Package ‘INSPECTumours’

May 6, 2022

Title IN-vivo reSPonsE Classification of Tumours

Version 0.1.0

Maintainer Bairu Zhang <bairu.zhang@astrazeneca.com>

Description This is a shiny app used for the statistical classifying and analysing pre-clinical tumour responses.

License Apache License (== 2)

Depends R (>= 3.5.0)

Imports brms, dplyr, DT, ggeffects, ggplot2, knitr, lme4, modelr, pander, plotly, purrr, readxl, rlang, rmarkdown, shiny, shinyalert, shinyFeedback, shinyjs, shinytoastr, shinyvalidate, tidybayes, tippy, tidyrr, vroom, waiter

Suggests spelling, lintr, testthat

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Language en-US

NeedsCompilation no

Author Bairu Zhang [cre, aut], Olga Muraeva [aut], Natasha Karp [aut]

Repository CRAN

Date/Publication 2022-05-06 12:10:02 UTC

R topics documented:

aggregate_study_info .. 2
animal_info_classification ... 3
assess_efficacy ... 3
below_min_points ... 4
calc_gr ... 4
calc_probability ... 5
aggregate_study_info

create a table with aggregated data: each row contains information about control and treatments of a single study

Usage

aggregate_study_info(df)
animal_info_classification

Arguments
 df data.frame

Value
 data.frame

animal_info_classification
 Generate table representing number of animals in classification groups

Description
 Generate table representing number of animals in classification groups

Usage
 animal_info_classification(data)

Arguments
 data final classification data

Value
 data frame

assess_efficacy
 Credible interval (or say “Bayesian confidence interval”) of the mean difference between two groups (treatment and reference) is used to assess the efficacy. If 0 falls outside the interval, the drug was considered significantly effective

Description
 Credible interval (or say “Bayesian confidence interval”) of the mean difference between two groups (treatment and reference) is used to assess the efficacy. If 0 falls outside the interval, the drug was considered significantly effective

Usage
 assess_efficacy(data, reference = "Control")
Arguments

data prediction results
reference name of the reference treatment

Value

dataframe with information about drug efficacy

below_min_points makes df with data to be excluded

Description

makes df with data to be excluded

Usage

below_min_points(df, min_points)

Arguments

df initial data frame
min_points minimum number of data points for one animal_id per study

Value

df

calc_gr Function to return rate of growth (e.g. the slope after a log transformation of the tumour data against time)

Description

Function to return rate of growth (e.g. the slope after a log transformation of the tumour data against time)

Usage

calc_gr(df, log_tv = "log_tv", day = "day")

Arguments

df subset, one animal_id
log_tv name of the column, tumour volume
day name of the column, days
calc_probability

Value

tibble with GR and GR_SE

calc_survived

Calculate percentage of survived animals

Description

Calculate percentage of survived animals

Usage

calc_survived(df)

Arguments

df
data frame

Value

data frame
change_time_multi

Get an array with change_time for studies from the population-level effects, multiple studies

Description

Get an array with change_time for studies from the population-level effects, multiple studies

Usage

```r
change_time_multi(model)
```

Arguments

- `model`: an object of class `brmsfit`

Value

- data frame

change_time_single

Get a change time from the population-level effects, single study

Description

Get a change time from the population-level effects, single study

Usage

```r
change_time_single(model)
```

Arguments

- `model`: an object of class `brmsfit`

Value

- a numeric vector of length one
classify_data_point

Classify individual data points as Responders or Non-responders

Description
Classify individual data points as Responders or Non-responders

Usage
classify_data_point(df_newstudy, pred_newstudy)

Arguments
- df_newstudy : data from new study
- pred_newstudy : data frame with predictions

Value
data frame with "Responder"/"Non-responder" for individual data points

classify_subcategories

Make predictions for subcategories

Description
Make predictions for subcategories

Usage
classify_subcategories(data, model)

Arguments
- data : data frame with classification results
- model : object of class brmsfit

Value
data frame
classify_type_responder

Classify tumour based on the growth rate and the p_value for a two-sided T test. Tumour will be considered as "Non-responder", "Modest responder", "Stable responder" or "Regressing responder".

Description

Classify tumour based on the growth rate and the p_value for a two-sided T test. Tumour will be considered as "Non-responder", "Modest responder", "Stable responder" or "Regressing responder".

Usage

classify_type_responder(df)

Arguments

df data frame

Value

data frame with a new column classify_tumour

clean_string

function to remove hyphens, underscores, spaces and transform to lowercase

Description

function to remove hyphens, underscores, spaces and transform to lowercase

Usage

clean_string(string)

Arguments

string to modify

Value

modified string
control_growth_plot

Function to plot a control growth profile

Description

Function to plot a control growth profile

Usage

control_growth_plot(df, model_type, col_palette)

Arguments

df
data frame

model_type
string

col_palette
character palette

Value

ggplot object

example_data

Tumour volume data over time for in-vivo studies

Description

A dataset containing the repeatedly measurements of tumour volume data over time for individual animals.

Usage

example_data

Format

A data frame with 1462 rows and 6 variables:

study
study identifier

group
group identifier

treatment
treatment type

animal_id
animal identifier

day
day after implant

tumour_volume
volume in mm3
exclude_data
Filter rows to exclude from the analysis

Description
Filter rows to exclude from the analysis

Usage
```r
exclude_data(df, study_id_ex, animal_id_ex, day_ex, reason)
```

Arguments
- `df`: initial df
- `study_id_ex`: string: study id
- `animal_id_ex`: string: animal id
- `day_ex`: string: day
- `reason`: string: why it should be excluded

Value
- dataframe with rows that meets exclusion criteria

expand_palette
Function to expand a vector of colors if needed

Description
Function to expand a vector of colors if needed

Usage
```r
expand_palette(col_palette, n)
```

Arguments
- `col_palette`: character palette to color the treatments
- `n`: how many colors are needed

Value
- a character vector of colors
f_start
Calculate coefficients for a nonlinear model

Description
Calculate coefficients for a nonlinear model

Usage
```
f_start(df, x, y, r_change)
```

Arguments
- **df**: data frame with x as a predictor and y as an outcome
- **x**: predictor string
- **y**: outcome string
- **r_change**: numeric

Value
list of coefficients

get_responder
Classify tumour based on response status of individuals

Description
Classify tumour based on response status of individuals

Usage
```
get_responder(x, n)
```

Arguments
- **x**: character vector with response statuses of one animal
- **n**: consecutive measurements for classification

Value
"Responder" or "Non-responder"
guess_match

function to search for the possible critical columns in a data.frame

Description
function to search for the possible critical columns in a data.frame

Usage
guess_match(colnames_df, crit_cols)

Arguments
 colnames_df a character vector with names
 crit_cols a character vector

Value
list: possible match to each critical column

hide_outliers

Function to hide outliers in boxplots with jitterdodge as suggested

Description
Function to hide outliers in boxplots with jitterdodge as suggested

Usage
hide_outliers(x)

Arguments
 x plotly object

Value
plotly object without boxplot outliers
load_data

Description

function to read data from users (.csv or .xlsx files)

Usage

```r
load_data(path, name)
```

Arguments

- `path` : path to a temp file
- `name` : filename provided by the web browser

Value

data frame

make_terms

Description

Create a character vector with the names of terms from model, for which predictions should be displayed. Specific values are specified in square brackets.

Usage

```r
make_terms(days, studies = NULL)
```

Arguments

- `days` : vector with days with which to predict
- `studies` : vector with studies with which to predict

Value

vector with values for predictions
model_control Build model and make predictions

Description
Build model and make predictions

Usage
model_control(df_control, df_newstudy, method, end_day)

Arguments
- df_control: data frame with control data (including historical control, if provided)
- df_newstudy: data frame, data from new study
- method: "Two-stage non-linear model" or "Linear model"
- end_day: period of time used for the statistical modelling of the control data

Value
list: two data frames with prediction results (for new study and for control data)

notify_error_and_reset_input Display a popup message and reset fileInput

Description
Display a popup message and reset fileInput

Usage
notify_error_and_reset_input(message_text)

Arguments
- message_text: the modal’s text
ordered_regression

Fit model (Bayesian ordered logistic regression)

Description

Fit model (Bayesian ordered logistic regression)

Usage

`ordered_regression(df, formula, n_cores)`

Arguments

- `df`: data frame with classification results. Tumour classification is converted into ordinal data
- `formula`: string
- `n_cores`: number of cores to use

Value

object of class brmsfit

plotly_volume

Create volume plot for one-batch data

Description

Create volume plot for one-batch data

Usage

```r
plotly_volume(
  df,
  col_palette = NULL,
  faceting_var,
  y_name,
  y_var,
  p_title,
  ...
)
```
Arguments

- **df**: data.frame, single-batch long format
- **col_palette**: character palette to color the treatments
- **faceting_var**: string
- **y_name**: string
- **y_var**: string: column name for y axis
- **p_title**: plot title
- **...**: arguments passed to plot_ly

Value

plotly object

plot_animal_info
Plot representing number of animals in classification groups

Description

Plot representing number of animals in classification groups

Usage

```r
plot_animal_info(data, col_palette)
```

Arguments

- **data**: final classification data
- **col_palette**: character palette

Value

ggplot object
plot_class_gr

Function to plot classification over growth rate

Description

Function to plot classification over growth rate

Usage

plot_class_gr(df, col_palette)

Arguments

df data frame
col_palette character palette

Value

ggplot object

plot_class_tv

Function to plot classification over tumour volume

Description

Function to plot classification over tumour volume

Usage

plot_class_tv(df, col_palette, title_name)

Arguments

df data frame
col_palette named vector
title_name character

Value

ggplot object
plot_proportions

Plot estimated proportions

Description

Plot estimated proportions

Usage

plot_proportions(data, col_palatte)

Arguments

data
table of the category prediction

col_palatte
character palette

plot_waterfall

Function to plot waterfall

Description

Function to plot waterfall

Usage

plot_waterfall(df, col_palatte, study_name)

Arguments

df
data frame

col_palatte
character palette

study_name
string: to show on title

Value

ggplot object
predict_lm Make predictions, linear model

Description
Make predictions, linear model

Usage
predict_lm(model, newdata, single)

Arguments
model a model object
newdata data frame in which to look for variables with which to predict
single logical: TRUE if single study experiment

Value
data frame with predictions

predict_nlm_multi Make predictions based on non-linear model, multiple studies

Description
Make predictions based on non-linear model, multiple studies

Usage
predict_nlm_multi(model, newdata, change_time)

Arguments
model an object of class brmsfit
newdata data frame in which to look for variables with which to predict
change_time data frame

Value
data frame with predictions
predict_nlm_single
Make predictions based on non-linear model, single study

Description

Make predictions based on non-linear model, single study

Usage

`predict_nlm_single(model, newdata, change_time)`

Arguments

- `model`: an object of class `brmsfit`
- `newdata`: data frame in which to look for variables with which to predict
- `change_time`: numeric

Value

data frame with predictions

predict_regr_model
Make predictions

Description

Make predictions

Usage

`predict_regr_model(model, df)`

Arguments

- `model`: object of class `brmsfit`
- `df`: data frame with classification results

Value

data frame
run_app

run_app *Run the Shiny Application*

Description

Run the Shiny Application

Usage

```r
run_app(...)```

**Arguments**

- `...`: additional options passed to `shinyApp()`

**Value**

No return value, called for the shiny app interface

---

run_nl_model

---

**run_nl_model**  *Fit nonlinear model - continuous hinge function*

---

**Description**

Fit nonlinear model - continuous hinge function

**Usage**

```r
run_nl_model(start, df_mod, formula, n_cores)```

Arguments

- `start`: df with coefficients
- `df_mod`: data of all variables used in the model
- `formula`: an object of class brmsformula
- `n_cores`: number of cores to use

Value

object of class brmsfit
set_waiter

Description
Set up a waiting screen

Usage
```python
set_waiter(header)
```

Arguments
- `header` text to display on loading screen

Value
- object of a class waiter
Index

* datasets
 - example_data, 9

aggregate_study_info, 2
animal_info_classification, 3
assess_efficacy, 3
below_min_points, 4
calc_gr, 4
calc_probability, 5
calc_survived, 5
change_time_multi, 6
change_time_single, 6
classify_data_point, 7
classify_subcategories, 7
classify_type_responder, 8
clean_string, 8
control_growth_plot, 9

dataset, 9
exclude_data, 10
expand_palette, 10

f_start, 11
get_responder, 11
guess_match, 12

hide_outliers, 12

load_data, 13

make_terms, 13
model_control, 14

notify_error_and_reset_input, 14

ordered_regression, 15

plot_animal_info, 16
plot_class_gr, 17
plot_class_tv, 17
plot_proportions, 18
plot_waterfall, 18
plotly_volume, 15
predict_lm, 19
predict_nlm_multi, 19
predict_nlm_single, 20
predict_regr_model, 20

run_app, 21
run_nl_model, 21

set_waiter, 22

23