Package ‘IDmining’

October 12, 2022

Type Package
Title Intrinsic Dimension for Data Mining
Version 1.0.7
Author Jean Golay [aut, cre],
Mohamed Laib [aut]
Maintainer Jean Golay <jeangolay@gmail.com>
Description Contains techniques for mining large and high-dimensional data
sets by using the concept of Intrinsic Dimension (ID). Here the ID is
not necessarily an integer. It is extended to fractal dimensions. And
the Morisita estimator is used for the ID estimation, but other
tools are included as well.
Imports data.table, doParallel, parallel, foreach, stats, utils
License CC BY-NC-SA 4.0
URL https://www.sites.google.com/site/jeangolayresearch/
Encoding UTF-8
RoxygenNote 7.1.1
Note The authors are grateful to Mikhail Kanevski, Michael
Leuenberger, Carmen D. Vega Orozco and Fabian Guignard for many
fruitful discussions about the use of intrinsic dimension in
data mining.
NeedsCompilation no
Repository CRAN
Date/Publication 2021-05-03 04:30:02 UTC

R topics documented:

IDmining-package ... 2
Butterfly ... 3
logMINDEX .. 4
MBFR ... 5
MBFR_parallel .. 7
Description

Contains techniques for mining large and high-dimensional data sets by using the concept of Intrinsic Dimension (ID). Here the ID is not necessarily an integer. It is extended to fractal dimensions. And the Morisita estimator is used for the ID estimation, but other tools are included as well.

Author(s)

Jean Golay <jeangolay@gmail.com> and Mohamed Laib <laib.med@gmail.com>,
Maintainer: Jean Golay <jeangolay@gmail.com>

References

See Also

Useful links:

- https://www.sites.google.com/site/jeangolayresearch/
Butterfly Data Set Generator

Description

Generates a random simulation of the butterfly data set with a given number of points.

Usage

Butterfly(N=10000)

Arguments

N

The number of points to be generated (by default: \(N = 10000 \)).

Value

A \(N \times 9 \) data frame. The first eight columns are the input variables, and the last one is the output (or target) variable \(Y \).

Author(s)

Jean Golay <jeangolay@gmail.com>

References

Examples

```r
bf <- Butterfly(1000)

## Not run:
require(colorRamps)
require(rgl)

c <- cut(bf$Y,breaks=64)
cols <- matlab.like(64)[as.numeric(c)]

plot3d(bf$X1,bf$X2,bf$Y,col=cols,radius=0.10,type="s",
xlab="",ylab="",zlab="",box=F)
axes3d(lwd=3,cex.axis=3)
grid3d(c("x+","y-","z"),col="black",lwd=1)

## End(Not run)
```
logMINDEX

The Multipoint Morisita Index in 1, 2 or Higher Dimensions

Description
Computes the ln values of the multipoint Morisita index in 1, 2 or higher dimensional spaces.

Usage
logMINDEX(X, scaleQ=1:5, mMin=2, mMax=2)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A $N \times E$ matrix, data.frame or data.table where N is the number of data points and E is the number of variables (or features). Each variable is rescaled to the $[0,1]$ interval by the function.</td>
</tr>
<tr>
<td>scaleQ</td>
<td>Either a single value or a vector. It contains the value(s) of ℓ^{-1} chosen by the user (by default: scaleQ = 1:5).</td>
</tr>
<tr>
<td>mMin</td>
<td>The minimum value of m (by default: mMin = 2).</td>
</tr>
<tr>
<td>mMax</td>
<td>The maximum value of m (by default: mMax = 2).</td>
</tr>
</tbody>
</table>

Details
1. ℓ is the edge length of the grid cells (or quadrats). Since the variables (and consequently the grid) are rescaled to the $[0,1]$ interval, ℓ is equal to 1 for a grid consisting of only one cell.
2. ℓ^{-1} is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. ℓ^{-1} is equal to $Q^{(1/E)}$ where Q is the number of grid cells and E is the number of variables (or features).
4. ℓ^{-1} is directly related to δ (see References).
5. δ is the diagonal length of the grid cells.

Value
A data.frame containing the ln value of the m-Morisita index for each value of ln(δ) and m. Notice also that the values of ln(δ) are provided with regard to the $[0,1]$ interval.

Author(s)
Jean Golay <jeangolay@gmail.com>

References
Examples

```r
sim_dat <- SwissRoll(1000)
m <- 2
scaleQ <- 1:15 # It starts with a grid of 1^E cell (or quadrat).
    # It ends with a grid of 15^E cells (or quadrats).
lnmMI <- logMINDEX(sim_dat, scaleQ, m, m)

dev.new(width=5, height=4)
plot(exp(lnmMI[,1]),exp(lnmMI[,2]),pch=19,col="black",xlab="",ylab="")
title(xlab = expression(delta), cex.lab = 1.5,line = 2.5)
title(ylab = expression(I['2','delta'])), cex.lab = 1.5,line = 2.5)

dev.new(width=5, height=4)
plot(lnmMI[,1],lnmMI[,2],pch=19,col="black",xlab="",ylab="")
title(xlab = expression(paste("log","delta")), cex.lab = 1.5,line = 2.5)
title(ylab = expression(paste("log","I['2','delta']")), cex.lab = 1.5,line = 2.5)
```

MBFR

Morisita-Based Filter for Regression Problems

Description

Executes the MBFR algorithm for supervised feature selection.

Usage

`MBFR(XY, scaleQ, m=2, C=NULL)`

Arguments

- **XY**
 - A `N x E` matrix, `data.frame` or `data.table` where `N` is the number of data points, `E` is the number of variables (i.e. the input variables also called "features" + the output variable). The last column contains the values of the output variable. And each variable (input + output) is rescaled to the `[0, 1]` interval by the function.

- **scaleQ**
 - A vector containing the values of ℓ^{-1} chosen by the user (see Details).

- **m**
 - The value of the parameter m (by default: $m=2$).

- **C**
 - The number of steps of the SFS procedure (by default: $C = E-1$).

Details

1. ℓ is the edge length of the grid cells (or quadrats). Since the data (and consequently the grid) are rescaled to the $[0, 1]$ interval, ℓ is equal to 1 for a grid consisting of only one cell.

2. ℓ^{-1} is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. ℓ^{-1} is equal to $Q^{(1/E)}$ where Q is the number of grid cells and E is the number of variables (or features).

4. ℓ^{-1} is directly related to δ (see References).

5. δ is the diagonal length of the grid cells.

6. The values of ℓ^{-1} in scaleQ must be chosen according to the linear part of the log-log plot relating the log values of the multipoint Morisita index to the log values of δ (or, equivalently, to the log values of ℓ^{-1}) (see logMINDEX).

Value

A list of five elements:

1. a vector containing the identifier numbers of the original features in the order they are selected through the Sequential Forward Selection (SFS) search procedure.
2. the names of the corresponding features.
3. the corresponding values of $Diss$.
4. the ID estimate of the output variable.
5. a $C \times 3$ matrix containing: (column 1) the ID estimates of the subsets retained by the SFS procedure with the target variable; (column 2) the ID estimates of the subsets retained by the SFS procedure without the output variable; (column 3) the values of $Diss$ of the subsets retained by the SFS procedure.

Author(s)

Jean Golay <jeangolay@gmail.com>

References

Examples

```r
## Not run:
bf <- Butterfly(10000)
fly_select <- MBFR(bf, 5:25)
var_order <- fly_select[[2]]
var_perf <- fly_select[[3]]

dev.new(width=5, height=4)
plot(var_perf,type="b",pch=16,lwd=2,xaxt="n",xlab="",ylab="",ylim=c(0,1),col="red",panel.first={grid(lwd=1.5)})
axis(1,1:length(var_order),labels=var_order)
mtext(1,text = "Added Features (from left to right)",line = 2.5,cex=1)
```
MBFR_parallel

Description

Executes the MBFR algorithm on a chosen number of workers (CPU parallel computing).

Usage

```
MBFR_parallel(XY, scaleQ, m=2, C=NULL, ncores=4)
```

Arguments

- **XY**: A \(N \times E \) matrix, `data.frame` or `data.table` where \(N \) is the number of data points, \(E \) is the number of variables (i.e. the input variables also called "features" + the output variable). The last column contains the values of the output variable. And each variable (input + output) is rescaled to the \([0, 1]\) interval by the function.
- **scaleQ**: A vector containing the values of \(\ell^{-1} \) chosen by the user (see Details).
- **m**: The value of the parameter \(m \) (by default: \(m=2 \)).
- **C**: The number of steps of the SFS procedure (by default: \(C = E-1 \)).
- **ncores**: Number of workers (by default: \(ncores = 4 \)).

Details

1. \(\ell \) is the edge length of the grid cells (or quadrats). Since the data (and consequently the grid) are rescaled to the \([0, 1]\) interval, \(\ell \) is equal to 1 for a grid consisting of only one cell.
2. \(\ell^{-1} \) is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. \(\ell^{-1} \) is equal to \(Q^{(1/E)} \) where \(Q \) is the number of grid cells and \(E \) is the number of variables (or features).
4. \(\ell^{-1} \) is directly related to \(\delta \) (see References).
5. \(\delta \) is the diagonal length of the grid cells.
6. The values of \(\ell^{-1} \) in `scaleQ` must be chosen according to the linear part of the log-log plot relating the log values of the multipoint Morisita index to the log values of \(\delta \) (or, equivalently, to the log values of \(\ell^{-1} \)) (see `logMINDEX`).
Value

A list of five elements:

1. a vector containing the identifier numbers of the original features in the order they are selected through the Sequential Forward Selection (SFS) search procedure.
2. the names of the corresponding features.
3. the corresponding values of $Diss$.
4. the ID estimate of the output variable.
5. a $C \times 3$ matrix containing: (column 1) the ID estimates of the subsets retained by the SFS procedure with the target variable; (column 2) the ID estimates of the subsets retained by the SFS procedure without the output variable; (column 3) the values of $Diss$ of the subsets retained by the SFS procedure.

Author(s)

Jean Golay <jeangolay@gmail.com>

References

Examples

```r
## Not run:
bf <- Butterfly(10000)
fly_select <- MBFR_parallel(bf, 5:25, ncores=2)
var_order <- fly_select[[2]]
var_perf <- fly_select[[3]]
dev.new(width=5, height=4)
plot(var_perf,type="b",pch=16,lwd=2,xaxt="n",xlab="",ylab="", ylim=c(0,1),col="red",panel.first={grid(lwd=1.5)})
axis(1,1:length(var_order),labels=var_order)
mtext(1,text = "Added Features (from left to right)",line = 2.5,cex=1)
mtext(2,text = "Estimated Dissimilarity",line = 2.5,cex=1)

bf_large <- Butterfly(10^5)
system.time(MBFR(bf_large, 5:25))
system.time(MBFR_parallel(bf_large, 5:25))

## End(Not run)
```
Morisita-Based Filter for Redundancy Minimization

Description

Executes the MBRM algorithm for unsupervised feature selection.

Usage

```r
MBRM(X, scaleQ, m=2, C=NULL, ID_tot=NULL)
```

Arguments

- **X**: A \(N \times E \) matrix, `data.frame` or `data.table` where \(N \) is the number of data points and \(E \) is the number of variables (or features). Each variable is rescaled to the \([0, 1]\) interval by the function.
- **scaleQ**: A vector containing the values of \(\ell^{−1} \) chosen by the user (see Details).
- **m**: The value of the parameter \(m \) (by default: \(m=2 \)).
- **C**: The number of steps of the SFS procedure (by default: \(C = E \)).
- **ID_tot**: The value of the full data ID if it is known a priori (by default: the value of \(ID_{tot} \) is estimated using the Morisita estimator of ID within the function).

Details

1. \(\ell \) is the edge length of the grid cells (or quadrats). Since the variables (and consequently the grid) are rescaled to the \([0, 1]\) interval, \(\ell \) is equal to 1 for a grid consisting of only one cell.
2. \(\ell^{−1} \) is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. \(\ell^{−1} \) is equal to \(Q^{(1/E)} \) where \(Q \) is the number of grid cells and \(E \) is the number of variables (or features).
4. \(\ell^{−1} \) is directly related to \(\delta \) (see References).
5. \(\delta \) is the diagonal length of the grid cells.
6. The values of \(\ell^{−1} \) in `scaleQ` must be chosen according to the linear part of the log-log plot relating the log values of the multipoint Morisita index to the log values of \(\delta \) (or, equivalently, to the log values of \(\ell^{−1} \)) (see `logMINDEX`).

Value

A list of four elements:

1. a vector containing the identifier numbers of the original features in the order they are selected through the Sequential Forward Selection (SFS) search procedure.
2. the names of the corresponding features.
3. the corresponding ID estimates.
4. the ID estimate of the full data set.
Author(s)
Jean Golay <jeangolay@gmail.com>

References

Examples
Not run:
bf <- Butterfly(10000)
bf_select <- MBRM(bf[, -9], 5:25)
var_order <- bf_select[[2]]
var_perf <- bf_select[[3]]

dev.new(width=5, height=4)
plot(var_perf, type="b", pch=16, lwd=2, xaxt="n", xlab="", ylab="",
col="red", ylim=c(0, max(var_perf)), panel.first=(grid(lwd=1.5)))
axis(1, 1:length(var_order), labels=var_order)
mtext(1, text="Added Features (from left to right)", line=2.5, cex=1)
mtext(2, text="Estimated ID", line=2.5, cex=1)

End(Not run)

MBRM_parallel
Morisita-Based Filter for Redundancy Minimization (Parallel)

Description
Executes the MBRM algorithm for unsupervised feature selection (CPU parallel computing).

Usage

`MBRM_parallel(X, scaleQ, m=2, C=NULL, ID_tot=NULL, ncores=4)`

Arguments

- **X**: A $N \times E$ matrix, data.frame or data.table where N is the number of data points and E is the number of variables (or features). Each variable is rescaled to the $[0,1]$ interval by the function.
- **scaleQ**: A vector containing the values of ℓ^{-1} chosen by the user (see Details).
- **m**: The value of the parameter m (by default: $m=2$).
- **C**: The number of steps of the SFS procedure (by default: $C=E$).
- **ID_tot**: The value of the full data ID if it is known a priori (by default: the value of ID_tot is estimated using the Morisita estimator of ID within the function).
- **ncores**: Number of workers (by default: `ncores = 4`).
Details

1. ℓ is the edge length of the grid cells (or quadrats). Since the variables (and consequently the grid) are rescaled to the $[0, 1]$ interval, ℓ is equal to 1 for a grid consisting of only one cell.
2. ℓ^{-1} is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. ℓ^{-1} is equal to $Q^{(1/E)}$ where Q is the number of grid cells and E is the number of variables (or features).
4. ℓ^{-1} is directly related to δ (see References).
5. δ is the diagonal length of the grid cells.
6. The values of ℓ^{-1} in scaleQ must be chosen according to the linear part of the log-log plot relating the log values of the multipoint Morisita index to the log values of δ (or, equivalently, to the log values of ℓ^{-1}) (see logMINDEX).

Value

A list of four elements:

1. a vector containing the identifier numbers of the original features in the order they are selected through the Sequential Forward Selection (SFS) search procedure.
2. the names of the corresponding features.
3. the corresponding ID estimates.
4. the ID estimate of the full data set.

Author(s)

Jean Golay <jeangolay@gmail.com>

References

Examples

```
bf <- Butterfly(10000)

bf_select <- MBRM_parallel(bf[-9], 5:25, ncores=2)
var_order <- bf_select[[2]]
var_perf <- bf_select[[3]]

# Not run:
dev.new(width=5, height=4)
plot(var_perf,type="b",pch=16,lwd=2,xaxt="n",xlab="",ylab="",col="red",ylim=c(0,max(var_perf)),panel.first=(grid(lwd=1.5)))
axis(1,1:length(var_order),labels=var_order)
mtext(1,text="Added Features (from left to right)",line=2.5,cex=1)
mtext(2,text="Estimated ID",line=2.5,cex=1)
```
bf_large <- Butterfly(10^5)
system.time(MBRM(bf_large[, -9], 5:25))
system.time(MBRM_parallel(bf_large[, -9], 5:25))

End(Not run)

MINDEX_SP

The Multipoint Morisita Index for Spatial Patterns

Description

Computes the multipoint Morisita index for spatial patterns (i.e. 2-dimensional patterns).

Usage

MINDEX_SP(X, scaleQ = 1:5, mMin = 2, mMax = 5, Wlim_x = NULL, Wlim_y = NULL)

Arguments

X
A N x 2 matrix, data.frame or data.table containing the X and Y coordinates of N data points. The X coordinates must be given in the first column and the Y coordinates in the second column.

scaleQ
Either a single value or a vector. It contains the value(s) of Q^(1/2) chosen by the user where Q is the number of cells (or quadrats) of the 2D grid (by default: scaleQ = 1:5).

mMin
The minimum value of m (by default: mMin = 2).

mMax
The maximum value of m (by default: mMax = 5).

Wlim_x
A vector controlling the spatial extent of the 2D grid along the X axis. It consists of two real values, i.e. Wlim_x <- c(a, b) where b > a (by default: Wlim_x <- c(min(X[, 1]), max(X[, 1]))).

Wlim_y
A vector controlling the spatial extent of the 2D grid along the Y axis. It consists of two real values, i.e. Wlim_y <- c(a, b) where b > a (by default: Wlim_y <- c(min(X[, 2]), max(X[, 2]))).

Details

1. Q^(1/2) is the number of grid cells (or quadrats) along each of the two axes.
2. Q^(1/2) is directly related to δ (see References).
3. δ is the diagonal length of the grid cells.

Value

A data.frame containing the value of the m-Morisita index for each value of δ and m.

Author(s)

Jean Golay <jeangolay@gmail.com>
References

Examples

```r
sim_dat <- SwissRoll(1000)

m <- 2
scaleQ <- 1:15 # It starts with a grid of 1^2 cell (or quadrat).
# It ends with a grid of 15^2 cells (or quadrats).
mMI <- MINDEX_SP(sim_dat[,c(1,2)], scaleQ, m, 5)
plot(mMI[,1],mMI[,2],pch=19,col="black",xlab="",ylab="")
title(xlab=expression(delta),cex.lab=1.5,line=2.5)
title(ylab=expression(I[\frac{1}{\text{Var}^2},\frac{1}{\text{Var}^2} \times \delta])),cex.lab=1.5,line=2.5)

## Not run:
require(colorRamps)
colfunc <- colorRampPalette(c("blue","red"))
color <- colfunc(4)
dev.new(width=5,height=4)
plot(mMI[5:15,1],mMI[5:15,2],pch=19,col=color[1],xlab="",ylab="",
     ylim=c(1,max(mMI[,5])))
title(xlab=expression(delta),cex.lab=1.5,line=2.5)
title(ylab=expression(I[\frac{1}{\text{Var}^2},\frac{1}{\text{Var}^2} \times \delta])),cex.lab=1.5,line=2.5)
for(i in 3:5){
    points(mMI[5:15,1],mMI[5:15,i],pch=19,col=color[i-1])
}
legend.text<-c("m=2","m=3","m=4","m=5")
legend.pch=c(19,19,19,19)
legend.lwd=c(NA,NA,NA,NA)
legend.col=c(color[1],color[2],color[3],color[4])
legend("topright",legend.text,legend.pch,legend.lwd,legend.col,ncol=1,text.col="black",cex=0.9,box.lwd=1,bg="white")

xlim_l <- c(-5,5) # By default, the spatial extent of the grid is set so
ylim_l <- c(-6,6) # that it is the same as the spatial extent of the data.
xlim_s <- c(-0.6,0.2) # But it can be modified to cover either a larger (l)
ylim_s <- c(-1,0.5) # or a smaller (s) study area (or validity domain).
mMI_l <- MINDEX_SP(sim_dat[,c(1,2)], scaleQ, m, 5, xlim_l, ylim_l)
mMI_s <- MINDEX_SP(sim_dat[,c(1,2)], scaleQ, m, 5, xlim_s, ylim_s)

## End(Not run)
```
The (Multipoint) Morisita Index for Intrinsic Dimension Estimation

Description

Estimates the intrinsic dimension of data using the Morisita estimator of intrinsic dimension.

Usage

```r
MINDID(X, scaleQ=1:5, mMin=2, mMax=2)
```

Arguments

- **X**: A $N \times E$ matrix, data.frame or data.table where N is the number of data points and E is the number of variables (or features). Each variable is rescaled to the $[0,1]$ interval by the function.
- **scaleQ**: A vector (at least two values). It contains the values of ℓ^{-1} chosen by the user (by default: `scaleQ = 1:5`).
- **mMin**: The minimum value of m (by default: `mMin = 2`).
- **mMax**: The maximum value of m (by default: `mMax = 2`).

Details

1. ℓ is the edge length of the grid cells (or quadrats). Since the variables (and consequently the grid) are rescaled to the $[0,1]$ interval, ℓ is equal to 1 for a grid consisting of only one cell.
2. ℓ^{-1} is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. ℓ^{-1} is equal to $Q^{(1/E)}$ where Q is the number of grid cells and E is the number of variables (or features).
4. ℓ^{-1} is directly related to δ (see References).
5. δ is the diagonal length of the grid cells.

Value

A list of two elements:

1. a data.frame containing the \ln value of the m-Morisita index for each value of $\ln(\delta)$ and m. The values of $\ln(\delta)$ are provided with regard to the $[0,1]$ interval.
2. a data.frame containing the values of S_m and M_m for each value of m.

Author(s)

Jean Golay <jeangolay@gmail.com>
References

Examples

```r
sim_dat <- SwissRoll(1000)

scaleQ <- 1:15  # It starts with a grid of 1^E cell (or quadrat).
  # It ends with a grid of 15^E cells (or quadrats).
mMI_ID <- MINDID(sim_dat, scaleQ[5:15])

print(paste("The ID estimate is equal to",round(mMI_ID[[1]][1,3],2)))
```

MINDID_FMC

Functional Measure of Clustering Using the Morisita Estimator of ID

Description

Computes the functional \(m\)-Morisita index for a given set of threshold values.

Usage

```r
MINDID_FMC(XY, scaleQ, m=2, thd)
```

Arguments

- **XY** A \(N \times E\) matrix, `data.frame` or `data.table` where \(N\) is the number of data points and \(E\) is the number of variables (i.e. the input variables + the variable measured at each measurement station). The last column contains the variable measured at each measurement station. And each input variable is rescaled to the [0,1] interval by the function. Typically, the input variables are the X and Y coordinates of the measurement stations, but other or additional variables can be considered as well.

- **scaleQ** A vector containing the values of \(\ell^{\text{-}1}\) chosen by the user (see Details).

- **m** The value of the parameter \(m\) (by default: \(m=2\)).

- **thd** Either a single value or a vector. It contains the value(s) of the threshold(s).
Details

1. ℓ is the edge length of the grid cells (or quadrats). Since the input variables (and consequently the grid) are rescaled to the $[0, 1]$ interval, ℓ is equal to 1 for a grid consisting of only one cell.
2. ℓ^{-1} is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. ℓ^{-1} is equal to $Q^{1/E}$ where Q is the number of grid cells and E is the number of variables (or features).
4. ℓ^{-1} is directly related to δ (see References).
5. δ is the diagonal length of the grid cells.

Value

A vector containing the value(s) of the m-Morisita slope, S_m, for each threshold value.

Author(s)

Jean Golay <jeangolay@gmail.com>

References

Examples

```r
## Not run:
bf <- Butterfly(10000)
bf_SP <- bf[,c(1,2,9)]

MINDID_FMC(bf_SP[,c(1,2,9)], 5:25)
```

```r
# Examples of usage
m <- 2
scaleQ <- 5:25
thd <- quantile(bf_SP$Y, probs=c(0, 0.1, 0.2, 0.3,
                          0.4, 0.5, 0.6,
                          0.7, 0.8, 0.9))

nbr_shuf <- 100
Sm_thd_shuf <- matrix(0, length(thd), nbr_shuf)
for (i in 1:nbr_shuf){
  bf_SP_shuf <- cbind(bf_SP[,1:2], sample(bf_SP$Y, length(bf_SP$Y)))
  Sm_thd_shuf[,i] <- MINDID_FMC(bf_SP_shuf, scaleQ, m, thd)
}
mean_shuf <- apply(Sm_thd_shuf, 1, mean)

dev.new(width=6, height=4)
matplot(1:10, mean_shuf, type="l", lty=1, col=rgb(1, 0, 0, 0.25),
```
RenDim

Rényi's Generalized Dimensions

Description

Estimates Rényi’s generalized dimensions (or Rényi’s dimensions of \(q\)th order). It is mainly for \(q = 2\) that the result is used as an estimate of the intrinsic dimension of data.

Usage

\[
\text{RenDim}(X, \text{scaleQ}=1:5, q\text{Min}=2, q\text{Max}=2)
\]

Arguments

- **X**: A \(N \times E\) matrix, data.frame or data.table where \(N\) is the number of data points and \(E\) is the number of variables (or features). Each variable is rescaled to the \([0, 1]\) interval by the function.
- **scaleQ**: A vector (at least two values). It contains the values of \(\ell^{-1}\) chosen by the user (by default: \(\text{scaleQ} = 1:5\)).
- **qMin**: The minimum value of \(q\) (by default: \(q\text{Min} = 2\)).
- **qMax**: The maximum value of \(q\) (by default: \(q\text{Max} = 2\)).

Details

1. \(\ell\) is the edge length of the grid cells (or quadrats). Since the variables (and consequently the grid) are rescaled to the \([0, 1]\) interval, \(\ell\) is equal to 1 for a grid consisting of only one cell.
2. \(\ell^{-1}\) is the number of grid cells (or quadrats) along each axis of the Euclidean space in which the data points are embedded.
3. ℓ^{-1} is equal to $Q^{(1/E)}$ where Q is the number of grid cells and E is the number of variables (or features).

4. ℓ^{-1} is directly related to δ (see References).

5. δ is the diagonal length of the grid cells.

Value

A list of two elements:

1. a `data.frame` containing the value of Rényi’s information of qth order (computed using the natural logarithm) for each value of $\ln(\delta)$ and q. The values of $\ln(\delta)$ are provided with regard to the $[0, 1]$ interval.

2. a `data.frame` containing the value of D_q for each value of q.

Author(s)

Jean Golay <jeangolay@gmail.com>

References

Examples

```r
sim_dat <- SwissRoll(1000)
scaleQ <- 1:15  # It starts with a grid of 1^E cell (or quadrat).
               # It ends with a grid of 15^E cells (or quadrats).
qRI_ID <- RenDim(sim_dat[,c(1,2)], scaleQ[5:15])
print(paste("The ID estimate is equal to",round(qRI_ID[[1]][1,2],2)))
```
SwissRoll

Swiss Roll Data Set Generator

Description
Generates random points on the Swiss Roll manifold.

Usage
```r
SwissRoll(N=10000)
```

Arguments
- `N`
 The number of points to be generated (by default: `N = 10000`).

Value
A $N \times 3$ data.frame containing the coordinates of the Swiss roll data points embedded in \mathbb{R}^3.

References

Examples
```r
sim_dat <- SwissRoll(1000)
```
Index

Butterfly, 3
IDmining (IDmining-package), 2
IDmining-package, 2
logMINDEX, 4
MBFR, 5
MBFR_parallel, 7
MBRM, 9
MBRM_parallel, 10
MINDEX_SP, 12
MINDID, 14
MINDID_FMC, 15
RenDim, 17
SwissRoll, 19