Package ‘IDPSurvival’

October 12, 2022

Version 1.2
Date 2017-02-25
Title Imprecise Dirichlet Process for Survival Analysis
Author Francesca Mangili <francesca@idsia.ch>,
Alessio Benavoli <alessio@idsia.ch>,
Cassio P. de Campos <cassiopc@acm.org>,
Marco Zaffalon <zaffalon@idsia.ch>
Maintainer Francesca Mangili <francesca@idsia.ch>
Depends R (>= 3.0.2), Rsolnp, gtools, survival
Description Functions to perform robust
nonparametric survival analysis with right censored
data using a prior near-ignorant Dirichlet Process.
License GPL (>= 3) | file LICENSE
URL http://ipg.idsia.ch/software/
NeedsCompilation no
Repository CRAN
Date/Publication 2017-02-26 16:38:26

R topics documented:

Aids2 ... 2
aml ... 3
isurvdiff .. 4
isurvdiff.smax .. 6
isurvfit ... 7
isurvfit.object .. 9
plot.isurvfit .. 10

Index 11
Aids2 Australian AIDS Survival Data

Description

Data on patients diagnosed with AIDS in Australia before 1 July 1991.

Usage

Aids2

Format

This data frame contains 2843 rows and the following columns:

- state Grouped state of origin: "NSW" includes ACT and "other" is WA, SA, NT and TAS.
- sex Sex of patient.
- diag (Julian) date of diagnosis.
- death (Julian) date of death or end of observation.
- status "A" (alive) or "D" (dead) at end of observation.
- T.categ Reported transmission category.
- age Age (years) at diagnosis.

Note

This data set has been slightly jittered as a condition of its release, to ensure patient confidentiality.

Source

Dr P. J. Solomon and the Australian National Centre in HIV Epidemiology and Clinical Research.

References

Remission Times for Acute Myelogenous Leukaemia

Description
The `aml` data frame has 23 rows and 3 columns.

A clinical trial to evaluate the efficacy of maintenance chemotherapy for acute myelogenous leukaemia was conducted by Embury et al. (1977) at Stanford University. After reaching a stage of remission through treatment by chemotherapy, patients were randomized into two groups. The first group received maintenance chemotherapy and the second group did not. The aim of the study was to see if maintenance chemotherapy increased the length of the remission. The data here formed a preliminary analysis which was conducted in October 1974.

Usage

`aml`

Format

This data frame contains the following columns:

- `time`: The length of the complete remission (in weeks).
- `cens`: An indicator of right censoring. 1 indicates that the patient had a relapse and so `time` is the length of the remission. 0 indicates that the patient had left the study or was still in remission in October 1974, that is the length of remission is right-censored.
- `group`: The group into which the patient was randomized. Group 1 received maintenance chemotherapy, group 2 did not.

Note

Package `boot` also has the dataset `aml`.

Source

The data were obtained from

References

Test Survival Curves Differences for two right censored data

Description

Tests if there is a difference between two survival curves based on two samples (X and Y) with right censored data. More precisely it tests whether the probability \(P(X < Y) \) is greater than, lower than or equal to 1/2. The prior near-ignorance Dirichlet Process (IDP) rank sum test is used. It returns the result of the decision. \(H=1 \) indicates that the alternative hypothesis is true with posterior probability greater than level. \(H=0 \) indicates the hypothesis is not true with posterior greater than level, \(H=2 \) indicates an indeterminate instance. This means that the decision depends on the choice of the prior.

Usage

```r
isurvdiff(formula, data, groups=c(1,2), s=0.25,
  alternative = c("two.sided", "less", "greater"),
  exact=NULL, level = 0.95, display=TRUE,
  nsamples=10000, rope=0, tmax=NULL)
```

Arguments

- `formula`: a formula expression of the form `Surv(time, status) ~ predictor`. A single predictor is admitted.
- `data`: an optional data frame in which to interpret the variables occurring in the formula.
- `groups`: a vector of two elements indicating which value of the predictor represents groups 1 and 2.
- `s`: sets the value of the prior strength \(s \) of the Dirichlet Process.
- `alternative`: define the direction of the test: "greater" – evaluates the hypothesis \(P(X < Y) > 1/2 \), i.e., returns \(H=1 \) if the lower probability of the hypothesis is larger than level, \(H=0 \) if the upper probability is smaller than level and \(H=2 \) if the lower and upper probabilities encompass level; "less" – evaluates the hypothesis \(P(Y < X) > 1/2 \); "two.sided" – performs a two-sided Bayesian test, i.e., returns \(H=1 \) if 1/2 is not included between the left bound of the lower and the right bound of the upper level HPD credible intervals, \(H=0 \) if 1/2 is included in both the upper and lower credible intervals, \(H=2 \) otherwise.
- `exact`: computes the posterior probability if value is TRUE, or uses a normal approximation if value is FALSE. If you omit this argument, `isurvdiff` uses the exact method if at least one group has less than 100 samples and the approximate one otherwise.
- `level`: sets the significance level \(\alpha = 1 - \text{level} \) of the test.
- `display`: determines whether the posterior distributions of \(P(X < Y) \) have to be plotted (TRUE) or not (FALSE).
nsamples if exact=TRUE, sets the number of samples used in the Monte Carlo computation of the posterior distributions. For faster but less accurate results, one can tune down this parameter. For more accurate, one might increase it.

rope introduces a (symmetric) Region of Practical Equivalence (ROPE) around 1/2, i.e., [1/2-value,1/2+value].

tmax whether to consider the difference in survival up to time tmax. NULL is the default and means without limit.

Value

a list with components:

h The decision of the test: H=0 -> accept the null hypothesis; H=1 -> rejects the null hypothesis; H=2 -> indeterminate (a robust decision cannot be made).

prob the probability of the alternative hypothesis \(P(X < Y) > 1/2 \) if `alternative`="greater" or \(P(Y < X) > 1/2 \) if `alternative`="less".

Lower.Cred.Int lower HPD credible interval. Confidence level defined by `level`.

Upper.Cred.Int upper HPD credible interval. Confidence level defined by `level`.

alternative the direction of the test "greater", "less" or "two.sided".

strata the number of subjects contained in each group.

exact logical variable saying if the exact posterior distributions have been computed (TRUE) or the Gaussian approximation has been used (FALSE).

METHOD

This function implements the IDP sum-rank test describe in Mangili and others (2014).

References

See Also

Surv.

Examples

data(lung, package='survival')
test <- isurvdiff(Surv(time, status)~sex, lung, groups=c(1,2),
 alternative = 'two.sided', s=0.5, nsamples=1000)
print(test)

data(Aids2)
ndata <- Surv(time, status) ~ T.categ
dataset <- Aids2
groups=c("blood","haem")
dataset["time"]<dataset[4]-dataset[3]
dataset[5]<-as.numeric(unlist(dataset[5]))
test <-isurvdiff(fdata,dataset,groups=groups,
 alternative = 'greater',s=0.5, nsamples=1000)
print(test)

isurvdiff.smax Maximum values of s for which the IDP test returns a determinate decision

Description

Search for the maximum values of parameter s for which the IDP test isurvdiff(formula,...) issues a determinate decision. The function test values of s up to the parameter smax. If for smax the IDP test is still determinate, isurvdiff.smax returns list(smax,testout). If for s=0 the test is already indeterminate, isurvdiff.smax returns list(-1,testout), where testout is the last executed test.

Usage

isurvdiff.smax(formula, ..., verbose=FALSE, accuracy=0.05, smax=12)

Arguments

formula a formula expression of the form Surv(time, status) ~ predictor. A single predictor is admitted.
verbose whether to display each value of s that is tried
accuracy to which precision s should be computed
smax to which maximum value s should be tried
... All arguments of isurvdiff.smax are passed to isurvdiff to perform the test. Refer to the help of isurvdiff for more details about the arguments.

Value

A list with components:

s The maximum value of s for which the test returns a determinate decision (H=0 or H=1).
test0 The value returned by isurvdiff(formula,...) for the last test performed. Refer to the help of isurvdiff for more details.

METHOD

This function implements the IDP sum-rank test describe in Mangili and others (2014).
isurvfit

References

See Also

Surv, isurvdiff.

Examples

data(lung, package='survival')
lung <- lung[1:40,] # reduced data set just to ensure that the # example is very fast to run for building the package
test <- isurvdiff.smax(Surv(time,status)~sex, lung, groups=c(1,2), alternative = 'two.sided', nsamples=1000)
better to use larger value of nsamples
this small value is to run it quickly
print(test$test0)
cat("Maximum s giving the same decision: ", test$s)

isurvfit

Create survival curves based on the IDP model

Description

This function creates survival curves from right censored data using the prior near-ignorance Dirichlet Process (IDP).

Usage

isurvfit(formula, data, s=0.5, weights, subset, display=TRUE, conf.type=c('exact', 'approx', 'none'), nsamples=10000, conf.int=.95)

Arguments

formula a formula object, which must have a Surv object as the response on the left of the ~ operator and, if desired, terms separated by + operators on the right. For a single survival curve the right hand side should be ~ 1.

data a data frame in which to interpret the variables named in the formula, subset and weights arguments.

s sets the value of the prior strength s of the Dirichlet Process.
weights: the weights must be finite and nonnegative; it is strongly recommended that they be strictly positive, since zero weights are ambiguous, compared to use of the subset argument.

subset: expression saying that only a subset of the rows of the data should be used in the fit.

display: determines whether the survival curves have to be plotted (TRUE) or not (FALSE).

conf.type: a variable saying how the credible interval should be computed: 'exact': Monte-Carlo sampling from the exact distribution, 'approx': Gaussian approximation, 'none': no credible interval is computed.

nsamples: number of samples used to approximate the credible intervals if conf.type='exact'.

conf.int: confidence level of the credible interval.

Details

The estimates are obtained using the IDP estimator by Mangili and others (2014) based on the prior near-ignorance Dirichlet Process model by Benavoli and others (2014).

Value

an object of class "isurvfit".

See isurvfit.object for details. Methods defined for survfit objects are print and plot.

References

See Also

isurvfit.object, plot.isurvfit, Surv.

Examples

data(aml)
fit <- isurvfit(Surv(time, cens) ~ 1, data=aml, display=TRUE, nsamples=1000)

legend("topright", c("Lower expectation", "Upper expectation", "confidence intervals"), lty=c(1,1,2), lwd=c(1,2,1))
title("IDP survival curve (s=0.5) \nAcute Myelogenous Leukemia dataset")

data(Aids2)
dataset <- Aids2
dataset["time"]<-dataset[4]-dataset[3]
dataset[5]<-as.numeric(unlist(dataset[5]))
fit <- isurvfit(Surv(time, status) ~ T.categ, dataset,s=1,
 subset=(!is.na(match(T.categ, c('blood','haem','het')))),

isurvfit.object

nsamples=1000, conf.type='none')
legend('topright', ,c("Heterosexual contact", "Hemophilia", "Blood"),
 title="Transmission category:", lty=c(1,1,1), col=c(1,2,3), pch=c(1,2,3))
title("IDP survival curve (s=1) \nAids dataset")
print(fit)

leukemia.surv <- isurvfit(Surv(time, cens) ~ group, data = aml, display=FALSE)
plot(leukemia.surv)
legend(100, .9, c("Maintenance", "No Maintenance"), lty=c(1,1), lwd=c(2,1),
 col=c('black', 'red'), pch=c(1,2))
title("IDP Curves\nfor AML Maintenance Study")

isurvfit.object

IDP Survival Curve Object

Description

This class of objects is returned by the `isurvfit` class of functions to represent a IDP survival curve.

Objects of this class have methods for the functions `print`, `plot`.

Arguments

- `n` total number of subjects in each curve.
- `time` the time points at which the curve has a step.
- `n.risk` the number of subjects at risk at `t`.
- `n.event` the number of events that occur at time `t`.
- `n.censor` the number of subjects who exit the risk set, without an event, at time `t`. (This number can be computed from the successive values of the number at risk).
- `survUP` the estimate of upper expectation of the survival probability at time `t+0`.
- `survLOW` the estimate of lower expectation of the survival probability at time `t+0`.
- `survLOW0` the estimate of lower expectation of the survival probability at time `t=0`. The upper expectation is always 1.
- `std.up` the standard deviation of the upper distribution of the survival probability.
- `std.low` the standard deviation of the lower distribution of the survival probability.
- `upper` upper confidence limit for the survival curve.
- `lower` lower confidence limit for the survival curve.
- `lower0` lower confidence limit for the survival curve at `t=0`. The upper is always 1.
- `conf.type` the approximation used to compute the confidence limits.
- `conf.int` the level of the confidence limits, e.g. 90 or 95%.
- `strata` number of elements of the time vector corresponding to each curve. The names of the elements are labels for the curves.
- `call` an image of the call that produced the object.
See Also

isurvfit plot.isurvfit

plot.isurvfit Plot method for isurvfit objects

Description

A plot of survival curves is produced, one curve for each strata.

Usage

S3 method for class 'isurvfit'
plot(x, se.fit=TRUE, ...)

Arguments

x
an object of class isurvfit, usually returned by the isurvfit function.

se.fit
determines whether confidence intervals will be plotted.

...
other arguments passed to the standard plot function

See Also

isurvfit

Examples

leukemia.surv <- isurvfit(Surv(time, status) ~ x, data = aml, display=FALSE)
plot(leukemia.surv)
legend(100, .9, c("Maintenance", "No Maintenance"),
 lty=c(1,1),lwd=c(2,1),col=c('black','red'),pch=c(1,2))
title("IDP Curves\nfor AML Maintenance Study")
Index

* IDP
 isurvdiff, 4
 isurvdiff.smax, 6
 isurvfit, 7
 isurvfit.object, 9
* datasets
 Aids2, 2
 aml, 3
* hplot
 plot.isurvfit, 10
* survival
 isurvdiff, 4
 isurvdiff.smax, 6
 isurvfit, 7
 isurvfit.object, 9
 plot.isurvfit, 10

Aids2, 2
aml, 3

isurvdiff, 4, 7
isurvdiff.smax, 6
isurvfit, 7, 10
isurvfit.object, 8, 9
plot.isurvfit, 8, 10, 10
print.isurvdiff(isurvdiff), 4
print.isurvfit(isurvfit), 7

Surv, 5, 7, 8