: optional inputs to "control" of function optim().
Details

The implementation uses stats::optim() to minimize the likelihood. The hard-coded method is "BFGS". Users are able to make changes to the ‘control’ input of optim() by passing named inputs through the ellipses. If a call to optim() returns convergence = 1, i.e., optim() reached its internal maximum number of iterations before convergence was attained, the software automatically repeats the call to optim() with input variable par set to the last parameter values. This procedure is repeated at most maxit times.

Input parameters U, V, del1, and del2 are defined as follows. Suppose there are K follow-up examinations at times TE = (T1, T2, ..., TK), and the failure time is denoted as TF. For left-censored data, the failure occurs prior to the first follow-up examination (TF < T1); therefore, define U = T1, V = tau, and (del1,del2)=(1,0). For right-censored data, the failure has not yet occurred at the last follow-up examination (TF > TK); therefore, define U = 0, V = TK, and (del1,del2)=(0,0). For interval-censored data, the failure occurs between two follow-up examinations, e.g. T2 < TF < T3; therefore, define U and V to be the two consecutive follow-up examination times bracketing the failure time TF and (del1,del2)=(0,1).

Value

an object of class CaseCohort (inheriting from ICODS) containing

optim a list of the results returned by optim().
beta the estimated beta parameters.
se the standard error of the estimated beta parameters.
pValue the p-value of the estimated beta parameters.
m the selected degree of the Bernstein polynomials.
AIC the AIC value for the selected degree of the Bernstein polynomials.

References

Examples

data(ccData)
result <- CaseCohortIC(U = ccData$U,
V = ccData$V,
del1 = ccData$del1,
del2 = ccData$del2,
xi = ccData$xi,
z = ccData$z,
sp = 0.2,
mVal = 1L,
B = 10L,
beta = NULL,
maxit = 10L,
verbose = TRUE)

print(result)
mVal(result)
estimate(result)
optimObj(result)
minAIC(result)
summary(result)

ccData

Toy Example for Case-Cohort Design with Interval-Censored Data

Description

This data set gives a simple toy example of case-cohort design with interval-censored data. It was generated following the simulation study used to illustrate the method in the original manuscript referenced below. This dataset is not meaningful and is intended for demonstration purposes only.

Usage

data(ccData)

Format

A data.frame containing 500 observations with 6 columns:

U examination time.
V examination time.
del1 indicator of a left-censored observation I(T<=U).
del2 indicator of an interval-censored observation I(U<T<=V).
x1 indicating membership of the case-cohort sample.
z covariates.

See Details for further information.

Details

The data can be understood as follow. There are K follow-up examinations at times TE = (T1, T2, ..., TK), and the failure time is denoted as TF. For left-censored data, the failure occurred prior to the first follow-up examination (TF < T1); therefore, U = T1, V = tau, and (del1,del2)=(1,0). For right-censored data, the failure had not yet occurred at the last follow-up examination (TF > TK); therefore, U = 0, V = TK, and (del1,del2)=(0,0). For interval-censored data, the failure occurred between two follow-up examinations, e.g. T2 < TF < T3; therefore, U and V to be the two consecutive follow-up examination times bracketing the failure time TF and (del1,del2)=(0,1).
estimate

References

estimate

Retrieve the Estimated Beta Parameters

Description

Retrieves the estimated beta parameters for the m value that minimizes the AIC.

Usage

```r
estimate(object, ...)```

**Arguments**

- `object`: An object of class ICODS
- `...`: ignored

**Value**

A matrix containing the estimated parameter value, the standard error, and the p-value.

**Examples**

```r
data(odsData)
resultODS <- ODSDesignIC(U = odsData$U,
V = odsData$V,
del1 = odsData$del1,
del2 = odsData$del2,
z = odsData$z,
mVal = 1L,
ind = odsData$ind,
a1 = 0.43,
a2 = 0.45,
beta = NULL,
maxit = 10L,
verbose = TRUE)

estimate(resultODS)
```

```r
data(ccData)
resultCC <- CaseCohortIC(U = ccData$U,
V = ccData$V,
del1 = ccData$del1,
```
```
del2 = ccData$del2,
xi = ccData$xi,
z = ccData$z,
sp = 0.2,
mVal = 1L,
B = 10L,
beta = NULL,
maxit = 10L,
verbose = TRUE)
estimate(resultCC)
```

---

### Description

Retrieves the minimum AIC.

### Usage

```
minAIC(object, ...)
```

### Arguments

- **object**: An object of class ICODS
- **...**: ignored

### Value

**numeric**

### Examples

```
data(odsData)
resultODS <- ODSDesignIC(U = odsData$U,
 V = odsData$V,
del1 = odsData$del1,
del2 = odsData$del2,
z = odsData$z,
mVal = 1L,
ind = odsData$ind,
a1 = 0.43,
a2 = 0.45,
beta = NULL,
maxit = 10L,
verbose = TRUE)
estimate(resultCC)
```
Retrieve Degree of Optimal Bernstein Polynomial

Description
Retrieves the degree of the Bernstein polynomial basis provided as input that minimizes the AIC.

Usage
mVal(object, ...)

Arguments
object An object of class ICODS
... ignored

Value
an integer

Examples
data(odsData)
resultODS <- ODSDesignIC(U = odsData$U,
V = odsData$V,
del1 = odsData$del1,
Toy Example for ODS Design with Interval-Censored Data

Description

This data set gives a simple toy example of ODS design with interval-censored data. It was generated following the simulation study used to illustrate the method in the original manuscript referenced below. This dataset is not meaningful and is intended for demonstration purposes only.

Usage

data(odsData)

Format

A data.frame containing 501 observations with 6 columns:

- U examination time; see Details.
- V examination time; see Details.
**ODSDesignIC**

- **del1** indicator of a left-censored observation \(I(T\leq U)\).
- **del2** indicator of an interval-censored observation \(I(U<T\leq V)\).
- **z** covariates.

**Description**

Provides an outcome-dependent sampling (ODS) design with interval-censored failure time data, where the observed sample is enriched by selectively including certain more informative failure subjects. The method is a sieve semiparametric maximum empirical likelihood approach for fitting the proportional hazards model to data from the interval-censoring ODS design.

**Usage**

```r
ODSDesignIC(U, V, del1, del2, z, mVal, ind, a1, a2, beta = NULL, maxit = 10L, verbose = TRUE, ...)```

Arguments

- **U** numeric vector (n); examination time. See Details for further information.
- **V** numeric vector (n); examination time. See Details for further information.
- **del1** integer vector (n); indicator of a left-censored observation \(I(T\leq U)\). See Details for further information.
- **del2** integer vector (n); indicator of an interval-censored observation \(I(U<T\leq V)\). See Details for further information.
- **z** matrix (nxp); covariates.

Details

The data can be understood as follow. There are \(K\) follow-up examinations at times \(TE = (T_1, T_2, ..., TK)\), and the failure time is denoted as \(TF\). For left-censored data, the failure occurred prior to the first follow-up examination \((TF < T_1)\); therefore, \(U = T_1, V = tau, and (del1,del2)=(1,0)\). For right-censored data, the failure had not yet occurred at the last follow-up examination \((TF > TK)\); therefore, \(U = 0, V = TK, and (del1,del2)=(0,0)\). For interval-censored data, the failure occurred between two follow-up examinations, e.g. \(T_2 < TF < T_3\); therefore, \(U\) and \(V\) to be the two consecutive follow-up examination times bracketing the failure time \(TF\) and \((del1,del2)=(0,1)\).

References

mVal integer vector (m); one or more options for the degree of the Bernstein polynomials. If more than one option provided, the value resulting in the lowest AIC is selected. The results returned are for only that m-value.

ind integer vector (n); indicating membership of the simple random sample (0), lower-tail supplemental sample (1), or upper-tail supplemental sample (2).

a1 numeric (1); lower cut-off point for selecting ODS sample (0 < a1 < a2 < tau).

a2 numeric (1); upper cut-off point for selecting ODS sample (0 < a1 < a2 < tau).

beta numeric vector (p); initial values for beta. If NULL, initial guess set to 0.5 for each of the p parameters.

maxit integer(1); maximum number of calls to optimization method.

verbose logical; TRUE generates progress screen prints.

... optional inputs to "control" of function optim().

Details

The implementation uses stats::optim() to minimize the likelihood. The hard-coded method is "BFGS". Users are able to make changes to the 'control' input of optim() by passing named inputs through the ellipses. If a call to optim() returns convergence = 1, i.e., optim() reached its internal maximum number of iterations before convergence was attained, the software automatically repeats the call to optim() with input variable par set to the last parameter values. This procedure is repeated at most maxit times.

Input parameters U, V, del1, and del2 are defined as follows. Suppose there are K follow-up examinations at times TE = (T1, T2, ..., TK), and the failure time is denoted as TF. For left-censored data, the failure occurred prior to the first follow-up examination (TF < T1); therefore, define U = T1, V = tau, and (del1,del2)=(1,0). For right-censored data, the failure had not yet occurred at the last follow-up examination (TF > TK); therefore, define U = 0, V = TK, and (del1,del2)=(0,0). For interval-censored data, the failure occurred between two follow-up examinations, e.g. T2 < TF < T3; therefore, define U and V to be the two consecutive follow-up examination times bracketing the failure time TF and (del1,del2)=(0,1).

Value

an object of class ODSDesign (inheriting from ICODS) containing

optim a list of the results returned by optim().

beta the estimated beta parameters.

se the standard error of the estimated beta parameters.

pValue the p-value of the estimated beta parameters.

m the selected degree of the Bernstein polynomials.

AIC the AIC value for the selected degree of the Bernstein polynomials.

References

Examples

data(odsData)

result <- odsDesignIC(U = odsData$U,
V = odsData$V,
del1 = odsData$del1,
del2 = odsData$del2,
z = odsData$z,
mVal = 1L,
ind = odsData$ind,
a1 = 0.43,
a2 = 0.45,
beta = NULL,
maxit = 10L,
verbose = TRUE)

print(result)
mVal(result)
estimate(result)
optimObj(result)
minAIC(result)
summary(result)

optimObj

Retrieve the Optimization Results

Description

Retrieves the final optimization results for the m value that minimizes the AIC.

Usage

optimObj(object, ...)

Arguments

object An object of class ICODS

... ignored

Value

the value object returned by stats::optim()
Examples

data(odsData)

resultODS <- ODSDesignIC(U = odsData$U,
 V = odsData$V,
 del1 = odsData$del1,
 del2 = odsData$del2,
 z = odsData$z,
 mVal = 1L,
 ind = odsData$ind,
 a1 = 0.43,
 a2 = 0.45,
 beta = NULL,
 maxit = 10L,
 verbose = TRUE)

optimObj(resultODS)

data(ccData)

resultCC <- CaseCohortIC(U = ccData$U,
 V = ccData$V,
 del1 = ccData$del1,
 del2 = ccData$del2,
 xi = ccData$xi,
 z = ccData$z,
 sp = 0.2,
 mVal = 1L,
 B = 10L,
 beta = NULL,
 maxit = 10L,
 verbose = TRUE)

optimObj(resultCC)

summary

Retrieve the Key Results

Description

Retrieves the estimated beta parameters for the m value that minimizes the AIC; the m value; and the AIC value.

Arguments

| object | An object of class ICODS |
| ... | ignored |
Value

A list containing

- \texttt{par}\hspace{1em}A matrix containing the estimated parameter value, the standard error, and the p-value.
- \texttt{m}\hspace{1em}The selected m value.
- \texttt{AIC}\hspace{1em}The AIC.

Examples

data(odsData)

resultODS <- ODSDesignIC(U = odsData$U,
 V = odsData$V,
 del1 = odsData$del1,
 del2 = odsData$del2,
 z = odsData$z,
 mVal = 1L,
 ind = odsData$ind,
 a1 = 0.43,
 a2 = 0.45,
 beta = NULL,
 maxit = 10L,
 verbose = TRUE)

summary(resultODS)

data(ccData)

resultCC <- CaseCohortIC(U = ccData$U,
 V = ccData$V,
 del1 = ccData$del1,
 del2 = ccData$del2,
 xi = ccData$xi,
 z = ccData$z,
 sp = 0.2,
 mVal = 1L,
 B = 10L,
 beta = NULL,
 maxit = 10L,
 verbose = TRUE)

summary(resultCC)
Index

*Topic datasets
 ccData, 4
 odsData, 8

CaseCohortIC, 2
ccData, 4

estimate, 5

minAIC, 6
mVal, 7

odsData, 8
ODSDesignIC, 9
optimObj, 11

summary, 12